張瑩 陳婭莉 宗衛(wèi)華
摘要:可穿戴天線是集成在衣物表面或貼附在人體表面的天線,不能影響佩戴者的日常生活,因此為縮小天線尺寸,降低天線剖面,更好的適應(yīng)人體,本文設(shè)計(jì)了一款結(jié)構(gòu)簡(jiǎn)單、易于加工、重量輕、尺寸小、低剖面、低沉本的可用于人體穿戴的低剖面小型化穿戴天線。本文選用相對(duì)介電常數(shù)為35,厚度僅有70 μm的聚酰亞胺柔性基板,采用半共面波導(dǎo)(coplanar waveguide,CPW)的饋電方式來(lái)設(shè)計(jì)工作在24 GHz工業(yè)科學(xué)醫(yī)學(xué)頻段(industrial scientific medical band,ISM)的可穿戴天線。該天線具有1815 mm × 264 mm的緊湊尺寸,天線在人體表面的仿真帶寬為122~26 GHz,較好的滿足ISM 24 GHz(242~2484 8 GHz)醫(yī)學(xué)頻段的要求,實(shí)現(xiàn)了天線的小型化。本文提出的設(shè)計(jì)方法為減小穿戴天線尺寸提供了解決方法。
關(guān)鍵詞:穿戴天線; 柔性天線; ISM頻段; 低剖面; 半共面波導(dǎo); 小型化
中圖分類號(hào): TP368.33; TN822.+5??文獻(xiàn)標(biāo)識(shí)碼: A
可穿戴天線在天線領(lǐng)域作為一種新天線,在位置跟蹤、醫(yī)療檢測(cè)、軍事應(yīng)用、娛樂(lè)等方面因具有較好發(fā)展前景而受到越來(lái)越多的關(guān)注,預(yù)計(jì)在不久的將來(lái)將取代有線通信網(wǎng)絡(luò)[1]。隨著人口的老齡化,糖尿病、高血壓等各類疾病的發(fā)病率逐年增加,可穿戴天線設(shè)備可以對(duì)中老年群體的血壓、心跳和血糖等進(jìn)行精準(zhǔn)測(cè)量。2014年,許多可穿戴商業(yè)設(shè)備上市進(jìn)入大眾視野,如谷歌眼鏡、藍(lán)牙耳機(jī)、智能手環(huán)、太陽(yáng)能充電背包、鍵盤(pán)褲子等。為了更好地適應(yīng)人體,可穿戴天線的質(zhì)量和體積都越來(lái)越小,大多數(shù)可穿戴天線由柔性或紡織材料制成。眾所周知,由于柔性天線具有可彎曲性和質(zhì)量輕的特點(diǎn),因此便于攜帶是設(shè)計(jì)可穿戴天線的理想選擇??纱┐魈炀€對(duì)工作環(huán)境具有一定的要求,人體作為一種復(fù)雜介質(zhì)必然會(huì)對(duì)天線的性能產(chǎn)生影響,而可穿戴天線需要能夠在人體表面的靜電輻射下正常工作,還要考慮人體對(duì)電磁波的吸收,因此設(shè)計(jì)可穿戴天線充滿挑戰(zhàn)。M. E. Atrash[2]等人采用柔性基板Gil GML 1034,設(shè)計(jì)了一種工作在241 GHz和521 GHz的可穿戴天線,天線采用共面波導(dǎo)的饋電方式,尺寸為20 mm×50 mm×01 mm;S. Gogikar等人[3]采用柔性皮革基板設(shè)計(jì)了一種可穿戴天線,天線采用共面波導(dǎo)饋電方式,尺寸為40 mm×43 mm×2 mm;Liu Q等人[4]使用可彎曲材料設(shè)計(jì)了一種新型的共面波導(dǎo)饋電的可穿戴天線,尺寸為75 mm×75 mm×1 mm;S. M. H. Varkian[5]設(shè)計(jì)的天線尺寸為585 mm×62 mm×5 mm。由于可穿戴天線必須是易攜的[6],因此天線尺寸要小型化,但是很多可穿戴天線和柔性天線的厚度都在1 mm以上[79],且尺寸也很大[1012]??纱┐魈炀€具有很好的發(fā)展前景[13],如腕帶式天線[14],穿戴在鞋子上的天線[15],醫(yī)用可穿戴紡織天線[16],用于穿戴領(lǐng)域的人造磁導(dǎo)體紡織天線[17],集成在衣領(lǐng)上的可穿戴天線[18],人體無(wú)線局域網(wǎng)[19],刺繡可穿戴天線[20]。基于此,本文提出一種天線介質(zhì)基板厚度為70 μm的新型緊湊型半共面波導(dǎo)饋電的可穿戴天線,并在高頻結(jié)構(gòu)仿真(high frequency structure simulator,HFSS)軟件中對(duì)所提柔性低剖面可穿戴天線進(jìn)行仿真。該天線具有1815 mm×264 mm×007 mm的緊湊小尺寸和更薄的基板,形狀簡(jiǎn)單易于制造,且價(jià)格便宜。該研究在醫(yī)療、軍隊(duì)裝備和個(gè)人識(shí)別等領(lǐng)域應(yīng)用前景廣闊。
1?天線模型
天線輻射貼片是半橢圓形和矩形的組合,半橢圓的短半軸是長(zhǎng)半軸的07倍。饋線和地面之間的間隙寬度為02 mm,并且通過(guò)50 Ω微帶線饋電。為了使天線在人體表面具有滿足24 GHz頻段要求的帶寬,在地面的左下角挖一個(gè)窄縫。天線被印刷在厚度為70 μm,且相對(duì)介電常數(shù)εr=3的柔性襯底上。本文所提天線的最終優(yōu)化尺寸如下:L=264 mm,L1=1108 mm,L2=14 mm,L3=24 mm,W=1815 mm,W1=1597 mm,W2=094 mm,W3=93 mm,W4=1115 mm,R=85 mm,S1=02 mm,S2=07 mm。天線仿真模型和幾何結(jié)構(gòu)如圖1所示。
2?天線設(shè)計(jì)
采用Ansoft公司推出的三維立體電磁仿真軟件HFSS來(lái)設(shè)計(jì)優(yōu)化天線。優(yōu)化后的天線回波損耗(|S11|)曲線應(yīng)該滿足-10 dB以下的帶寬覆蓋242~2484 8 GHz。天線設(shè)計(jì)過(guò)程如下,首先是模型設(shè)計(jì)過(guò)程。初始天線參考模型如圖2所示,圖2a天線Ant1采用共面波導(dǎo)饋電,圖2b天線對(duì)Ant1進(jìn)行了切半處理,具有與本文所提天線相同形狀的輻射貼片,圖2b與本文所提天線的差異是地面的縫隙。
由圖2可以看出,Ant1的帶寬為31~36 GHz,無(wú)法滿足24 GHz的頻段。當(dāng)改變Ant1的尺寸時(shí),它仍然無(wú)法覆蓋24 GHz頻段,因此采用切半的方式將Ant1切掉一半,此時(shí)帶寬為1~19 GHz仍無(wú)法覆蓋24 GHz,因此需要改變天線輻射貼片或地面形狀;由圖2b可以看出,在Ant2的基礎(chǔ)上,在地面的左下角挖一個(gè)寬度為07 mm的縫隙,此時(shí)Ant2就變成了本文所提天線。當(dāng)天線在人體表面時(shí),此間隙可以有效地降低回波損耗,并拓寬帶寬。本文提出的天線與人體之間的距離設(shè)置為1 mm,仿真中人體的相對(duì)介電常數(shù)為53,人體形狀設(shè)置為邊長(zhǎng)50 mm×50 mm×50 mm的立方體。
Ant1在人體表面仿真結(jié)果如圖3所示,Ant2和本文所提天線在人體表面仿真結(jié)果如圖4所示。由圖3可以看出,當(dāng)帶寬為31~36 GHz時(shí),此時(shí)調(diào)整尺寸仍然不能覆蓋24 GHz頻段,因此只能改變形狀,采用切半的方法將Ant1變?yōu)锳nt2;由圖4可以看出,當(dāng)Ant2的仿真帶寬為1~193 GHz時(shí),所提天線的仿真帶寬為122~26 GHz。通過(guò)在地面左下方挖一個(gè)寬度為07 mm的縫隙,所提天線擁有更寬的帶寬,并且回波損耗曲線更靠下,較好的覆蓋了24 GHz頻段(242~2484 8 GHz)的要求。
3?結(jié)束語(yǔ)
本文提出了一種新型的柔性低剖面半共面波導(dǎo)饋電方式的可穿戴天線,給出模型設(shè)計(jì)和仿真過(guò)程,仿真結(jié)果實(shí)現(xiàn)了天線在人體表面較好的滿足ISM 24 GHz(242~2484 8 GHz)醫(yī)學(xué)頻段的要求。與以往的穿戴天線相比,本文天線材料價(jià)格便宜,模型簡(jiǎn)單,更容易生產(chǎn)制作,并且天線為小尺寸柔性低剖面,因此可以更好的適應(yīng)人體,提升天線佩戴的舒適感。此外,本文的半共面波導(dǎo)饋電,不僅可以改變天線形狀,還大大減小了天線尺寸。綜上所述,本文天線在帶寬方面性能較好,但在增益方面欠佳,這也是共面波導(dǎo)饋電的不足之處,今后將對(duì)天線進(jìn)行進(jìn)一步的研究,以在可穿戴天線領(lǐng)域獲得更好的結(jié)果。
參考文獻(xiàn):
[1]?Mandal B, Mukherjee B, Chatterjee A, et al. Design of printed body wearable textile antenna for broadband application[C]∥2013 IEEE Applied Electromagnetics Conference (AEMC). Bhubaneswar: IEEE, 2013: 12.
[2]?Atrash M E, Bassem K, Abdalla M A. A compact dualband flexible CPWfed antenna for wearable applications[C]∥2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. San Diego, CA: IEEE, 2017: 24632464.
[3]?Gogikar S, Chilukuri S. A compact wearable textile antenna with dual bandnotched characteristics for UWB applications[C]∥2019 IEEEAPS Topical Conference on Antennas and Propagation in Wireless Communications (APWC). Granada, Spain: IEEE, 2019: 426430.
[4]?Liu Q, Lu Y. CPWfed wearable textile Lshape patch antenna[C]∥Proceedings of 2014 3rd AsiaPacific Conference on Antennas and Propagation. Harbin: IEEE, 2014: 461462.
[5]?Hosseini M, Afsahi M. Grounded CPW multiband wearable antenna for MBAN and WLAN applications[J]. Microw Opt Technol Lett, 2018, 60: 561568.
[6]?徐凌. 可穿戴天線的研究[D]. 成都: 電子科技大學(xué), 2013.
[7]?許德成, 田小建, 郭小輝, 等. 2. 45 GHz與5. 8 GHz雙頻柔性天線的設(shè)計(jì)[J]. 吉林大學(xué)學(xué)報(bào): 理學(xué)版, 2016, 54(6): 14131417.
[8]?Chen Y S, Ku ?T U. A lowprofile wearable antenna using a miniature high impedance surface for smartwatch applications[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 15: 11441147.
[9]?何魚(yú), 劉毅, 楊銀堂. 基于PDMS襯底的可延展柔性倒F天線設(shè)計(jì)[J]. 中國(guó)科學(xué), 2018, 48(6): 724733.
[10]?許德成, 田小建, 郭小輝, 等. 2. 45 GHz柔性可穿戴織物天線的設(shè)計(jì)與研究[J]. 東北師大學(xué)報(bào): 自然科學(xué)版, 2016, 48(4): 8891.
[11]?Moro R, Agneessens S, Rogier H, et al. Circularlypolarised cavitybacked wearable antenna in SIW technology[J]. IET Microwaves, Antennas & Propagation, 2018, 12(1): 127131.
[12]?解志誠(chéng), 黃英, 王志強(qiáng), 等. 2. 45 GHz柔性微帶天線的設(shè)計(jì)及傳感特性[J]. 吉林大學(xué)學(xué)報(bào): 理學(xué)版, 2019, 57(1): 160165.
[13]?董雅儒, 李書(shū)芳, 洪衛(wèi)軍. 可穿戴天線研究綜述[J]. 信息通信技術(shù), 2018, 12(4): 2632, 58.
[14]?Das S, Islam H, BoseT. Compact lowprofile body worn and wrist worn lightweight antenna for ISM and GPS band navigation and medical applications[J]. Microwave and ?Optical Technology Letters, 2018, 60(9): 21222127.
[15]?Ali M, Gentili G B, Salvador C, et al. Design and analysis of a wearable antenna system for wireless safety applications[C]∥2015 9th European Conference on Antennas and Propagation (EuCAP). Lisbon: IEEE, 2015: 14.
[16]?Singh V K, Singh A K. Design and performance of wearable ultrawide band textile antenna for medical applications[J]. Microwave and ?Optical Technology Letters, 2015, 57(7): 15531557.
[17]?Mersani A, Lotfi O, Ribero J M. Design of a textile antenna with artificial magnetic conductor for wearable applications [J]. Microwave and ?Optical Technology Letters, 2018, 60(6): 13431349.
[18]?Gautam B, Verma P, Singha A, et al. Design of multiple collar stay antennas for wireless wearable compact devices[J]. Microwave and ?Optical Technology Letters, 2020, 62(2): 743749.
[19]?Tong X, Liu C, Liu X, et al. Dualband onoffbody reconfigurable antenna for wireless body area network (WBAN) applications[J]. Microwave and ?Optical Technology Letters, 2018, 60(1): 284.
[20]?Sim C Y D, Tseng C W, Leu H J. Embroidered wearable antenna for ultrawideband applications[J]. Microwave and ?Optical Technology Letters, 2012, 54(11): 25972600.
A Novel Compact Flexible Low Profile Wearable Antenna Operating in 2.4 GHz
ZHANG Ying, CHEN Yali, ZONG Weihua
(The College of Electronic Information, Qingdao University, Qingdao 266071, China)
Abstract: ??The wearable antenna is the antenna that integrated on the surface of clothing or attached to the surface of the human body, which cannot affect the daily life of the wearer. Therefore, in order to reduce the size of the antenna, reduce the profile of the antenna, and better adapt to the human body, a simple structure, easy processing, light weight, small size, low profile, low cost, low profile miniaturized wearable antenna for human body is designed in this paper. A polyimide flexible substrate with a relative dielectric constant of 3.5 and a thickness of only 70 μm is selected. It is designed to work in the 2.4 GHz industrial scientific and medical frequency band (ISM) by using the feeding method of half coplanar waveguide (CPW). The antenna has a compact size of 18.15 mm×26.4 mm, which realizes the miniaturization of the antenna. The simulation bandwidth of the antenna on the human body surface is 1.22~2.6 GHz, which satisfies the requirements of the ISM 2. 4 GHz (2.42~2.484 8 GHz) medical frequency band. The design method proposed in this paper provides a solution for reducing the size of the wearable antenna.
Key words: wearable antenna; ?flexible antenna; ISM band; low profile; half CPW; miniaturized