李姝,王杰,,黃寧興,金振宇,王甦,張帆
捕食性天敵儲(chǔ)蓄植物系統(tǒng)研究進(jìn)展與展望
李姝1,王杰1,2,黃寧興1,金振宇2,王甦1,張帆1
(1北京市農(nóng)林科學(xué)院植物保護(hù)環(huán)境保護(hù)研究所,北京 100097;2長(zhǎng)江大學(xué)農(nóng)學(xué)院,湖北荊州 434025)
現(xiàn)代集約化農(nóng)業(yè)生產(chǎn)對(duì)生態(tài)環(huán)境的影響逐漸加劇,促使形成單一化農(nóng)業(yè)景觀、喪失生物多樣性,易引起害蟲大暴發(fā)。隨著我國現(xiàn)代農(nóng)業(yè)發(fā)展戰(zhàn)略布局與要求,對(duì)農(nóng)業(yè)綠色安全生產(chǎn)和食品環(huán)境安全的關(guān)注度日益增加,環(huán)境友好、綠色高效的害蟲管理技術(shù)的需求越來越強(qiáng)烈。天敵昆蟲作為生物防治的重要組成部分,在生態(tài)安全和可持續(xù)農(nóng)業(yè)中發(fā)揮著重要的作用。但傳統(tǒng)的淹沒式釋放天敵的方式存在成本高、時(shí)效性和持效性較差的問題。如何有效的增殖保護(hù)田間天敵昆蟲,提高天敵控害效率一直是生物防治的關(guān)鍵。儲(chǔ)蓄植物系統(tǒng)(banker plant system)又稱載體植物系統(tǒng),其具有預(yù)防性引入天敵、并有助于天敵種群維持,實(shí)現(xiàn)可持續(xù)控害等優(yōu)點(diǎn),是較為成功的保護(hù)型生物防治技術(shù),被越來越多用于農(nóng)業(yè)有害生物綜合治理中改善天敵生存條件,發(fā)揮對(duì)其的涵養(yǎng)和增殖作用。近年來相關(guān)研究發(fā)展迅速,在比利時(shí)、德國、法國、日本、美國和加拿大等國家已形成了商品產(chǎn)業(yè)化,得到了廣泛推廣應(yīng)用。但由于地理氣候和農(nóng)業(yè)設(shè)施等方面差異,國外已報(bào)道或構(gòu)建的儲(chǔ)蓄植物系統(tǒng)并不適于直接在我國應(yīng)用。目前國內(nèi)的研究雖然起步較晚,但已到了快速發(fā)展期,必將具有廣闊的發(fā)展前景。本文綜合分析了國內(nèi)外相關(guān)技術(shù)研究概況,就實(shí)現(xiàn)捕食性天敵儲(chǔ)蓄植物系統(tǒng)最佳控害功能進(jìn)行探討,提出要認(rèn)真篩選組成因素,明確儲(chǔ)蓄植物、替代食物和有益生物三者之間的關(guān)系并優(yōu)化各個(gè)因素的水平,而且還要充分考慮應(yīng)用策略,重視田間應(yīng)用效果評(píng)價(jià),從而進(jìn)一步完善儲(chǔ)蓄植物系統(tǒng)技術(shù)。此外,還展望了該領(lǐng)域的發(fā)展方向,因地制宜地開發(fā)適合國內(nèi)害蟲防治的捕食性天敵儲(chǔ)蓄植物系統(tǒng),必將推動(dòng)捕食性天敵產(chǎn)品的廣泛應(yīng)用及產(chǎn)業(yè)化發(fā)展。
儲(chǔ)蓄植物;捕食性天敵;替代食物;保護(hù)型生物防治;設(shè)施害蟲防治
天敵昆蟲是農(nóng)業(yè)生態(tài)系統(tǒng)重要的控害因素,在農(nóng)作物害蟲防治中起著重要的作用。近年來新興的保護(hù)型生物防治技術(shù)利用生態(tài)調(diào)控技術(shù)來改善天敵生存條件,同時(shí)提高了生物多樣性,被越來越多的應(yīng)用在農(nóng)業(yè)有害生物綜合治理中[1-3]。基于景觀復(fù)雜性假說、聯(lián)合抗性假說、資源集中假說等害蟲生態(tài)調(diào)控理論,多角度解釋了利用有益植物進(jìn)行生境調(diào)控,可以有效提升天敵定殖率及持續(xù)控害能力[4]。這些有益植物為天敵提供食物、越冬和繁殖棲境,幫助天敵躲避農(nóng)藥和耕作干擾。按照對(duì)天敵的作用和功能,可分為儲(chǔ)蓄植物(banker plant)、蜜源植物(nectar resource plant)、棲境植物(habitat plant)、誘集植物(trap plant)、指示植物(indicator plant)和護(hù)衛(wèi)植物(guardian plant)等[5-6]。目前研究較多的是儲(chǔ)蓄植物,又稱載體植物或開放式天敵飼養(yǎng)系統(tǒng)[7],能夠支持天敵在系統(tǒng)中“預(yù)存”與“增殖”[6,8],此系統(tǒng)已在比利時(shí)、德國、法國、日本、美國和加拿大等國家的溫室及大田作物有害生物防治中推廣應(yīng)用[3,9-14]。
捕食性天敵大多成蟲或幼蟲階段均可捕食,普遍具有捕食量大及環(huán)境適應(yīng)性強(qiáng)等優(yōu)點(diǎn)[15-17]。盡管許多研究表明捕食性天敵具有顯著的控害效果[18-20],但需要多次、大量釋放,這不僅增加了防治成本,而且也可能會(huì)引起潛在生態(tài)風(fēng)險(xiǎn)[9,21-22]。而儲(chǔ)蓄植物系統(tǒng)可以預(yù)防性地將天敵引入作物中,在作物全生育期中有助于捕食性天敵維持種群[7],從而達(dá)到可持續(xù)控害效果,減少了天敵釋放并降低了生態(tài)風(fēng)險(xiǎn)。此外,還可以吸引一些本地其他天敵定殖,從而提高害蟲的綜合防治效果[23]。如PINEDA等[24]在甜椒溫室中使用黑帶食蚜蠅()儲(chǔ)蓄植物系統(tǒng)時(shí)發(fā)現(xiàn),此系統(tǒng)還可吸引內(nèi)寬尾細(xì)腹蚜蠅(),使其數(shù)量增加提高生防效果。由于田間常存在多種害蟲混合發(fā)生的情況,廣食性或適應(yīng)性相對(duì)較強(qiáng)的捕食性天敵更具生防潛力。因此,捕食性天敵儲(chǔ)蓄植物系統(tǒng)成為保護(hù)型生物防治技術(shù)重要的研究方向,具有廣闊的發(fā)展前景。
本文以捕食性天敵儲(chǔ)蓄植物系統(tǒng)為主線,從儲(chǔ)蓄植物系統(tǒng)技術(shù)發(fā)展、主要構(gòu)建要素等方面對(duì)近年來國內(nèi)外的相關(guān)研究進(jìn)展等進(jìn)行了綜述,并提出了捕食性儲(chǔ)蓄植物系統(tǒng)應(yīng)用策略,為捕食性天敵儲(chǔ)蓄植物系統(tǒng)的應(yīng)用理論與技術(shù)的進(jìn)一步研究提供參考。
1970年,捷克科學(xué)家STARY使用“artificial foci”首次提出了儲(chǔ)蓄植物的理念,利用蕓苔屬()植物繁殖甘藍(lán)蚜()飼養(yǎng)菜少脈蚜繭蜂()以防治溫室中桃蚜()[25]。PARR等研究應(yīng)用麗蚜小蜂()的儲(chǔ)蓄植物系統(tǒng),防治危害番茄的溫室白粉虱(),發(fā)現(xiàn)麗蚜小蜂在系統(tǒng)中可維持8周[26-27]。第一例成功的捕食性天敵儲(chǔ)蓄植物系統(tǒng)是由丹麥科學(xué)家HANSEN[28]提出并建立,以蠶豆()為儲(chǔ)蓄植物支持食蚜癭蚊()防治溫室辣椒()上的桃蚜,達(dá)到與化學(xué)農(nóng)藥防治相同的效果。21世紀(jì)初,儲(chǔ)蓄植物系統(tǒng)產(chǎn)品已開始在歐美商品化[7],如XIAO等[29]建立的玉米()-草地小爪螨()-食螨癭蚊()儲(chǔ)蓄植物系統(tǒng),實(shí)現(xiàn)對(duì)二斑葉螨()的防控,并在美國的番茄()、黃瓜()、茄子()等設(shè)施作物生產(chǎn)中得到推廣應(yīng)用。目前,國際知名生防公司Koppert、Biobest等在比利時(shí)、芬蘭、法國、德國、匈牙利、意大利、荷蘭、波蘭、俄羅斯、西班牙、英國等國家均有儲(chǔ)蓄植物系統(tǒng)商品化銷售應(yīng)用,如小麥()-麥長(zhǎng)管蚜()-阿爾蚜繭蜂()、小麥-禾谷縊管蚜()-粗脊蚜繭蜂()等。此外,用觀賞性辣椒、羅勒()構(gòu)建的小花蝽(spp.)儲(chǔ)蓄植物系統(tǒng)在比利時(shí)、加拿大、澳大利亞等也有商業(yè)推廣應(yīng)用[7]。近年來,我國也開始研發(fā)捕食性天敵儲(chǔ)蓄植物系統(tǒng)工作,例如小麥-玉米蚜()-龜紋瓢蟲()[16]和玉米禾谷縊管蚜-異色瓢蟲()(待發(fā)表)等,部分已用于溫室蔬菜上蚜蟲的防治。
自1970年至今,國內(nèi)外對(duì)于儲(chǔ)蓄植物系統(tǒng)的研究論文已發(fā)表近150余篇。盡管HANSEN[28]建立的第一例捕食性天敵儲(chǔ)蓄植物系統(tǒng)比PARR等[26]提出的第一例寄生性天敵的儲(chǔ)蓄植物系統(tǒng)遲了7年,但自21世紀(jì)以來,捕食性天敵儲(chǔ)蓄植物系統(tǒng)研究發(fā)展迅速,這可能與越來越多的捕食性天敵大規(guī)模應(yīng)用有關(guān)。但目前僅有少量捕食性天敵儲(chǔ)蓄植物系統(tǒng)用于大田害蟲防治,如防治水稻上的褐飛虱()[30],其余大部分用于防治溫室害蟲(表1—表3),其中關(guān)于蚜蟲防治有13篇,主要是用于防治棉蚜()與桃蚜(表1);其次是粉虱防治有10篇(表2)。已發(fā)表文章中研究最多的捕食性天敵為食蚜癭蚊、斯氏鈍綏螨()以及一些捕食性盲蝽。
儲(chǔ)蓄植物系統(tǒng)一般包含儲(chǔ)蓄植物、替代食物(alternative food)和有益生物(beneficial)3個(gè)基本要素,本文中有益生物主要圍繞捕食性天敵(圖1)。構(gòu)建優(yōu)良的捕食性天敵儲(chǔ)蓄植物系統(tǒng)需要認(rèn)真篩選各要素,三者之間關(guān)系的平衡也決定了這種天敵系統(tǒng)的防治效果。
表1 用于溫室內(nèi)蚜蟲防治的主要捕食性天敵儲(chǔ)蓄植物系統(tǒng)
表2 用于溫室內(nèi)粉虱防治的主要捕食性天敵儲(chǔ)蓄植物系統(tǒng)
表3 用于溫室內(nèi)薊馬、葉螨和其他害蟲防治的主要捕食性天敵儲(chǔ)蓄植物系統(tǒng)
箭頭線段粗細(xì)和端點(diǎn)大小指代各營(yíng)養(yǎng)級(jí)關(guān)系強(qiáng)弱;儲(chǔ)蓄植物提供花粉或替代獵物的寄主,直接或間接為捕食性天敵提供有限的替代食物,從而維持和增殖其種群;在目標(biāo)害蟲出現(xiàn)時(shí),天敵控制其種群,從而減輕其對(duì)目標(biāo)作物的危害,達(dá)到生物防治目標(biāo)Level of interaction among trophic levels shown by thickness of arrows and size of circular endpoints. Banker plant provides nutrition, such as pollen, or host for alternative prey, to support the predatory natural enemy ahead of the preys’ arrival. When the target prey is destructive to crop, the predator could control them to some extent
儲(chǔ)蓄植物是指可以為系統(tǒng)中的捕食性天敵直接提供替代食物(如花粉、花外蜜)或間接繁殖替代獵物的植物[13]。篩選出優(yōu)質(zhì)的儲(chǔ)蓄植物是建立高效的儲(chǔ)蓄植物系統(tǒng)的基礎(chǔ)。
在儲(chǔ)蓄植物系統(tǒng)研究發(fā)展初期,儲(chǔ)蓄植物多與目標(biāo)作物相同[27-28,65],這可能受到當(dāng)時(shí)主流的生防策略“害蟲優(yōu)先(pest-in-first)”影響。儲(chǔ)蓄植物與目標(biāo)作物一致,可避免不同品種或物種之間不可預(yù)測(cè)的相互作用[66],減少額外種植儲(chǔ)蓄植物,方便管理,且可與目標(biāo)作物一起收獲[28],但這樣會(huì)導(dǎo)致替代獵物危害目標(biāo)作物。隨后的生產(chǎn)實(shí)踐中,人們考慮使用非目標(biāo)作物的植物和不危害目標(biāo)作物的節(jié)肢動(dòng)物來增加天敵定殖的機(jī)會(huì),以降低目標(biāo)作物受危害的概率,逐漸推動(dòng)了儲(chǔ)蓄植物系統(tǒng)的形成和發(fā)展[6,13,31]。RAMAKERS[67]提出了“捕食者優(yōu)先(predator-in- first)”的生物防治策略,在害蟲發(fā)生前,利用捕食性天敵在植物上生存和繁殖的特性,達(dá)到預(yù)防害蟲發(fā)生危害的目的。儲(chǔ)蓄植物不但自身營(yíng)養(yǎng)物質(zhì)(如花粉、花外蜜)可以直接涵養(yǎng)捕食性天敵;也可提供替代獵物,間接為捕食性天敵提供食物支持[13],進(jìn)一步拓展了“捕食者優(yōu)先”的策略。目前較為成功的有單子葉儲(chǔ)蓄植物,如小麥、大麥()、高粱()、玉米等和雙子葉植物如煙草()、蓖麻()、毛蕊花()、蠶豆等(表1—表3)。
優(yōu)良的儲(chǔ)蓄植物需要有利于替代獵物增殖。具有抗蟲性或營(yíng)養(yǎng)不適合的儲(chǔ)蓄植物會(huì)影響替代獵物的發(fā)育和繁殖[68],可能間接影響天敵的發(fā)育歷期、壽命和死亡率[66]。儲(chǔ)蓄植物的不同品種由于抗性等差異也會(huì)影響替代獵物的增殖[69],因此需要評(píng)價(jià)替代獵物在不同品種儲(chǔ)蓄植物上的增殖能力,篩選出合適的儲(chǔ)蓄植物品種。而選用自身營(yíng)養(yǎng)物質(zhì)就能提供食物給天敵種群繁殖的儲(chǔ)蓄植物避免了篩選替代獵物的麻煩。如使用毛蕊花和芝麻()為捕食性盲蝽提供食物[45,64]、觀賞性辣椒為捕食螨和小花蝽提供食物[11,61]等。LI等[70]研究發(fā)現(xiàn)油菜()與玉米的花粉能夠吸引龜紋瓢蟲和東亞小花蝽(),還能為儲(chǔ)蓄目標(biāo)天敵外的其他天敵提供營(yíng)養(yǎng)源。GOLEVA等[71]試驗(yàn)發(fā)現(xiàn)玉米、蓖麻花粉可作為儲(chǔ)蓄植物為斯氏鈍綏螨提供良好的營(yíng)養(yǎng)支持。在替代食物或獵物確定的情況下,測(cè)定捕食性天敵在該植物上的適合度也是非常必要的[72]。選用自身營(yíng)養(yǎng)物質(zhì)有益于天敵種群繁殖的儲(chǔ)蓄植物,對(duì)天敵生長(zhǎng)發(fā)育的影響在不同品種間差異不大[11,60]。如KUMAR等[73]發(fā)現(xiàn)作為儲(chǔ)蓄植物的觀賞性辣椒的4個(gè)品種之間,對(duì)斯氏鈍綏螨的發(fā)育歷期、成蟲壽命和繁殖力等的影響均無顯著差異。
最后,還需要考慮儲(chǔ)蓄植物的種植及維護(hù)。根據(jù)應(yīng)用環(huán)境(溫室或大田等)的不同需要,選擇適宜本地的、易于繁育、生長(zhǎng)周期長(zhǎng)的植物種類,這樣就不用頻繁更換儲(chǔ)蓄植物,從而降低成本。如JACOBSON等[74]就比較了小麥、黑麥和玉米這3種作物被用作儲(chǔ)蓄植物的潛能,發(fā)現(xiàn)在同樣被替代獵物取食的條件下,玉米可以在溫室中維持3個(gè)月并且僅需要補(bǔ)充一次替代食物,而小麥和黑麥僅為3—4周。當(dāng)然,也可以考慮選擇能有額外收獲的作物作為儲(chǔ)蓄植物。例如,NGUYEN-DANG等[47]發(fā)現(xiàn)茄子不僅作為儲(chǔ)蓄植物使西方獵盲蝽()種群增長(zhǎng),還可以收獲其果實(shí),實(shí)現(xiàn)防控害蟲與增加產(chǎn)值的雙贏。此外,儲(chǔ)蓄植物的耐受性也需要著重考慮,例如,如果具有不易受非靶標(biāo)病蟲害侵染的特點(diǎn),將延長(zhǎng)整個(gè)系統(tǒng)的使用壽命從而增強(qiáng)天敵的防控效果[13]。再如,選擇耐高溫的儲(chǔ)蓄植物將有利于在夏季溫室中使用[23,35]。同時(shí),也需評(píng)價(jià)儲(chǔ)蓄植物的營(yíng)養(yǎng)物質(zhì)對(duì)靶標(biāo)害蟲的作用,以避免其受益而擴(kuò)繁,導(dǎo)致害蟲再猖獗[75]。
替代食物一般是植食性節(jié)肢動(dòng)物、儲(chǔ)蓄植物的營(yíng)養(yǎng)物質(zhì)(如花粉)以及滅活鱗翅目昆蟲的卵[43]等。如果使用與靶標(biāo)害蟲相同或近似的物種,就有可能會(huì)對(duì)目標(biāo)作物等造成危害[28]。因此,儲(chǔ)蓄植物系統(tǒng)中最常使用的替代食物為自身的營(yíng)養(yǎng)物質(zhì)(如花粉)或只取食儲(chǔ)蓄植物的植食性節(jié)肢動(dòng)物,以避免目標(biāo)作物受到危害風(fēng)險(xiǎn)。
天敵對(duì)替代食物的取食偏好是評(píng)價(jià)儲(chǔ)蓄植物系統(tǒng)的重要環(huán)節(jié)[29,76]。選擇替代食物或獵物時(shí),首先要考慮其是否適合天敵的生長(zhǎng)、繁殖與發(fā)育[77]。若替代食物或獵物影響捕食性天敵的取食、寄生或產(chǎn)卵偏好,必將會(huì)降低對(duì)作物中害蟲的防治效果。
其次,必須注意選擇的替代獵物不能危害目標(biāo)作物。當(dāng)使用與目標(biāo)害蟲相同或近似的物種,就會(huì)對(duì)目標(biāo)作物造成危害[27]。最好選擇嚴(yán)格的單食性或寡食性的本地種節(jié)肢動(dòng)物作為替代獵物,因?yàn)橥鈦砦锓N可能對(duì)環(huán)境產(chǎn)生潛在危害[13]。當(dāng)然,一些植食性昆蟲盡管是農(nóng)業(yè)害蟲,在不危害目標(biāo)作物的前提下,仍然可利用其作為替代獵物,如危害小麥的禾谷縊管蚜、危害白菜的甘藍(lán)粉虱()[13,78]。目前文獻(xiàn)報(bào)道中最常用的替代獵物依次為禾谷縊管蚜、麥長(zhǎng)管蚜、玉米蚜、木瓜粉虱()等(表1、表2)。
最后,還應(yīng)注意替代獵物的種群數(shù)量,在儲(chǔ)蓄植物上維持有限的替代獵物可能會(huì)促使天敵向目標(biāo)作物擴(kuò)散[13,50]。反之,捕食性天敵專注取食替代獵物,可能會(huì)降低了對(duì)靶標(biāo)害蟲的控害作用。
捕食性天敵必須既可以捕食靶標(biāo)害蟲也可以取食替代食物或獵物,并能正常生長(zhǎng)和繁殖[13]。捕食性天敵對(duì)靶標(biāo)害蟲和替代食物的偏好性也是需要考量的,如果偏好取食替代食物,則會(huì)降低其對(duì)靶標(biāo)害蟲的控制能力。HIGASHIDA等[36]通過實(shí)驗(yàn)室及溫室籠罩試驗(yàn)表明,食蚜癭蚊在帶有棉蚜的目標(biāo)作物上產(chǎn)卵多于在儲(chǔ)蓄植物大麥上,這對(duì)于可持續(xù)控害效果的發(fā)揮是十分有利的。捕食性天敵最好具有一定的擴(kuò)散能力,其將決定整個(gè)儲(chǔ)蓄植物系統(tǒng)的控害作用范圍,擴(kuò)散能力較強(qiáng)的天敵,可以減少應(yīng)用點(diǎn)數(shù),降低成本。
如果能建立多種天敵共存的儲(chǔ)蓄植物系統(tǒng),就可以同時(shí)對(duì)靶標(biāo)害蟲和其他多種害蟲進(jìn)行控制。當(dāng)然,多種天敵的種間競(jìng)爭(zhēng)和相互捕食可能會(huì)降低防治效果[13,79]。POCHUBAY等[80]研究表明,與應(yīng)用1—2種天敵相比,當(dāng)溫室內(nèi)黃瓜新小綏螨()、劍毛帕厲螨()和隱翅蟲()3種天敵共存時(shí),薊馬的種群水平反而顯著增加。
要獲得捕食性天敵儲(chǔ)蓄植物系統(tǒng)的最佳服務(wù)功能,不僅要從內(nèi)部組成上對(duì)各因素進(jìn)行優(yōu)化,而且需要從整體布局和使用時(shí)機(jī)上采取合理策略,以實(shí)現(xiàn)高效應(yīng)用(圖2)。
FRANK[9]指出很多儲(chǔ)蓄植物并沒有經(jīng)過認(rèn)真的篩選,已經(jīng)應(yīng)用的也沒有明確證據(jù)證明其最適性。陳學(xué)新等[6]也指出除了考慮系統(tǒng)本身的多級(jí)營(yíng)養(yǎng)關(guān)系外,還要把目標(biāo)作物及靶標(biāo)害蟲甚至近緣種都包括在內(nèi),從生態(tài)系統(tǒng)的角度充分理清各組成因素之間的相互作用,從而篩選出較為合適的儲(chǔ)蓄植物系統(tǒng)。已有的研究初步證明了一些有益植物對(duì)天敵具有支持作用,如金盞菊()伴存下的七星瓢蟲()種群個(gè)體數(shù)增長(zhǎng)顯著高于對(duì)照組[15];田間藍(lán)薊()、芥菜()、硫華菊()、蕎麥()、紫花苜蓿()、紅麻()、陸地棉()上會(huì)存在大量小花蝽[81],這些植物為構(gòu)建儲(chǔ)蓄植物系統(tǒng)奠定了基礎(chǔ),當(dāng)然還需要評(píng)估其對(duì)目標(biāo)作物及靶標(biāo)害蟲影響,才能充分發(fā)掘它們作為儲(chǔ)蓄植物的潛力。
在構(gòu)建儲(chǔ)蓄植物系統(tǒng)選擇各組成因素時(shí),需要考慮其應(yīng)用環(huán)境的影響,明確各因素適應(yīng)環(huán)境的能力,才能精準(zhǔn)定位應(yīng)用范圍。例如,由于夏季溫室中高溫持續(xù)時(shí)間較長(zhǎng),可選擇喜溫的冬小麥和大麥作為儲(chǔ)蓄植物[82]。研究發(fā)現(xiàn),當(dāng)豌豆修尾蚜()作為替代獵物時(shí),會(huì)因?yàn)椴贿m應(yīng)這種持續(xù)高溫而產(chǎn)生種群消退。常用的寄生性天敵粗脊蚜繭蜂由于不能適應(yīng)高溫,在夏季溫室內(nèi)的防控效果就很低[83]。因此針對(duì)儲(chǔ)蓄植物系統(tǒng)適用溫度不同,可以考慮多種系統(tǒng)分時(shí)段或時(shí)期使用。
圖2 儲(chǔ)蓄植物系統(tǒng)構(gòu)建及應(yīng)用模式流程圖
此外,明晰農(nóng)業(yè)生態(tài)系統(tǒng)中植物與節(jié)肢動(dòng)物的相互作用,對(duì)于改善保護(hù)性生物防治的效果有重要意義[84]。對(duì)選用的儲(chǔ)蓄植物、替代食物或獵物、天敵、目標(biāo)作物及靶標(biāo)害蟲進(jìn)行基礎(chǔ)的生物學(xué)和生態(tài)學(xué)研究,明確它們之間的相互關(guān)系[85],有助于篩選儲(chǔ)蓄植物系統(tǒng)的各個(gè)組成因素。在進(jìn)行評(píng)估替代獵物是否會(huì)危害目標(biāo)作物的同時(shí),也應(yīng)關(guān)注儲(chǔ)蓄植物的病害是否會(huì)危害目標(biāo)作物。ORFANIDOU等[86]就發(fā)現(xiàn)防治危害番茄上的溫室白粉虱的儲(chǔ)蓄植物——假龍頭(),成為番茄侵染性褪綠病毒(TICV)的源庫,因此這種植物就不適合作儲(chǔ)蓄植物。
目前許多研究更注重于儲(chǔ)蓄植物系統(tǒng)的構(gòu)建,而進(jìn)一步優(yōu)化各因素應(yīng)用參數(shù)的報(bào)道較少[11,39,60]。鄧從雙等[16]使用正交試驗(yàn)法,探索了儲(chǔ)蓄植物系統(tǒng)中替代獵物蚜蟲的接種時(shí)間和接種密度,以及天敵(瓢蟲幼蟲)的投入時(shí)間和初孵幼蟲的投入數(shù)量4種因素的不同水平對(duì)系統(tǒng)中瓢蟲成蟲獲得量的影響,得到了最佳組合,從而優(yōu)化了龜紋瓢蟲儲(chǔ)蓄植物系統(tǒng)。而儲(chǔ)蓄植物系統(tǒng)的應(yīng)用參數(shù),如儲(chǔ)蓄植物、替代食物或獵物和天敵初始密度以及整個(gè)系統(tǒng)更換周期等則需要更深入研究才能形成推廣應(yīng)用的技術(shù)規(guī)程。
儲(chǔ)蓄植物系統(tǒng)能預(yù)防性控制作物上前期危害的少量害蟲[9,35,87]。根據(jù)這一特點(diǎn),再結(jié)合作物害蟲發(fā)生規(guī)律及儲(chǔ)蓄植物系統(tǒng)的使用壽命,來確定系統(tǒng)的引入時(shí)機(jī)。一般來說,在害蟲危害前期引入儲(chǔ)蓄植物系統(tǒng),能夠使其發(fā)揮預(yù)防害蟲和增殖天敵的作用[6,35,87]。此外,也需要考慮儲(chǔ)蓄植物的生長(zhǎng)適應(yīng)性和影響替代獵物的環(huán)境因子,如JACOBSON等[74]發(fā)現(xiàn)用玉米為儲(chǔ)蓄植物的系統(tǒng)繁育的粗脊蚜繭蜂控制棉蚜的效果在仲夏要好于晚春。
在實(shí)際應(yīng)用中儲(chǔ)蓄植物系統(tǒng)的布局和密度等也會(huì)影響其防控效果[78,86],而空間布局的設(shè)置往往與捕食性天敵的擴(kuò)散能力有關(guān)。PRATT等[50]提出,如果擴(kuò)散能力較弱,可以通過增加密度的方法來提高防效。VAN DRIESCHE等[78]證明布局的儲(chǔ)蓄植物系統(tǒng)密度過低時(shí),不能抑制溫室中桃蚜暴發(fā)。
控害效果評(píng)價(jià)是害蟲生物防治措施推廣應(yīng)用的重要依據(jù)。在作物生產(chǎn)中如何評(píng)估天敵儲(chǔ)蓄植物系統(tǒng)對(duì)靶標(biāo)害蟲的控制能力是非常重要的,因?yàn)槿绻荒軐⒑οx控制到經(jīng)濟(jì)閾值之下是無法應(yīng)用于實(shí)際生產(chǎn)中的[65],這也是儲(chǔ)蓄植物系統(tǒng)從實(shí)驗(yàn)室構(gòu)建走向?qū)嶋H應(yīng)用必經(jīng)之路。如WONG等[61]使用觀賞性辣椒作為儲(chǔ)蓄植物支持狡小花蝽()來防治生產(chǎn)苗圃中的薊馬,結(jié)果發(fā)現(xiàn)與直接釋放小花蝽相比,未提高防治效果,推測(cè)開放式環(huán)境導(dǎo)致的小花蝽的遷出和外界蜘蛛的遷入影響了防治效果。因此需要通過綜合考慮天敵產(chǎn)能、控害潛能、非靶標(biāo)效應(yīng)以及經(jīng)濟(jì)效益等各個(gè)方面,才可以較為準(zhǔn)確的評(píng)估儲(chǔ)蓄植物系統(tǒng),并及時(shí)對(duì)系統(tǒng)進(jìn)行修正和優(yōu)化,以實(shí)現(xiàn)在生產(chǎn)中更好的控害效果,并順利推廣與應(yīng)用。
儲(chǔ)蓄植物系統(tǒng)應(yīng)用效果的檢驗(yàn),通常是與多次釋放天敵或化學(xué)防治措施相比較[88]。然而許多研究并沒有足夠的重復(fù)和對(duì)照,所以效果檢驗(yàn)的不明確[27,35,46]。因此,在評(píng)價(jià)實(shí)際應(yīng)用效果時(shí),需要經(jīng)過大量反復(fù)驗(yàn)證對(duì)照,發(fā)現(xiàn)存在的問題,不斷優(yōu)化儲(chǔ)蓄植物系統(tǒng)技術(shù)參數(shù)。
歐美國家關(guān)于儲(chǔ)蓄植物系統(tǒng)的研究較多,商品化的同時(shí)也得到了廣泛推廣和應(yīng)用[3,89]。據(jù)統(tǒng)計(jì),美國約有1%—5%的溫室在使用儲(chǔ)蓄植物系統(tǒng),加拿大約有10%—25%,丹麥?zhǔn)褂脙?chǔ)蓄植物系統(tǒng)防治害蟲的種植者比例則達(dá)20%,在荷蘭,用儲(chǔ)蓄植物系統(tǒng)防治蚜蟲面積約為120 hm2[7]。但是由于地理氣候和農(nóng)業(yè)設(shè)施等方面差異,國外已報(bào)道或構(gòu)建的儲(chǔ)蓄植物系統(tǒng)不適于在我國應(yīng)用,亟需因地制宜地開發(fā)出適合國內(nèi)農(nóng)田環(huán)境的生防產(chǎn)品。目前,我國已發(fā)表的研究捕食性天敵儲(chǔ)蓄植物系統(tǒng)的文章僅有3篇[16,30,56],獲得授權(quán)專利1項(xiàng),實(shí)審中1項(xiàng),而寄生性天敵的儲(chǔ)蓄植物系統(tǒng)有10篇[12,69,90-97],獲得授權(quán)專利3項(xiàng),實(shí)審中4項(xiàng)??梢姴妒承蕴鞌硟?chǔ)蓄植物系統(tǒng)的研究還需進(jìn)一步加強(qiáng),特別是儲(chǔ)蓄植物系統(tǒng)應(yīng)用策略的研究和優(yōu)化。
盡管有許多儲(chǔ)蓄植物飼養(yǎng)天敵適合度、篩選飼養(yǎng)天敵的替代獵物的研究發(fā)表[85,98-99],但鮮有全面考慮整個(gè)儲(chǔ)蓄植物系統(tǒng)構(gòu)建及田間優(yōu)化應(yīng)用方面的報(bào)道。從國外商品化的天敵產(chǎn)品類型及農(nóng)戶使用意愿調(diào)查發(fā)現(xiàn),捕食性天敵因其食量大、控害種類多和環(huán)境適應(yīng)性更強(qiáng)等,實(shí)際應(yīng)用更多,因此開發(fā)構(gòu)建捕食性天敵儲(chǔ)蓄植物系統(tǒng)的發(fā)展空間是十分廣闊的,而且有助于推動(dòng)捕食性天敵產(chǎn)品的廣泛應(yīng)用及產(chǎn)業(yè)化發(fā)展。
針對(duì)作物生產(chǎn)中多種害蟲種類混合發(fā)生的特點(diǎn),未來不僅可以考慮構(gòu)建多種天敵的儲(chǔ)蓄植物系統(tǒng)[79],還可以考慮與其他防治方法結(jié)合使用[2]。如JAWORSKI等[2]將金盞菊作為儲(chǔ)蓄植物,與化學(xué)誘劑聯(lián)用,對(duì)捕食性瓢蟲種群有顯著的誘集助增作用,可有效控制果園蚜蟲種群。另外在害蟲暴發(fā)需要化學(xué)防治時(shí),可以將儲(chǔ)蓄植物系統(tǒng)暫時(shí)移出,等農(nóng)藥安全期過后再放回[25]?;蛘邞?yīng)用對(duì)天敵安全的藥劑及使用劑量[100-101],從而實(shí)現(xiàn)儲(chǔ)蓄植物系統(tǒng)與其他防治方法兼容。同時(shí),儲(chǔ)蓄植物系統(tǒng)還可以減少釋放天敵的成本[7,13],降低生防投入門檻,必將成為以生物防治為核心的現(xiàn)代綠色循環(huán)型植保體系重要技術(shù)之一。
[1] WYCKHUYS K A G, LU Y H, MORALES H, VAZQUEZ L L, LEGASPI J C, ELIOPOULOS P A, HERNANDEZ L M. Current status and potential of conservation biological control for agriculture in the developing world., 2013, 65(1): 152-167.
[2] JAWORSKI C C, XIAO D, XU Q X, RAMIREZ‐ROMERO R, GUO X J, WANG S, DESNEUX N. Varying the spatial arrangement of synthetic herbivore‐induced plant volatiles and companion plants to improve conservation biological control., 2019, 56(5): 1176-1188.
[3] GURR G M, WRATTEN S D, LANDIS D A, YOU M S. Habitat management to suppress pest populations: progress and prospects., 2017, 62: 91-109.
[4] COOK S M, KHAN Z R, PICKETT J A. The use of push-pull strategies in integrated pest management., 2007, 52: 375-400.
[5] PAROLIN P, BRESCH C, DESNEUX N, BRUN R, BOUT A, BOLL R, PONCET C. Secondary plants used in biological control: A review., 2012, 58(2): 91-100.
[6] 陳學(xué)新, 劉銀泉, 任順祥, 張帆, 張文慶, 戈峰. 害蟲天敵的植物支持系統(tǒng). 應(yīng)用昆蟲學(xué)報(bào), 2014, 51(1): 1-12.
CHEN X X, LIU Y Q, REN S X, ZHANG F, ZHANG W Q, GE F. Plant-mediated support system for natural enemies of insect pests., 2014, 51(1): 1-12. (in Chinese)
[7] 肖英方, 毛潤(rùn)乾, 沈國清, OSBORNE L S. 害蟲生物防治新技術(shù)——載體植物系統(tǒng). 中國生物防治學(xué)報(bào), 2012, 28(1): 1-8.
XIAO Y F, MAO R Q, SHEN G Q, Osborne L S. Banker plant system: a new approach for biological control of arthropod pests., 2012, 28(1): 1-8. (in Chinese)
[8] PAYTON MILLER T L, REBEK E J. Banker plants for aphid biological control in greenhouses., 2018, 9(1): 1-8.
[9] FRANK S D. Biological control of arthropod pests using banker plant systems: past progress and future directions., 2010, 52(1): 8-16.
[10] ZUMOFFEN L, TAVELLA J, SIGNORINI M, SALVO A. Laboratory and field studies to evaluate the potential of an open rearing system offor the control ofin Argentina., 2015, 61(1): 23-33.
[11] XIAO Y F, AVERY P, CHEN J J, MCKENZIE C, OSBORNE L. Ornamental pepper as banker plants for establishment of(Acari: Phytoseiidae) for biological control of multiple pests in greenhouse vegetable production., 2012, 63(3): 279-286.
[12] ZHENG X S, LU Y H, ZHU P Y, ZHANG F C, TIAN J C, XU H X, CHEN G H, NANSEN C, LU Z X. Use of banker plant system for sustainable management of the most important insect pest in rice fields in China., 2017, 7: 45581.
[13] HUANG N X, ENKEGAARD A, OSBORNE L S, RAMAKERS P M J, MESSELINK G J, PIJNAKKER J, MURPHY G. The banker plant method in biological control., 2011, 30(3): 259-278.
[14] 張帆, 李姝, 肖達(dá), 趙靜, 王然, 郭曉軍, 王甦. 中國設(shè)施蔬菜害蟲天敵昆蟲應(yīng)用研究進(jìn)展. 中國農(nóng)業(yè)科學(xué), 2015, 48(17): 3463-3476.
ZHANG F, LI S, XIAO D, ZHAO J, WANG R, GUO X J, WANG S. Progress in pest management by natural enemies in greenhouse vegetables in China., 2015, 48(17): 3463-3476. (in Chinese)
[15] 馬亞云, 張帆, 王甦, 邸寧. 功能植物金盞菊對(duì)七星瓢蟲溫室定殖控害的增效作用研究. 環(huán)境昆蟲學(xué)報(bào), 2019, 41(2): 276-282.
MA Y Y, ZHANG F, WANG S, DI N. Synergistic effect of functional plant(Asterales: Asteraceae) to the colonization of(Coleoptera: Coccinellidae) in greenhouse., 2019, 41(2): 276-282. (in Chinese)
[16] 鄧從雙, 李姝, 王甦, 張帆, 龐虹. 小麥-玉米蚜-龜紋瓢蟲載體植物系統(tǒng)的構(gòu)建初探. 環(huán)境昆蟲學(xué)報(bào), 2014, 36(6): 867-873.
DENG C S, LI S, WANG S, ZHANG F, PANG H. A preliminary investigation on establishment ofL.-(Fitch)-(Thunberg) banker plant system., 2014, 36(6): 867-873. (in Chinese)
[17] 李姝, 王杰, 郭曉軍, 田仁斌, 王甦, 張帆. 天敵昆蟲大草蛉的研究進(jìn)展與展望. 環(huán)境昆蟲學(xué)報(bào), 2019, 41(2): 241-252.
LI S, WANG J, GUO X J, TIAN R B, WANG S, ZHANG F. Research progress and prospects of(Rambur) (Hemiptera: Chrysopidae)., 2019, 41(2): 241-252. (in Chinese)
[18] FOX T B, LANDIS D A, CARDOSO F F, DIFONZO C D. Predators suppressMatsumura population growth in soybean., 2004, 33(3): 608-618.
[19] WOLTZ J M, DONAHUE K M, BRUCK D J, LEE J C. Efficacy of commercially available predators, nematodes and fungal entomopathogens for augmentative control of., 2014, 139(10): 759-770.
[20] 李姝, 王甦, 趙靜, 楊麗文, 高希武, 張帆. 釋放異色瓢蟲對(duì)北京溫室甜椒和圓茄上桃蚜的控害效果. 植物保護(hù)學(xué)報(bào), 2014, 41(6): 699-704.
LI S, WANG S, ZHAO J, YANG L W, GAO X W, ZHANG F. Efficacy of multicolored Asian lady beetle(Coleoptera: Coccinellidae) against green peach aphid(Hemiptera: Aphididae) on vegetables under greenhouse conditions., 2014, 41(6): 699-704. (in Chinese)
[21] SYMONDSON W O, SUNDERLAND K D, GREENSTONE M H. Can generalist predators be effective biocontrol agents?, 2002, 47: 561-594.
[22] HODEK I, MICHAUD J P. Why isso successful? (A point-of-view)., 2008, 105(1): 1-12.
[23] SCHOEN L, ALBAJES R, SEKEROGLU E. The use of open rearing units or “banker plants” againstGlover in protected courgette and melon crops in Roussillon (South of France)., 2000, 23: 181-186.
[24] PINEDA A, MARCOS-GARCíA M á. Introducing barley as aphid reservoir in sweet-pepper greenhouses: effects on native and released hoverflies (Diptera: Syrphidae)., 2008, 105(3): 531-535.
[25] STARY P.. Series Entomololgica, 1970, 6: 93.
[26] PARR W J, STACEY D L. ‘Banker’-plant system of whitefly parasite release on tomatoes[R]. Report of the Glasshouse Crops Research Institute, 1975: 96.
[27] STACEY D L. ‘Banker’ plant production ofGahan and its use in the control of glasshouse whitefly on tomatoes., 1977, 26(2): 63-66.
[28] HANSEN L S. Introduction of(Rond.) (Diptera: Cecidomyiidae) from an open rearing unit for the control of aphids in glasshouses., 1983, 6(3): 146-150.
[29] XIAO Y F, OSBORNE L S, CHEN J J, MCKENZIE C, HOUBEN K, IRIZARRY F. Evaluation of corn plant as potential banker plant for supporting predatory gall midge,(Diptera: Cecidomyiidae) against(Acari: Tetranychidae) in greenhouse vegetable production., 2011, 30(12): 1635-1642.
[30] 鄭許松, 田俊策, 鐘列權(quán), 徐紅星, 呂仲賢. “秕谷草-偽褐飛虱-中華淡翅盲蝽”載體植物系統(tǒng)的可行性. 應(yīng)用生態(tài)學(xué)報(bào), 2017, 28(3): 941-946.
ZHENG X S, TIAN J C, ZHONG L Q, XU H X, Lü Z X. A banker plant system of ‘’ to control rice planthoppers., 2017, 28(3): 941-946. (in Chinese)
[31] KUO-SELL H. Cereal aphids as prey species for massrearing of(Rond) (Dip., Cecidomyiidae) in the biological control of(Sulz) in greenhouses., 1989, 107(1): 58-64.
[32] BENNISON J A. Biological control of aphids on cucumbers: use of open rearing systems or ‘banker plants’ to aid establishment ofand., 1992, 57: 457-466.
[33] BENNISON J A, CORLESS S P. Biological control of aphids on cucumbers: further development of open rearing units or “banker plants” to aid establishment of aphid natural enemies., 1993, 16(2): 5-8.
[34] ALBERT R. Biological control of the cotton aphid on cucumbers., 1995, 4: 32-34.
[35] KIM Y, KIM J. Biological control ofusing barley banker plants in greenhouse grown oriental melon//Hoddle M S.. Center for Biological Control, College of Natural Resources, University of California: Berkeley, California, USA. 2004: 124-126.
[36] HIGASHIDA K, YANO E, NISHIKAWA S, ONO S, OKUNO N, SAKAGUCHI T. Reproduction and oviposition selection by(Diptera: Cecidomyiidae) on the banker plants with alternative prey aphids or crop plants with pest aphids., 2016, 51(3): 445-456.
[37] ABE J, KUMAKURA H, YANO E. Biological control of aphids in sweet pepper greenhouses using the banker plant system for aphidophagous gall midge,(Rondani) (Diptera: Cecidomyiidae)., 2011, 53: 37-46.
[38] HIGASHIDA K, YANO E, TOYONISHI H, NAKAUCHI M, ABE J. Reproduction of(Diptera: Cecidomyiidae) on a banker plant system of sorghum with(Hemiptera: Aphididae) and its oviposition selection between this system and eggplant with(Hemiptera: Aphididae)., 2017, 52(2): 295-303.
[39] RATTANAPUN W. Banker plant system using(Thomas) (Hemiptera: Aphididae) as a non-pest prey to build up the lady beetle populations., 2017, 20(2): 437-440.
[40] RAMAKERS P M J, MAASWINKEL R H M. Pest occurrence and control in organic year-round production of chrysanthemums., 2002, 25: 221-224.
[41] OSBORNE L S, HOELMER K, GERLING D. Prospects for biological control of sweetpotato whitefly[R]. Research Report Bedding Plant Foundation Inc., 1991: 306.
[43] ARNO J, ARINO J, ESPANOL R, MARTI M, ALOMAR O. Conservation ofWagner (Het. Miridae) in commercial greenhouses during tomato crop-free periods., 2000, 23(1): 241-246.
[44] VAN DER LINDEN A, VAN DER STAAIJ M. Banker plants facilitate biological control of whiteflies in cucumber., 2001, 12: 75-79.
[45] SANCHEZ J A, GILLESPIE D R, MCGREGOR R R. The effects of mullein plants () on the population dynamics of(Heteroptera: Miridae) in tomato greenhouses., 2003, 28(3): 313-319.
[46] LAMBERT L, CHOUFFOT T, TUREOTTE G, LEMIEUX M, MOREAU J. Biological control of greenhouse whitefly () on interplanted tomato crops with and without supplemental lighting using., 2005, 28: 175-178.
[47] NGUYEN-DANG L, VANKOSKY M, VANLAERHOVEN S. The effects of alternative host plant species and plant quality onpopulations., 2016, 100: 94-100.
[48] PAROLIN P, BRESCH C, PONCET C, SUAY-CORTEZ R, VAN OUDENHOVE L. Testing basil as banker plant in IPM greenhouse tomato crops., 2015, 61(3): 235-242.
[49] BRESCH C, OTTENWALDER L, PONCET C, PAROLIN P. Tobacco as banker plant forto controlin tomato crops., 2014, 2(8): 297-304.
[50] PRATT P D, CROFT B A. Banker plants: evaluation of release strategies for predatory mites., 2000, 18(4): 207-211.
[51] PAROLIN P, BRESCH C, RUIZ G, DESNEUX N, PONCET C. Testing banker plants for biological control of mites on roses., 2013, 41(3): 249-262.
[52] PAROLIN P, BRESCH C, VAN OUDENHOVE L, ERRARD A, PONCET C. Distribution of pest and predatory mites on plants with differing availability of acarodomatia., 2015, 3(6): 267-278.
[53] LOPEZ L, SMITH H A, HOY M A, CAVE R D. Dispersal of(Acari: Phytoseiidae) on high-tunnel bell peppers in presence or absence of(Acari: Tarsonemidae)., 2017, 17(1): 6.
[54] RAMAKERS P M J, VOET S J P. Use of castor bean,, for the introduction of the thrips predatoron glasshouse-grown sweet peppers./,1995, 60: 885-891.
[55] RAMAKERS P M J, VOET S J P. Introduction offor thrips control in sweet peppers with potted castor beans as banker plants., 1996, 19: 127-130.
[56] ZHAO J, GUO X J, TAN X L, DESNEUX N, ZAPPALA L, ZHANG F, WANG S. Usingasa floral resource to enhance aphid and thrips suppression by the flower bug(Hemiptera: Anthocoridae)., 2017, 73(3): 515-520.
[57] WAITE M O, SCOTT-DUPREE C D, BROWNBRIDGE M, BUITENHUIS R, MURPHY G. Evaluation of seven plant species/ cultivars for their suitability as banker plants for(Say)., 2014, 59(1): 79-87.
[58] MESSELINK G, VAN STEENPAAL S, VAN WENSVEEN W.(Athias-Henriot) (Acari Phytoseiidae): a new predator for thrips control in greenhouse cucumber., 2005, 28(1): 183-186.
[59] KUTUK H, YIGIT A. Pre-establishment of(Athias-Henriot) (Acari: Phytoseiidae) using(Ten.) (Pinales: Pinaceae) pollen for thrips (Thysanoptera: Thripidae) control in greenhouse peppers., 2011, 37(supp1.): 95-101.
[60] AVERY P B, KUMAR V, XIAO Y F, POWELL C A, MCKENZIE C L, OSBORNE L S. Selecting an ornamental pepper banker plant forin floriculture crops., 2014, 8(1): 49-56.
[61] WONG S K, FRANK S D. Influence of banker plants and spiders on biological control by(Heteroptera: Anthocoridae)., 2012, 63(2): 181-187.
[62] WONG S K, FRANK S D. Pollen increases fitness and abundance ofSay (Heteroptera: Anthocoridae) on banker plants., 2013, 64(1): 45-50.
[63] KUMAR V, XIAO Y F, MCKENZIE C L, OSBORNE L S. Early establishment of the phytoseiid mite(Acari: Phytoseiidae) on pepper seedlings in a Predator-in-First approach., 2015, 65(4): 465-481.
[64] BIONDI A, ZAPPALà L, DI MAURO A, GARZIA G, RUSSO A, DESNEUX N, SISCARO G. Can alternative host plant and prey affect phytophagy and biological control by the zoophytophagous mirid?, 2016, 61(1): 79-90.
[65] PICKETT C, SIMMONS G, LOZANO E, GOOLSBY J. Augmentative biological control of whiteflies using transplants., 2004, 49(6): 665-688.
[66] INBAR M, GERLING D. Plant-mediated interactions between whiteflies, herbivores, and natural enemies., 2008, 53: 431-448.
[67] RAMAKERS P M J. Manipulation of phytoseiid thrips predators in the absence of thrips., 1990, 13: 169-172.
[68] PRICE P W, BOUTON C E, GROSS P, MCPHERON B A, THOMPSON J N, WEIS A E. Interactions among three trophic levels: Influence of plants on interactions between insect herbivores and natural enemies., 1980, 11: 41-65.
[69] SUN H Z, SONG Y Q. Establishment of a wheat banker plant system for the parasitoidagainstin greenhouse chili pepper., 2019, 54(4): 339-347.
[70] LI S, TAN X L, DESNEUX N, BENELLI G, ZHAO J, LI X H, ZHANG F, GAO X W, WANG S. Innate positive chemotaxis to pollen from crops and banker plants in predaceous biological control agents: towards new field lures?, 2015, 5: 12729.
[71] GOLEVA I, ZEBITZ C P. Suitability of different pollen as alternative food for the predatory mite(Acari, Phytoseiidae)., 2013, 61(3): 259-283.
[72] 潘明真, 劉同先. 載體植物在溫室作物害蟲生物防治中的應(yīng)用. 應(yīng)用昆蟲學(xué)報(bào), 2019, 56(5): 917-926.
PAN M Z, LIU T X. Banker-plant system for biological control of pests in greenhouse-grown crops., 2019, 56(5): 917-926. (in Chinese)
[73] KUMAR V, WEKESA V W, AVERY P B, POWELL C A, MCKENZIE C L, OSBORNE L S. Effect of pollens of various ornamental pepper cultivars on the development and reproduction of(Acari: Phytoseiidae)., 2014, 97(2): 367-373.
[74] JACOBSON R, CROFT P. Strategies for the control ofGlover (Hom.: Aphididae) withViereck (Hym.: Braconidae) in protected cucumbers., 1998, 8(3): 377-387.
[75] HEIMPEL G E, NEUHAUSER C, HOOGENDOORN M. Effects of parasitoid fecundity and host resistance on indirect interactions among hosts sharing a parasitoid., 2003, 6(6): 556-566.
[76] ODE P J, HOPPER K R, COLL M. Oviposition vs. offspring fitness inparasitizing different aphid species., 2005, 115(2): 303-310.
[77] OHTA I, HONDA K I. Use of(Hemiptera: Aphididae) as an alternative host aphid for a banker-plant system using an indigenous parasitoid,(Hymenoptera: Braconidae)., 2010, 45(2): 233-238.
[78] VAN DRIESCHE R G, LYON S, SANDERSON J P, BENNETT K C, STANEK E J, ZHANG R T. Greenhouse trials of(Hymenoptera: Braconidae) banker plants for control of aphids (Hemiptera: Aphididae) in greenhouse spring floral crops., 2008, 91(4): 583-591.
[79] STRAUB C S, FINKE D L, SNYDER W E. Are the conservation of natural enemy biodiversity and biological control compatible goals?, 2008, 45(2): 225-237.
[80] POCHUBAY E A, GRIESHOP M J. Intraguild predation ofbyandin greenhouse open rearing systems., 2012, 63(2): 195-200.
[81] 吳月坤, 劉冰, 潘洪生, 肖海軍, 陸宴輝. 小花蝽在不同植物上的種群密度. 中國生物防治學(xué)報(bào), 2019, 35(4): 527-535.
WU Y K, LIU B, PAN H S, XIAO H J, LU Y H. Population densities ofspp. on different plant species., 2019, 35(4): 527-535. (in Chinese)
[82] JANDRICIC S E, DALE A G, BADER A, FRANK S D. The effect of banker plant species on the fitness ofViereck and its aphid host (L.)., 2014, 76: 28-35.
[83] NAGASAKA K, TAKAHASI N, OKABAYASHI T. Impact of secondary parasitism onin the banker plant system on aphid control in commercial greenhouses in Kochi, Japan., 2010, 45(4): 541-550.
[84] GARDARIN A, PLANTEGENEST M, BISCHOFF A, VALANTIN- MORISON M. Understanding plant-arthropod interactions in multitrophic communities to improve conservation biological control: useful traits and metrics., 2018, 91(3): 943-955.
[85] 李先偉, 潘明真, 劉同先. BANKER PLANT攜帶天敵防治害蟲的理論基礎(chǔ)與應(yīng)用. 應(yīng)用昆蟲學(xué)報(bào), 2013, 50(4): 890-896.
LI X W, PAN M Z, LIU T X. The theory and practice of using banker plant system for biological control of pests., 2013, 50(4): 890-896. (in Chinese)
[86] ORFANIDOU C G, MALIOGKA V I, KATIS N I. False yellowhead (), a banker plant as source of tomato infectious chlorosis virus in Greece., 2016, 100(4): 869.
[87] YANO E. Ecological considerations for biological control of aphids in protected culture., 2006, 48(4): 333-339.
[88] COLLIER T, VAN STEENWYK R. A critical evaluation of augmentative biological control., 2004, 31(2): 245-256.
[89] XIAO Y F, CHEN J J, CANTLIFFE D, MCKENZIE C, HOUBEN K, OSBORNE L S. Establishment of papaya banker plant system for parasitoid,(Hymenoptera: Aphilidae) against(Hemiptera: Aleyrodidae) in greenhouse tomato production., 2011, 58(3): 239-247.
[90] SONG Y Q, SUN H Z, DU J, WANG X D, CHENG Z J. Evaluation ofas an alternative host for supportingagainstoncv. Ox Horn and Hejiao 13., 2017, 46(2): 193-202.
[91] SONG Y Q, WANG X D, SUN H Z. Evaluating three cruciferous vegetables as potential banker plant species forfor its parasitoid., 2017, 124(5): 513-519.
[92] SUN H Z, WANG X D, CHEN Y G, WANG H T, LI S J, SONG Y Q. Wheat and barley as banker plant in the mass production ofAshmead (Hymenoptera: Braconidae) parasitizingRondani (Homoptera: Aphididae)., 2017, 124(3): 305-311.
[93] PAN M Z, CAO H H, LIU T X. Effects of winter wheat cultivars on the life history traits and olfactory response of., 2014, 59(5): 539-546.
[94] PAN M Z, LIU T X. Suitability of three aphid species for(Hymenoptera: Braconidae): parasitoid performance varies with hosts of origin., 2014, 69: 90-96.
[95] WANG S Y, CHI H, LIU T X. Demography and parasitic effectiveness ofreared fromas a biological control agent ofreared on chili pepper and cabbage., 2016, 92: 111-119.
[96] 沈嘉煒, 蔡尤俊, 張文慶. 菜蚜繭蜂載體植物系統(tǒng)的構(gòu)建及其控害效果. 環(huán)境昆蟲學(xué)報(bào), 2015, 37(2): 334-342.
SHEN J W, CAI Y J, ZHANG W Q. Construction of a banker plant system forand its control efficiency., 2015, 37(2): 334-342. (in Chinese)
[97] KIDANE D, YANG N W, WAN F H. Evaluation of a banker plant system for biological control of(Hemiptera: Aleyrodidae) on tomato, using two aphelinid parasitoids under field-cage conditions., 2018, 28(11): 1054-1073.
[98] 蔣杰賢, 王冬生, 張滬同, 朱宗源. 桃蚜繭蜂繁殖與利用研究. 上海農(nóng)業(yè)學(xué)報(bào), 2003, 19(3): 97-100.
JIANG J X, WANG D S, ZHANG H T, ZHU Z Y. Studies on reproduction ofand its utilization for the control of greenhouse aphids., 2003, 19(3): 97-100. (in Chinese)
[99] 王樹會(huì), 魏佳寧. 煙蚜繭蜂規(guī)模化繁殖和釋放技術(shù)研究. 云南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2006, 28(增刊1): 377-382, 386.
WANG S H, WEI J N. Mass rearing and releasing of(Ashmead)., 2006, 28(Suppl.1): 377-382, 386. (in Chinese)
[100] 郭志芯, 蔣紅云, 張?zhí)m, 毛連綱, 張燕寧. 四種殺蟲劑對(duì)七星瓢蟲和松毛蟲赤眼蜂的負(fù)效應(yīng). 中國生物防治學(xué)報(bào), 2019, 35(4): 542-547.
GUO Z X, JIANG H Y, ZHANG L, MAO L G, ZHANG Y N. Negative effects of the four insecticides onLinnaeus andMatsumura., 2019, 35(4): 542-547. (in Chinese)
[101] 尹園園, 呂兵, 林清彩, 陳浩, 翟一凡, 于毅, 鄭禮. 5種生物殺蟲劑對(duì)4種天敵昆蟲的安全性評(píng)價(jià). 生物安全學(xué)報(bào), 2018, 27(2): 128-132.
YIN Y Y, Lü B, LIN Q C, CHEN H, ZHAI Y F, YU Y, ZHENG L. Safety evaluation of five biological insecticides to four arthropod natural enemies., 2018, 27(2): 128-132. (in Chinese)
Research progress and prospect on banker plant systems of predators for biological control
LI Shu1, WANG Jie1,2, HUANG NingXing1, JIN ZhenYu2, Wang Su1, ZHANG Fan1
(1Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097;2College of Agriculture, Yangtze University, Jingzhou 434025, Hubei)
The impact of intensive agriculture on the ecological environment is growing, which fosters singular landscape, loss of biodiversity and prone to pest outbreaks. With the national development strategy of modern agriculture, much attention has been paid to the production of healthy, sustainably grown food. The requirement for environmentally friendly and efficient pest management technologies has become more and more intensified. Natural enemies play an important role in ecological security and sustainable agriculture. However, the traditional method of mass releasing natural enemies has the problems of high cost, poor timeliness and efficiency. So how to protect natural enemies in the field and improve efficiency are the critical problems to successful biological control. Banker plant systems have the advantages of introducing natural enemies preventively and maintaining them, therefore, controlling the pests sustainably. It is a relatively successful protective biological control technology, which has improved the survival conditions of natural enemies in the comprehensive management of agricultural pests. In recent years, with the rapid development of banker plant systems, more and more products have been widely applied in Belgium, Germany, France, Japan, the United States, Canada, and so on. However, due to the geographical differences, the direct application of the banker plant systems reported abroad is difficult in most cases. At present, although the domestic study started late, it has reached a rapid development period and will have a broad development prospect. In this paper, the research progress and the related technology in China and abroad were summarized. Especially, the optimal strategy of predatory natural enemies was discussed in banker plant system. The improvement of the technology not only needs careful selection of the factors, but also clarifies the relationship and optimizes the levels of the elements. Moreover, fully considering is in the layout of space and time, especially the application effect evaluation in the field. That will improve the banker plant system technology. And the prospect of the development direction in the future was pointed out. Based on principles of adjusting measures to local conditions, the advanced banker plant system would surely promote the widespread application and industrialization of predatory natural enemy products.
banker plant; predator; alternative food; conservation biological control; greenhouse pest control
M, ISHIKAWA R, TATARA A, AMANO Y, MURAMATSU Y. Control of(Gennadius) on tomato in greenhouses by a combination of(Reuter) and banker plants., 2016, 58: 65-72.
2020-03-05;
2020-04-02
國家桃產(chǎn)業(yè)技術(shù)體系(CARS-30)、北京市農(nóng)林科學(xué)院青年基金(QNJJ201823)、北京市農(nóng)林科學(xué)院科技創(chuàng)新能力建設(shè)專項(xiàng)(KJCX20200110)、北方果樹病蟲害綠色防控北京市重點(diǎn)實(shí)驗(yàn)室項(xiàng)目
李姝,E-mail:ls_baafs@163.com。通信作者張帆,E-mail:zf6131@263.net
(責(zé)任編輯 岳梅)