王黎明,范盛遠,,程紅勝,孟海波,沈玉君,王 健,周海賓
基于EDEM的豬糞接觸參數(shù)標定
王黎明1,范盛遠1,2,3,程紅勝2,3,孟海波2,3,沈玉君2,3,王 健2,3,周海賓2,3
(1. 黑龍江八一農(nóng)墾大學(xué)工程學(xué)院,大慶 163319;2. 農(nóng)業(yè)農(nóng)村部規(guī)劃設(shè)計研究院農(nóng)村能源與環(huán)保研究所,北京 100125;3. 農(nóng)業(yè)農(nóng)村部資源循環(huán)利用技術(shù)與模式重點實驗室,北京 100125)
為準確快速獲得畜禽糞便的接觸參數(shù),該研究通過物理堆積試驗與仿真方法對豬糞接觸參數(shù)進行了標定。測定了不同含水率下豬糞的堆積角,建立了含水率與堆積角的回歸方程;基于Hertz-Mindlin with JKR球體粘結(jié)模型,進行了離散元仿真模擬;采用篩選試驗設(shè)計(Plackett-Burman Design,P-BD)對10個初始參數(shù)進行了篩選,發(fā)現(xiàn)JKR(Johnso-Kendall-Roberts)表面能、顆粒間滾動摩擦系數(shù)、顆粒間碰撞恢復(fù)系數(shù)對豬糞堆積角影響顯著;并根據(jù)響應(yīng)曲面試驗設(shè)計(Box-Behnken Design,B-BD)建立了堆積角與顯著性參數(shù)的二階回歸模型,得到了3個顯著性參數(shù)值分別為JKR表面能0.03 J/m2、顆粒間滾動摩擦系數(shù)0.27、顆粒間碰撞恢復(fù)系數(shù)0.54;將仿真所得堆積角與物理試驗值進行對比驗證,相對誤差為4.27%。結(jié)果表明,該研究提出的標定方法能準確模擬物理堆積試驗,可為畜禽糞便接觸參數(shù)的標定提供參考。
糞;模型;標定;EDEM;接觸參數(shù);堆積角
畜禽糞便堆肥生產(chǎn)有機肥是處理農(nóng)村有機廢棄物無害化、資源化的一種重要方式[1-2]。近幾年中國大力推廣有機肥代替化肥,因此,畜禽糞便堆肥已經(jīng)成為研究熱點。但是現(xiàn)有研究主要集中在畜禽糞便組分分析、養(yǎng)分轉(zhuǎn)移、重金屬吸附等化學(xué)指標上[3-5],對畜禽糞便的物理接觸特性研究極少,尤其是針對畜禽糞便的收集、轉(zhuǎn)運、堆肥等機械化作業(yè)的接觸特性參數(shù)的研究。準確的物料接觸特性參數(shù)是實現(xiàn)畜禽糞便機械化作業(yè)的關(guān)鍵,也是設(shè)計相關(guān)設(shè)備所需的基本參數(shù)。畜禽糞便的主要成分為動物消化后的飼料小顆粒,其結(jié)構(gòu)各異、不同種畜禽新鮮糞含水率較高(60%~85%)且差異較大,因此相關(guān)接觸參數(shù)難以及時、準確的通過常規(guī)測量方法獲得。
國內(nèi)外學(xué)者針對含濕黏性小顆粒物料接觸參數(shù)難以及時、準確獲取的問題,提出了通過離散元法對物料參數(shù)進行“虛擬標定”的方法。王國強等[6]和胡國明[7]介紹了物料參數(shù)通過離散元法獲取的方法,并通過計算機的模擬完成物料標定試驗,如堆積角試驗、沖擊試驗、漏料試驗等,且不斷優(yōu)化離散元參數(shù),直到模擬出的物料堆積角表征特性與實際情況相一致時,則認為該離散元參數(shù)值與實際參數(shù)值吻合。通過此方法,賈富國等[8]對谷物顆粒的堆積角進行了模擬預(yù)測;劉凡一等[9]、王憲良等[10]、袁全春等[11]和戴飛等[12]對谷物、土壤、有機肥等離散元參數(shù)進行了分析及標定,獲得了物料的部分接觸參數(shù);林嘉聰?shù)萚13]和羅帥等[14]研究了不同含水率下蚯蚓糞顆粒流動特性,發(fā)現(xiàn)了含水率能明顯改善蚯蚓糞顆粒的流動性;上述研究表明此方法在散體物料參數(shù)的推導(dǎo)上具有一定可行性,同時發(fā)現(xiàn)在現(xiàn)有研究報道中所研究物料含水率皆<60%,而針對堆肥過程中存在的畜禽糞便這一類高含水率的黏性顆粒物料的接觸參數(shù)并無研究。
綜上所述,本研究目的是標定畜禽糞便類高含水率黏性顆粒物料的接觸參數(shù)。由于豬糞產(chǎn)生量巨大且分布較廣便于獲取,所以本研究以豬糞為研究對象,進行不同含水率下的豬糞堆積角測定試驗和基于離散元法(Discrete Element Method,DEM)的仿真模擬試驗,通過篩選試驗設(shè)計(Plackett-Burman Design,P-BD)試驗、爬坡試驗、響應(yīng)曲面試驗設(shè)計(Box-Behnken Design,B-BD)試驗建立豬糞接觸參數(shù)與堆積角的回歸模型,并對模型求解得到豬糞接觸參數(shù)的最優(yōu)組合,最后將最佳參數(shù)組合下仿真所得堆積角與物理試驗值進行對比驗證。以期為畜禽糞便收集、轉(zhuǎn)運、堆肥化處理等不同階段機械化作業(yè)提供及時、有效的物料接觸參數(shù)。
豬糞取自于北京順義區(qū)東華山豬糞沼氣工程站,為48 h內(nèi)收集到的豬糞混合物,含水率為60%,密度為1 200~1 300 kg/m3。
參照空心筒法[15],自制堆積角試驗裝置如圖1所示。其中,空心筒與托盤皆為不銹鋼材質(zhì),空心筒內(nèi)物料高度與直徑之比為3∶1[8],空心筒直徑為200 mm,高為800 mm,物料填充率為75%。
1.支架 2.不銹鋼托盤 3.空心筒 4.滑輪組 5.牽引繩
由圖1所示試驗裝置進行堆積角試驗,并測量豬糞粒徑及不同堆積角的含水率;利用EDEM2.7軟件對豬糞堆積角試驗進行仿真模擬,通過篩選試驗設(shè)計(Plackett-Burman Design,P-BD),篩選出對堆積角有顯著影響的因素;其次,針對顯著性影響因素開展爬坡試驗確定顯著性影響因素的最優(yōu)范圍區(qū)間。最后,利用響應(yīng)曲面試驗設(shè)計(Box-Behnken Design,B-BD)建立豬糞標定模型并與物理試驗對比驗證。
1.2.1 堆積角與含水率的測定
采用圖像—數(shù)字模擬法測定豬糞堆積角,具體步驟為1)對豬糞堆體進行拍照獲得物料堆體圖像,使用Photoshop軟件快速提取物料堆體輪廓、并對所獲得的圖像進行灰度化處理;2)將獲得的圖像導(dǎo)入Origin軟件,通過圖像數(shù)字化處理工具Digitizer隨機獲得圖像輪廓的各點坐標值;3)將所獲得坐標值輸入Excel軟件,選擇線性擬合對坐標點進行擬合,得到堆積體兩側(cè)輪廓的擬合直線,兩側(cè)擬合直線與水平坐標軸的傾角平均值即豬糞堆積角。豬糞堆積角物理試驗如圖2所示。
豬糞堆積體兩側(cè)輪廓線線性擬合方程如式(1)和式(2)所示
左= 0.711 5+ 1.721 3 (2=0.879) (1)
右= -0.635 3+ 14.463 (2=0.851) (2)
式中為像素點豎直坐標,為像素點水平坐標。
斜率左為0.711 5,右為-0.635 3根據(jù)式(3)求出堆積角數(shù)值。
式中為物理試驗堆積角,(°);為斜率。
在豬糞堆積角物理試驗過程中,通過自然風(fēng)干法與添加去離子水方法對豬糞含水率進行調(diào)控,得到含水率在40%~85%范圍內(nèi)的豬糞。每次堆積角測量的同時,均取一定量豬糞樣品通過烘干法測量含水率,并繪制含水率與堆積角間關(guān)系曲線圖。
1.2.2 物料粒徑測定
篩分法[16]是一種傳統(tǒng)的粒徑測量方法且應(yīng)用廣泛。由于豬糞顆粒較細且含水率較高,顆粒之間凝聚性較強,所以應(yīng)該對篩分法加以改進。具體操作方法如下,取一定量的豬糞樣品通過2次水洗去除豬糞表面黏度后通過烘箱烘干,烘干后的豬糞全部通過直徑0~2 mm的標準篩,得到豬糞的不同粒徑的分布規(guī)律。
1.2.3 參數(shù)標定試驗設(shè)計
豬糞顆粒的離散元參數(shù)研究較少,考慮到豬糞顆粒的物理性質(zhì)與黏土、有機肥和蚯蚓糞等顆粒較為接近,同時不同含水率下豬糞含泊松比、剪切模量、密度等參數(shù)均不相同,因此,本研究在反復(fù)預(yù)試驗的基礎(chǔ)上參照劉凡一等[9]、王憲良等[10]、袁全春等[11]、戴飛等[12]、羅帥等[14]、賀一鳴等[17]和武濤等[18]研究中各類顆粒離散元參數(shù)值確定豬糞相關(guān)接觸參數(shù)范圍,同時選定Hertz-Mindlin with JKR粘結(jié)模型[19]作為顆粒模型。豬糞顆粒各待標定參數(shù)如表1所示。其他參數(shù)分別為不銹鋼泊松比為0.3[20]、剪切模量為7.9×1010pa、密度為7 865 kg/m3、重力加速度為9.81 m/s2、仿真時間步長為雷利時間步長的20%、數(shù)據(jù)保存間隔0.01 s、仿真時間5 s、顆粒模型粒徑變化范圍設(shè)置為滿足平均值、標準差為0.1 mm的標準正態(tài)分布。本研究涉及接觸參數(shù)較多,參照El-Sheekh等[21]、Karlapudi等[22]、Korayem等[23]和Miller等[24]研究的試驗設(shè)計,先進行篩選試驗設(shè)計(Plackett-Burman Design,P-BD)篩選出對結(jié)果有顯著性影響的試驗因素,再通過爬坡試驗縮小顯著性試驗因素的參數(shù)范圍,最后通過響應(yīng)曲面試驗設(shè)計(Box-Behnken Design,B-BD)獲得堆積角與顯著性參數(shù)之間的回歸模型,對回歸模型求解得到最佳參數(shù)組合。
表1 離散元仿真所需參數(shù)
1)篩選試驗設(shè)計(P-BD)
應(yīng)用Minitab 18軟件進行篩選試驗設(shè)計,10個待標定參數(shù)均以1和-1形式分別代表各參數(shù)高低2個水平,并選擇1個中心點,總試驗次數(shù)為25次,試驗方案及結(jié)果如表2所示。
表2 篩選試驗設(shè)計及結(jié)果
2)爬坡試驗
爬坡試驗?zāi)芤宰羁斓乃俣取⒆钌俚脑囼灤螖?shù)找到最佳響應(yīng)值的所在區(qū)域。根據(jù)篩選試驗設(shè)計(P-BD)試驗結(jié)果,只選擇顯著性參數(shù)按照選定步長逐漸增加,其余參數(shù)選擇中間水平,進行爬坡試驗并計算仿真堆積角與實際堆積角之間的相對誤差。試驗方案及結(jié)果如表3所示,相對誤差(,%)如式(4)所示
表3 爬坡試驗設(shè)計及結(jié)果
3)響應(yīng)曲面試驗設(shè)計(B-BD)
根據(jù)爬坡試驗結(jié)果,進行響應(yīng)曲面試驗設(shè)計(B-BD)。對3個顯著性因素各取2個水平。選擇3個中心點進行誤差估計,共進行15次試驗,試驗方案及結(jié)果如表4所示。
表4 響應(yīng)曲面試驗設(shè)計方案結(jié)果
注:括號內(nèi)數(shù)字為試驗因素水平值。
Note: Numbers in brackets are the values of test factor levels.
通過試驗結(jié)果可知,圓筒提升速度在0.01~0.05 m/s時,豬糞可以在不銹鋼托盤上形成較為規(guī)則的圓臺形狀堆積體。不同含水率情況下的豬糞堆積角變化如圖3所示,豬糞的堆積角隨著豬糞的含水率升高而降低,當(dāng)含水率高于80%時豬糞流動性增強呈現(xiàn)出流體狀態(tài),不能形成良好的堆積體;當(dāng)豬糞含水率低于45%時豬糞開始結(jié)團流動效果不佳所形成堆積體不具代表性。這與其他散體物料[25-26]趨勢相反。目前大多數(shù)研究者,將散體物料含水率與堆積角的關(guān)系用線性關(guān)系來描述[27-28]。但根據(jù)實際豬糞含水率與堆積角的變化關(guān)系發(fā)現(xiàn),豬糞含水率與堆積角的變化規(guī)律不能用單一的線性關(guān)系來描述。本研究分別采用多項式擬合與線性擬合對散點圖進行擬合得到數(shù)學(xué)模型如式(5)和式(6)所示
= -1 338.33+ 2 464.72- 1 543.3+ 361.89(2 = 0.991 9) (5)
= -75.047+ 78.889(2 = 0.905 7) (6)
式中為物料堆積角,(°);為物料含水率,%。
通過圖3對比發(fā)現(xiàn),多項式擬合模型式(5)比線性擬合模型式(6)擬合度更優(yōu)。更符合豬糞含水率與堆積角之間的變化趨勢??梢酝ㄟ^對豬糞含水率的測量,根據(jù)式(5)計算預(yù)測得到豬糞堆積角。
圖3 豬糞物理堆積角與含水率關(guān)系曲線圖
物料粒徑測定試驗中得到了豬糞粒徑在0~2 mm范圍內(nèi)的豬糞顆粒質(zhì)量分布情況,其中粒徑在0.5~1 mm范圍內(nèi)的豬糞顆粒質(zhì)量占比最大為測試樣品總質(zhì)量的57%。仿真試驗中每增加一種粒徑顆粒都會增加仿真時間,因此本研究中仿真顆粒模型取粒徑平均值0.75 mm為豬糞顆粒原型。
2.3.1 篩選試驗設(shè)計(P-BD)結(jié)果分析
通過篩選試驗設(shè)計,得到試驗結(jié)果與試驗參數(shù)顯著性分析數(shù)據(jù)如表2和表5所示。由表5可知10個參數(shù)對堆積角的影響效果和顯著性,因子項的效應(yīng)按照由大到小的順序排列為JKR表面能、豬糞-豬糞滾動摩擦系數(shù)、豬糞-豬糞恢復(fù)系數(shù)、豬糞剪切模量、豬糞密度、豬糞-不銹鋼滾動摩擦系數(shù)、豬糞-不銹鋼靜摩擦系數(shù)、豬糞-豬糞靜摩擦系數(shù)、豬糞-不銹鋼碰撞恢復(fù)系數(shù)、顆粒泊松比。其中對堆積角影響顯著(<0.05)的參數(shù)包括豬糞-豬糞恢復(fù)系數(shù)、豬糞-豬糞滾動摩擦系數(shù)、JKR表面能。且3個顯著性參數(shù)皆為正相關(guān),堆積角隨3個顯著參數(shù)的增大而增大。分析原因如下,JKR表面能代表著物料的黏附性能,物料的運動狀態(tài)主要由黏附性能大小決定;同時物料為球體模型,運動方式主要以滾動運動為主,相比非球體模型,滾動摩擦系數(shù)對堆積角影響要比靜摩擦系數(shù)顯著。
表5 篩選試驗設(shè)計試驗參數(shù)顯著性分析
2.3.2 爬坡試驗結(jié)果分析
爬坡試驗設(shè)計方案及其結(jié)果如表3所示。由此可知,仿真試驗與物理試驗堆積角度相對誤差先變小再變大,2號組試驗相對誤差最小,分析可知,最優(yōu)值區(qū)間位于2號組試驗附近,故選取2號組試驗3個因素數(shù)值為中心點,1號組、3號組試驗3個因素數(shù)值分別為低、高水平進行后續(xù)響應(yīng)面設(shè)計。
2.3.3 響應(yīng)曲面試驗設(shè)計(B-BD)試驗及回歸模型
響應(yīng)曲面試驗設(shè)計方案及其結(jié)果如表4所示,應(yīng)用Dseign Expert10建立了豬糞顆粒堆積角與3個顯著性參數(shù)的二階回歸模型如式(7)所示
=32.13+1.34+0.97+2.37-0.55-0.092+
0.27+0.32+0.542+0.232(7)
式中為JKR表面能,J/m2;為豬糞-豬糞滾動摩擦系數(shù);為豬糞-豬糞恢復(fù)系數(shù)。
該回歸模型方差分析結(jié)果如表6所示。JKR表面能、豬糞-豬糞滾動摩擦系數(shù)、豬糞-豬糞恢復(fù)系數(shù)對豬糞顆粒堆積角的影響極其顯著;該回歸模型的<0.000 1,表明該模型的因變量與全體自變量之間的關(guān)系極顯著;失擬項=0.206 3,表明方程擬合良好;決定系數(shù)2= 0.994 6與校正決定系數(shù)2adj=0.984 7均接近于1,故所得回歸方程可信度較高;精密度=33.876,表明該回歸模型精確度良好。
在保證模型顯著、失擬項不顯著的情況下,去除對結(jié)果影響不顯著的項,對回歸模型進行優(yōu)化,得到新的回歸方程為式(8)所示
=32.13+1.34+0.97+2.37-0.55+0.27+
0.32+0.542+0.242(8)
表6 響應(yīng)曲面試驗設(shè)計二次回歸模型方差分析
注:*表示該項顯著<0.05,決定系數(shù)2=0.994 6,校正決定系數(shù)2adj=0.984 7。下同。
Note: *shows that the term is significant<0.05, coefficient of determination2=0.994 6, adjusted determination coefficient2adj=0.984 7. The same below.
優(yōu)化后的回歸模型方差分析如表7所示,優(yōu)化后的模型變異系數(shù)降到0.81%,模型的可信度進一步增加;決定系數(shù)2=0.994 1與校正決定系數(shù)2adj=0.986 1均接近于1,表明模型擬合度高;精密度=37.023較優(yōu)化前提高,可以用來預(yù)測顆粒堆積角。
表7 響應(yīng)曲面試驗設(shè)計優(yōu)化模型方差分析
注:*表示該項顯著<0.05,決定系數(shù)2=0.994 1,校正決定系數(shù)2adj=0.986 1,變異系數(shù)CV=0.81%,精密度=37.023。
Note: *shows the term is significant<0.05, coefficient of determination2=0.994 1, adjusted determination coefficient2adj=0.986 1, coefficient of variance CV=0.81%, precision=37.023.
以豬糞顆粒實際堆積角為目標對回歸方程求解尋優(yōu),得到3個顯著性參數(shù)的最優(yōu)解組合,JKR表面能為0.03 J/m2、豬糞-豬糞滾動摩擦系數(shù)為0.27、豬糞-豬糞碰撞恢復(fù)系數(shù)為0.54。
2.4.1 最優(yōu)參數(shù)組合的確定
選擇3個顯著性參數(shù)最優(yōu)組合解,進行驗證,即JKR表面能0.03 J/m2、豬糞-豬糞滾動摩擦系數(shù)0.27、豬糞-豬糞碰撞恢復(fù)系數(shù)0.54;其他非顯著性參數(shù)取中間水平值,即豬糞泊松比為0.315、豬糞剪切模量5.5 MPa、豬糞密度1 250 kg/m3、豬糞-豬糞靜摩擦系數(shù)0.55、豬糞-不銹鋼碰撞恢復(fù)系數(shù)0.6、豬糞-不銹鋼靜摩擦系數(shù)0.75、豬糞-不銹鋼滾動摩擦系數(shù)為0.75,其余參數(shù)不變。通過EDEM2.7軟件進行堆積角仿真試驗,測得豬糞堆積角為32.471 2°與豬糞實際堆積角33.92°相對誤差為4.27%,在可接受范圍內(nèi),仿真試驗堆積角效果圖如圖4所示。
注:以EDEM2.7軟件默認空間原點(0,0,0)建立空間直角坐標系,α、β、γ分別為三點空間坐標,32.471 2°為直線αγ與直線βγ夾角。
2.4.2 模型驗證試驗
為進一步驗證所得模型有效性,在堆積角測定試驗中選取了2組試驗結(jié)果(含水率45%、80%,堆積角40.23°、20.89°),在試驗參數(shù)范圍內(nèi)對模型求解尋優(yōu),以最優(yōu)解進行離散元模擬,模擬所得堆積角分別為39.907 9°、22.543 1°(圖5),均接近于實際堆積角,相對誤差分別為8%、7.9%,皆在可承受范圍10%之內(nèi),認為模型是有效的。
注:以EDEM2.7軟件默認空間原點(0,0,0)建立空間直角坐標系,α、β、γ分別為三點空間坐標,39.907 9°和22.543 1°均為直線αγ與直線βγ夾角。
研究中標定的豬糞的3個顯著性影響參數(shù)與羅帥等[14]和曹波等[29]的研究規(guī)律相近,分別為JKR表面能、豬糞-豬糞間滾動摩擦系數(shù)、豬糞-豬糞間恢復(fù)系數(shù)。結(jié)合前人研究對比分析發(fā)現(xiàn),在離散元參數(shù)標定過程中,當(dāng)豬糞接觸模型為球體JKR接觸模型時,對堆積角有顯著性影響的參數(shù)分別為JKR表面能、顆粒間滾動摩擦系數(shù)、顆粒間靜摩擦系數(shù)、顆粒間碰撞恢復(fù)系數(shù)其中的幾項,因此,在后續(xù)基于離散元法(Discrete Element Method,DEM)的黏性散體物料接觸參數(shù)標定研究中需重點考察以上4個參數(shù)的變化規(guī)律;同時,本研究僅選用了豬糞代表堆肥過程中的黏性顆粒物料,對接觸參數(shù)進行了研究,在后續(xù)試驗中將考慮雞糞、牛糞等物料的對比研究,進一步完善堆肥原料中黏性顆粒物料接觸參數(shù)的規(guī)律模型。
1)本研究提出了兩側(cè)擬合直線傾角平均值法作為堆積角的測量方法。決定系數(shù)2分別為0.879和0.851,試驗結(jié)果表明該方法擬合效果良好,可為豬糞堆積角的測定提供參考。
2)測定了不同含水率下豬糞的堆積角,建立了含水率與堆積角之間的數(shù)學(xué)模型,對比發(fā)現(xiàn)較傳統(tǒng)的線性擬合模型精度更高。由此模型及堆積角與顯著性參數(shù)的回歸模型可以及時準確的預(yù)測豬糞堆積角并推導(dǎo)JKR表面能、豬糞-豬糞滾動摩擦系數(shù)、豬糞-豬糞碰撞恢復(fù)系數(shù)等其他參數(shù)。
3)將Hertz-Mindlin with JKR球體粘結(jié)模型應(yīng)用于豬糞,并采用離散元法對豬糞顆粒相關(guān)參數(shù)進行標定試驗,篩選出對豬糞堆積角有顯著影響的接觸參數(shù)即JKR(Johnso-Kendall-Roberts)表面能、豬糞-豬糞滾動摩擦系數(shù)、豬糞-豬糞碰撞恢復(fù)系數(shù)。在此基礎(chǔ)上建立了堆積角與3個顯著性參數(shù)間的二次回歸模型并優(yōu)化求解。得到3個顯著性參數(shù)的最優(yōu)解組合,JKR表面能為0.03 J/m2、豬糞-豬糞滾動摩擦系數(shù)為0.27、豬糞-豬糞碰撞恢復(fù)系數(shù)為0.54。經(jīng)試驗驗證,模型結(jié)果與試驗結(jié)果相對誤差僅為4.27%,較為吻合。
[1] 周海賓,沈玉君,孟海波,等. 自然村生產(chǎn)生活廢棄物循環(huán)利用模式及其評價研究[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(23):206-212. Zhou Haibin, Shen Yujun, Meng Haibo, et al. Research on rural waste recycling mode and its evaluation in village[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 206-212. (in Chinese with English abstract)
[2] 沈玉君,李冉,孟海波,等. 國內(nèi)外堆肥標準分析及其對中國的借鑒啟示[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(12):265-271. Shen Yujun, Li Ran, Meng Haibo, et al. Analysis of composting standards at home and abroad and its enlightenment to China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(12): 265-271. (in Chinese with English abstract)
[3] 張樹清,張夫道,劉秀梅,等. 高溫堆肥對畜禽糞中抗生素降解和重金屬鈍化的作用[J]. 中國農(nóng)業(yè)科學(xué),2006,39(2):337-343. Zhang Shuqing, Zhang Fudao, Liu Xiumei, et al. Degradation of antibiotics and passivation of heavy metals during thermophilic composting process[J]. Scientia Agricultura Sinica, 2006, 39(2): 337-343. (in Chinese with English abstract)
[4] 黃國鋒,張振鈿,鐘流舉,等. 重金屬在豬糞堆肥過程中的化學(xué)變化[J]. 中國環(huán)境科學(xué),2004,24(1):94-99. Huang Guofeng, Zhang Zhendian, Zhong Liuju, et al. Chemical changes of heavy metals in the process of pig manure composting[J]. Chinese Environmental Science, 2004, 24(1): 94-99. (in Chinese with English abstract)
[5] 李冉,趙立欣,孟海波,等. 有機廢棄物堆肥過程重金屬鈍化研究進展[J]. 中國農(nóng)業(yè)科技導(dǎo)報,2018,20(1):121-129. Li Ran, Zhao Lixin, Meng Haibo, et al. Research progress of heavy metal immobilization and its mechanism during composting[J]. Journal of Agricultural Science and Technology, 2018, 20(1): 121-129. (in Chinese with English abstract)
[6] 王國強,郝萬軍,王繼軍. 離散單元法及其在EDEM上的實踐[M]. 西安:西北工業(yè)大學(xué)出版社. 2010.
[7] 胡國明. 顆粒系統(tǒng)的離散元素法分析仿真[M]. 武漢:武漢理工大學(xué)出版社. 2010.
[8] 賈富國,韓燕龍,劉揚,等. 稻谷顆粒物料堆積角模擬預(yù)測方法[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(11):254-260. Jia Fuguo, Han Yanlong, Liu Yang, et al. Simulation prediction method of repose angle for rice particle materials[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(11): 254-260. (in Chinese with English abstract)
[9] 劉凡一,張艦,李博,等. 基于堆積試驗的小麥離散元參數(shù)分析及標定[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(12):247-253. Liu Fanyi, Zhang Jian, Li Bo, et al. Calibration of parameters of wheat required in discrete element method simulation based on repose angle of particle heap[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(12): 247-253. (in Chinese with English abstract)
[10] 王憲良,胡紅,王慶杰,等. 基于離散元的土壤模型參數(shù)標定方法[J]. 農(nóng)業(yè)機械學(xué)報,2017,48(12):78-85. Wang Xianliang, Hu Hong, Wang Qingjie, et al. Calibration method of soil contact characteristic parameters based on DEM theory[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(12): 78-85. (in Chinese with English abstract)
[11] 袁全春,徐麗明,邢潔潔,等. 機施有機肥散體顆粒離散元模型參數(shù)標定[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(18):21-27. Yuan Quanchun, Xu Liming, Xing Jiejie, et al. Parameter calibration of discrete element model of organic fertilizer particles for mechanical fertilization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 21-27. (in Chinese with English abstract)
[12] 戴飛,宋學(xué)鋒,趙武云,等. 全膜雙壟溝覆膜土壤離散元接觸參數(shù)仿真標定[J]. 農(nóng)業(yè)機械學(xué)報,2019,50(2):49-56. Dai Fei, Song Xuefeng, Zhao Wuyun, et al. Simulative calibration on contact parameters of discrete elements for covering soil on whole plastic film mulching on double ridges[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(2): 49-56. (in Chinese with English abstract)
[13] 林嘉聰,羅帥,袁巧霞,等. 不同含水率蚯蚓糞顆粒物料流動性研究[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(9):221-227. Lin Jiacong, Luo Shuai, Yuan Qiaoxia, et al. Flow properties of vermicompost particle with different moisture contents[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(9): 221-227. (in Chinese with English abstract)
[14] 羅帥,袁巧霞,Shaban G,et al. 基于JKR粘結(jié)模型的蚯蚓糞基質(zhì)離散元法參數(shù)標定[J]. 農(nóng)業(yè)機械學(xué)報,2018,49(4):343-350. Luo Shuai, Yuan Qiaoxia, Shaban G, et al. Parameters calibration of vermicomposting nursery substrate with discrete element method based on JKR contact model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 343-350. (in Chinese with English abstract)
[15] 田曉紅,李光濤,張淑麗. 谷物自然休止角測量方法的探究[J]. 糧食加工,2010,35(1):68-71. Tian Xiaohong, Li Guangtao, Zhang Shuli. Determination of angle of repose[J]. Grain Processing, 2010, 35(1): 68-71. (in Chinese with English abstract)
[16] 蔡斌,王瑞青,葉上游. 動態(tài)圖像法、激光散射法及篩分法的比較[J]. 炭素,2018,45(1):27-34. Cai Bin, Wang Ruiqing, Ye Shangyou. Comparison of dynamic image analysis, laser diffraction and sieve analysis[J]. Carbon, 2018, 45 (1): 27-34. (in Chinese with English abstract)
[17] 賀一鳴,向偉,吳明亮,等. 基于堆積試驗的壤土離散元參數(shù)的標定[J]. 湖南大學(xué)學(xué)報:自然科學(xué)版,2018,44(2):216-220. He Yiming, Xiang Wei, Wu Mingliang, et al. Parameters calibration of loam soil for discrete element simulation based on the repose angle of particle heap[J]. Journal of Hunan Agricultural University:Natural Sciences Edition, 2018, 44(2): 216-220. (in Chinese with English abstract)
[18] 武濤,黃偉鳳,陳學(xué)深,等. 考慮顆粒間黏結(jié)力的黏性土壤離散元模型參數(shù)標定[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報,2017,38(3):93-98. Wu Tao, Huang Weifeng, Chen Xueshen, et al. Calibration of discrete element model parameters for cohesive soil considering the cohesion between particles[J]. Journal of South China Agricultural University, 2017, 38(3): 93-98. (in Chinese with English abstract)
[19] Solutions D. EDEM 2. 6 Theory Reference Guide[M]. Edinburgh. 2014.
[20] Ucgul M, Fielke J M, Saunders C. Three-dimensional Discrete Element Modelling (DEM) of tillage: Accounting for soil cohesion and adhesion[J]. Biosystems Engineering, 2015, 129(1): 298-306.
[21] El-Sheekh M M, Khairy H M, Gheda S F, et al. Application of Plackett-Burman design for the high production of some valuable metabolites in marine alga[J]. The Egyptian Journal of Aquatic Research, 2016, 42(1): 57-64.
[22] Karlapudi A P, Krupanidhi S, Reddy R, et al. Plackett-Burman design for screening of process components and their effects on production of lactase by newly isolatedVUVD101 strain from Dairy effluent[J]. Beni-Suef University Journal of Basic and Applied Sciences, 2018, 7(4): 543-546.
[23] Korayem A S, Abdelhafez A A, Zaki M M, et al. Optimization of biosurfactant production by Streptomyces isolated from Egyptian arid soil using Plackett-Burman design[J]. Annals of Agricultural Sciences, 2015, 60(10): 209-217.
[24] Miller A, Sitter R R. Choosing columns from the 12-run Plackett-Burman design[J]. Statistics & Probability Letters, 2004, 67(2): 193-201.
[25] Zaalouk A K, Zabady F I. Effect of moisture content on angle of repose and friction coefficient of wheat grain[J]. Misr Journal Agricultural Engineering, 2009, 26(1): 418-427.
[26] Kalkan F, Kara M. Handling, frictional and technological properties of wheat as affected by moisture content and cultivar[J]. Powder Technology, 2011, 213(1/2/3): 116-122.
[27] Unal H, Is?k E, Izli N, et al. Geometric and mechanical properties of mung bean (L.) grain: Effect of moisture[J]. International Journal of Food Properties, 2008, 11(3): 585-599.
[28] Sologubik C A, Campa?one L A, Pagano A M, et al. Effect of moisture content on some physical properties of barley[J]. Industrial Crops and Products, 2013, 43(5): 762-767.
[29] 曹波,李文輝,王娜,等. 基于JKR模型的濕式滾拋磨塊離散元參數(shù)標定[J]. 表面技術(shù),2019,48(3):249-256. Cao Bo, Li Wenhui, Wang Na, et al. Calibration of discrete element parameters of the wet barrel finishing abrasive based on JKR model[J]. Surface Technology, 2019, 48(3): 249-256. (in Chinese with English abstract)
Calibration of contact parameters for pig manure based on EDEM
Wang Liming1, Fan Shengyuan1,2,3, Cheng Hongsheng2,3, Meng Haibo2,3, Shen Yujun2,3, Wang Jian2,3, Zhou Haibin2,3
(1.,,163319,; 2.,,100125,; 3.,,100125,)
To obtain the contact parameters of livestock and poultry manure accurately and quickly, this study calibrated the contact parameters of pig manure by physical stacking test and simulation method. A stacking angle measurement test bench was designed, and the contour of the stacking slope was obtained by the image-digital simulation method, and a linear fitting was performed. Through the natural air-drying and the deionized water adjustment methods, the pig manure accumulation angle under different water content was measured, and a polynomial fitting model between the water content and the pig manure accumulation angle under different water contents was established. To obtain the actual stacking angle, the Hertz-Mindlin with JKR sphere bonding model was used, and the discrete element simulation of the physical stacking test was performed by EDEM2.7 Screening experiment design (Plackett-Burman Design, P-BD) was used to screen 10 initial parameters. It was found that JKR (Johnso-Kendall-Roberts) surface energy, particle-particle rolling friction coefficient, and particle-particle collision recovery coefficient had significant effects on the swine manure accumulation angle, and the other 7 factors had no significant effect on the accumulation angle. The best range of three significant influencing factors was determined by the steepest climbing test. The 7 non-significant influencing factors in this test were the intermediate values of the initial range, and the 3 significant parameters gradually were increased until the relative error between the simulated value and the physical test value reached the minimum. Based on the results of the response surface experiment design (Box-Behnken Design, B-BD), a quadratic polynomial model between the stacking angle and the three significant parameters was created. The analysis of the quadratic polynomial model variance showed that the model was meaningful. Under the condition that the model was significant and the miss-fit terms were not significant, the terms that did not significantly affect the results were removed, and the regression model was optimized to obtain a new quadratic polynomial regression model. The coefficient of variation of the optimized model dropped to 0.81%, indicating that the reliability of the model had been further increased. The determination coefficient2=0.994 1 and the correction determination coefficient2adj=0.986 1 were both close to 1, indicating the model fitted better. The precision (precision) was 37.023, improved before optimization, which could be used to predict the particle accumulation angle. Through the optimization of the optimized quadratic polynomial regression model, the best parameter combination of 3 significant influencing factors were obtained. The results illustratedthat the surface energy of JKR was 0.03 J/m2, the coefficient of rolling friction between pig manure and pig manure was 0.27, and the coefficient of recovery of the collision between pig manure and pig manure particles was 0.54. The discrete element stacking test simulation was carried out based on the calibrated optimal values of the discrete element parameters of pig manure, and the error between the simulated stacking angle result and the actual test result was 4.27%, which showed that the calibration results were credible. The results could provide a reference for the selection and calibration of discrete element model parameters to other agricultural livestock and poultry manure.
manure; models; calibration; EDEM; contact parameters; accumulation angle
王黎明,范盛遠,程紅勝,等. 基于EDEM的豬糞接觸參數(shù)標定[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(15):95-102.doi:10.11975/j.issn.1002-6819.2020.15.012 http://www.tcsae.org
Wang Liming, Fan Shengyuan, Cheng Hongsheng, et al. Calibration of contact parameters for pig manure based on EDEM[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(15): 95-102. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.15.012 http://www.tcsae.org
2019-08-28
2020-03-18
國家重點研發(fā)計劃資助(2017YFD0800202)
王黎明,博士,教授,主要從事生物質(zhì)利用技術(shù)與裝備等方向研究。Email:dljdxy@163.com
10.11975/j.issn.1002-6819.2020.15.012
X220.1
A
1002-6819(2020)-15-0095-08