李玉毛 李書(shū)海 張曉麗
摘 要:設(shè)f=h+g是單位圓盤(pán)U上的單葉保形復(fù)值調(diào)和函數(shù),其中h和g在U上解析.本文中,利用從屬關(guān)系定義了一類(lèi)系數(shù)均為正數(shù)的調(diào)和函數(shù)類(lèi),并進(jìn)一步討論了該函數(shù)類(lèi)的表示定理、偏差定理、極值點(diǎn)及卷積等相關(guān)性質(zhì).
關(guān)鍵詞:調(diào)和函數(shù);系數(shù)不等式;極值點(diǎn);偏差
中圖分類(lèi)號(hào):O174.3 ?文獻(xiàn)標(biāo)識(shí)碼:A ?文章編號(hào):1673-260X(2020)06-0018-04
1 引言
假設(shè)SH表示單位圓盤(pán)U={z:|z|<1}上的單葉保形復(fù)值調(diào)和函數(shù)族的全體且具有形式f=h+g,f還滿足f(0)=0,fz(0)=1,其中
參考文獻(xiàn):
〔1〕J. Clunie, T. Sheil-Small .Harmonic univalent functions[J]. Anna. Acade. Sci. Fenn. Ser. A .I. Math., 1984, 9: 3-25.
〔2〕Duren, Peter. Harmonic Mappings in the Plane[G].Cambridge University Press Cambridge, 2004.
〔3〕H. Silverman. Harmonic univalent function with negative coefficients[J]. J. Math. Anal. Appl ,1998, 220:283-289.
〔4〕H. Silverman, E. M. Silvia. Subclasses of harmonic univalent functions[J]. New Zeland J. Math.,1999, 28:275-284.
〔5〕Sibel Yalcin ?Karpuzogullaei , Metin Ozturk. A subclass of harmonif univalent functions with negative coefficients[J]. Applied Mathematics and Computation , 2003, 142: 469-476.
〔6〕C Pommerenke. Univalent Functions[M]. Vandenhoeck and Ruprecht, G¨ottingen, 1975.
〔7〕Metin Ozt¨urk, Sibel Yalcin . On Univalent Harmonic Functions[J]. Journal of Inequalities in Pure and Applied Mathematics. 2002, 3(04):1-8.