師永輝,劉秀銘,毛學(xué)剛?,呂 鑌,劉庚余,陳金牛
以色列Har Keren沙漠黃土環(huán)境磁學(xué)特征研究*
師永輝1,2,劉秀銘1,3,4,毛學(xué)剛1,3?,呂 鑌1,3,劉庚余1,2,陳金牛1,2
(1. 濕潤(rùn)亞熱帶山地生態(tài)國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地,福州 350007;2. 福建師范大學(xué)地理科學(xué)學(xué)院,福州 350007;3. 福建師范大學(xué)地理研究所,福州 350007;4. Department of Environment and Geography,Macquarie University,Sydney NSW2109)
風(fēng)成黃土是研究古氣候變化的良好載體,在全球陸地分布廣泛,而不同區(qū)域地理環(huán)境差異顯著,其記錄氣候變化的機(jī)制亦有所不同。以色列南部黃土區(qū)地處亞熱帶沙漠邊緣,為探究該區(qū)域黃土磁性特征及其對(duì)區(qū)域環(huán)境的響應(yīng)機(jī)制,對(duì)內(nèi)蓋夫沙漠邊緣黃土區(qū)進(jìn)行野外考察并測(cè)試系統(tǒng)環(huán)境磁學(xué)及粒度參數(shù)。結(jié)果表明,Har Keren(HK)剖面中磁性礦物主要為碎屑磁鐵礦和磁赤鐵礦,磁性礦物含量較少,磁性顆粒主要為粗單疇(SD)和多疇(MD),磁性特征與中國(guó)西北干旱區(qū)黃土較為相似。HK剖面常溫磁學(xué)參數(shù)整體變化范圍較小,僅在剖面亞表層有所升高,可能是受現(xiàn)代成土作用影響。HK剖面中值粒徑自底部至頂部呈減小趨勢(shì),但粒度整體偏粗,其頻率分布曲線顯示為正偏態(tài),分選較差,反映出多種搬運(yùn)方式的混合特征,與典型風(fēng)成黃土有所差異。
環(huán)境磁學(xué);磁化率;沙漠黃土;以色列
全球陸相風(fēng)成黃土具有分布面積廣、沉積連續(xù)且時(shí)間跨度大等特點(diǎn),是研究不同時(shí)空尺度古氣候與古環(huán)境變遷的重要載體[1]。黃土中磁性礦物的物理化學(xué)特性受區(qū)域氣候條件影響,在不同沉積環(huán)境中會(huì)發(fā)生顯著變化,因此應(yīng)用環(huán)境磁學(xué)方法研究黃土中磁性礦物種類、含量和粒徑等信息有助于認(rèn)識(shí)過去環(huán)境變化的過程[2]。大量研究表明,不同氣候背景下黃土磁化率變化機(jī)制差異顯著,例如中國(guó)黃土高原黃土-古土壤磁化率變化可作為反映東亞夏季風(fēng)強(qiáng)弱的代用指標(biāo),與成土作用呈顯著相關(guān),但具有一定適用范圍[3-4];西北干旱區(qū),由于成土作用弱,黃土與古土壤層差異不明顯,其磁化率與成壤作用的相關(guān)性較差[5-6];南半球新西蘭黃土受物源區(qū)初始物質(zhì)與沉積區(qū)濕潤(rùn)氣候影響,磁化率與成土作用不存在相關(guān)性[7];而高緯度地區(qū)烏克蘭、西伯利亞和阿拉斯加黃土在成土過程中發(fā)生潛育化,其磁化率與成土作用表現(xiàn)出反相關(guān)關(guān)系,即黃土層磁化率高于古土壤層[8-9]。前人研究表明,西亞與北非干旱、半干旱區(qū)存在多處黃土沉積[10],但分布范圍較小,沉積時(shí)間亦較短(70~10 kaBP),并且黃土粒度偏粗,多以粗粉砂和極細(xì)砂為主[11-13],與中國(guó)黃土高原黃土特征差異較大。以色列內(nèi)蓋夫地區(qū)黃土分布范圍相對(duì)較大,面積約5 500 km2,相關(guān)研究主要涉及黃土年代學(xué)、黃土與古環(huán)境變化、黃土物源及形成機(jī)制等方面[14-16],尚缺少該地區(qū)黃土環(huán)境磁學(xué)研究。本文以內(nèi)蓋夫沙漠東部Har Keren沙漠黃土為研究對(duì)象,綜合剖面宏觀沉積特征和磁學(xué)實(shí)驗(yàn)結(jié)果,系統(tǒng)分析其磁性特征及其對(duì)區(qū)域環(huán)境的響應(yīng)。
Har Keren位于以色列南部西奈-內(nèi)蓋夫沙漠東部邊緣地帶,為東北-西南向低矮丘陵,地形起伏和緩,最高海拔360 m,西部靠近地中海東南岸(圖1a)。研究區(qū)屬亞熱帶沙漠氣候,地表植被稀疏,年平均降水量100~150 mm,降雨頻數(shù)少,但多以突發(fā)性強(qiáng)降雨天氣為主,1月份日平均溫度為10℃,8月份日平均溫度為24℃[13]。區(qū)域氣候夏季受副熱帶高壓控制,炎熱干旱,冬季在地中海塞浦路斯低壓影響下,相對(duì)溫和涼爽,當(dāng)?shù)爻D晔⑿衅黠L(fēng)。
研究剖面(31°0′34″N,34°30′48″E,圖1b)位于Har Keren西北側(cè)山谷地帶(以下簡(jiǎn)稱HK剖面),HK剖面頂部海拔320 m,地表由黃土覆蓋,并且隨地形起伏呈披覆特征,礦物組成以石英和長(zhǎng)石為主。剖面厚2.8 m,從頂部灰黃色至底部漸變?yōu)闇\棕黃色,垂直節(jié)理較為發(fā)育。剖面土層疏松多孔,膠結(jié)性較差,從頂部至下層2.4 m含有部分蝸牛殼碎屑,從中取出少量完整陸生蝸?;?,為屬(圖1c)。剖面下層1.8 m和2.4 m層明顯混雜有碳酸鹽巖碎屑物(圖1c),多呈棱角狀且分選差,與周圍斜坡碳酸鹽巖風(fēng)化碎屑巖性相同。Enzel等[17]對(duì)HK剖面周邊斜坡及峽谷黃土狀堆積物進(jìn)行釋光年代學(xué)測(cè)試表明,該區(qū)域黃土狀沉積物沉積時(shí)間較短,始于全新世早期。由于周邊區(qū)域地形相對(duì)低洼,并且受上風(fēng)向沙漠活動(dòng)影響,Crouvi等[13]綜合遙感和野外調(diào)查等方法研究認(rèn)為該區(qū)域黃土狀沉積物主要為次生黃土,即在風(fēng)力搬運(yùn)堆積過程中亦受到斜坡沖積作用。由于HK剖面無明顯土壤發(fā)生層次,因此按20 cm間隔采樣,共獲得樣品15個(gè),底部基巖為碳酸鹽巖,在其上風(fēng)向內(nèi)蓋夫沙漠中采集表層沙樣品,共計(jì)3個(gè)。為分析不同氣候區(qū)黃土磁性特征差異,選擇半濕潤(rùn)區(qū)西安黃土和半干旱區(qū)蘭州九州臺(tái)黃土作為對(duì)比研究,選取剖面上部典型樣品,西安黃土樣品9個(gè),蘭州九州臺(tái)黃土11個(gè)。
圖1 HK剖面位置(a、b)和黃土中礫石層及蝸牛殼(c)
將干燥樣品研磨成粉末狀,稱取5 g裝入無磁性樣品盒,測(cè)量系列磁學(xué)參數(shù):使用Bartington MS2型磁化率測(cè)量低頻(470 Hz)與高頻(4 700 Hz)磁化率(分別表示為clf、chf),計(jì)算百分比頻率磁化率(cfd%=100%×(clf–chf)/clf);使用ASCD-2000型交變退磁儀和Molspin Minispin旋轉(zhuǎn)磁力儀測(cè)量非磁滯剩磁(ARM),交變場(chǎng)峰值為 100 mT,直流場(chǎng)為50 μT,并計(jì)算非磁滯磁化率(cARM=ARM/50 μT);使用DPM1脈沖磁化儀對(duì)樣品施加正反向強(qiáng)磁場(chǎng),并采用Molspin Minispin旋轉(zhuǎn)磁力儀測(cè)量樣品等溫剩磁(IRM)和飽和等溫剩磁(SIRM=IRM1T),其他常溫磁學(xué)參數(shù)由相應(yīng)公式計(jì)算得出。選取剖面典型樣品測(cè)量磁滯回線和磁化率隨溫度變化曲線(κ-T曲線)。典型樣品磁滯回線采用可變場(chǎng)磁天平(Variable Field Transition Balance)測(cè)量,磁化率隨溫度變化曲線(κ-T曲線)由KLY-3磁化率儀和CS-3加熱裝置測(cè)得,樣品加熱至700℃后冷卻至室溫。以上實(shí)驗(yàn)均在福建師范大學(xué)地理科學(xué)學(xué)院濕潤(rùn)亞熱帶山地生態(tài)重點(diǎn)實(shí)驗(yàn)室完成。
通過系統(tǒng)分析樣品常溫磁學(xué)參數(shù)及其比值,可有效反映其中磁性礦物的詳細(xì)特征。HK剖面樣品常溫磁學(xué)參數(shù)隨深度變化見圖2。磁化率受磁性礦物類型、含量和磁性顆粒大?。ù女牋顟B(tài))等因素影響[18],可反映樣品中磁性礦物的整體特征。HK剖面磁化率值(圖2a)介于23~40.5×10–8m3·kg–1,平均值為27.91×10–8m3·kg–1,自下層至頂部呈微弱增加趨勢(shì)。與西峰黃土相比[19],HK剖面磁化率值總體偏低,變化范圍較小,表明其中亞鐵磁性礦物含量較少。SIRM通常用于反映亞鐵磁性礦物含量,并且SIRM與cARM作為剩磁參數(shù)對(duì)單疇(SD)亞鐵磁性顆粒反應(yīng)尤其靈敏。HK剖面SIRM和cARM(圖2b和圖2c)顯示與磁化率變化趨勢(shì)一致,且數(shù)值總體偏低,說明樣品中亞鐵磁性礦物含量較少,SD顆粒含量亦較低,其中cARM與磁化率變化趨勢(shì)一致說明磁化率在上部的增強(qiáng)受SD顆粒亞鐵磁性礦物影響。剩磁參數(shù)比值如cARM/χ、cARM/SIRM常用于指示SD顆粒亞鐵磁性礦物的相對(duì)含量,其比值越大,表示SD顆粒相對(duì)含量較高。HK剖面cARM/χ與cARM/ SIRM(圖2f和圖2g)隨深度變化趨勢(shì)基本一致,與黃土高原東南部黃土剖面相比[20],其數(shù)值明顯偏低,表明樣品中細(xì)顆粒磁性礦物(SD顆粒)含量較半濕潤(rùn)區(qū)黃土明顯偏少。百分比頻率磁化率(cfd%)可反映樣品中超順磁(SP)顆粒磁性礦物相對(duì)含量[21],當(dāng)cfd%<5%說明樣品受SP顆粒的影響小,而主要反映粗顆粒(多疇)的影響。HK剖面樣品cfd%值介于0.31%~2.17%,說明樣品中基本不含SP顆粒磁性礦物,而主要受粗顆粒磁性礦物的影響。剩磁矯頑力(Bcr)大小可判斷樣品中磁性礦物類型和磁疇顆粒大小[22],軟磁性礦物(如磁鐵礦和磁赤鐵礦)較硬磁性礦物(如赤鐵礦)的Bcr低,相同磁性礦物的SD顆粒較多疇(MD)顆粒Bcr高。圖2e顯示,HK剖面樣品Bcr隨深度變化波動(dòng)較小,數(shù)值介于28.26~29.42 mT,指示剖面樣品中磁性礦物均以軟磁性組分為主,并且其磁性顆??赡芸傮w較粗。通常情況下,樣品中軟磁性礦物在低磁場(chǎng)300 mT以內(nèi)就可以達(dá)到飽和,而硬磁性礦物在1 000 mT甚至更高磁場(chǎng)下才能飽和。F300(F300=IRM300/SIRM)常用于分析沉積物中軟磁性礦物與硬磁性礦物的相對(duì)含量,其中軟磁性礦物含量與其比值呈正相關(guān)。HK剖面樣品F300(圖2h)總體均達(dá)到0.9以上,表明剖面中磁性礦物類型主要以軟磁性組分為主。Dearing圖通常用于分析樣品中磁性顆粒的相對(duì)含量及大小[23]。HK剖面Dearing圖顯示(圖3),與蘭州九州臺(tái)黃土、西安黃土、新疆米東黃土[24]相比,HK剖面磁性顆粒與新疆米東黃土較為相似,樣品中磁性顆粒介于粗SD和MD區(qū)域,細(xì)顆粒磁性礦物相對(duì)含量偏低,反映了干旱區(qū)黃土由于成土作用較弱,磁性礦物主要以原生碎屑組分為主,而在相對(duì)濕潤(rùn)的西安黃土區(qū),其中磁性礦物經(jīng)過較強(qiáng)的風(fēng)化成壤作用后,磁性礦物含量大幅增加,粒徑亦明顯變細(xì)。
圖2 HK剖面常溫磁學(xué)及粒度參數(shù)
圖3 HK剖面與中國(guó)不同區(qū)域黃土Dearing圖
磁滯回線形狀及其參數(shù)(如Mrs、Ms、Bc、Bcr)可直觀反映沉積物中磁性礦物特征[25]。圖4為HK剖面不同層位樣品磁滯回線,虛線為經(jīng)過順磁性校正后磁滯回線形態(tài)。經(jīng)校正后樣品磁滯回線在300 mT磁場(chǎng)時(shí)已經(jīng)閉合,圖4a和圖4b磁滯回線呈狹窄陡直形態(tài)并且矯頑力(Bc)較低,表明樣品中以粗顆粒亞鐵磁性礦物為主,與中國(guó)西北干旱區(qū)黃土特征相似[5]。圖4c顯示剖面下層樣品磁滯回線在300 mT磁場(chǎng)時(shí)已經(jīng)閉合,并且矯頑力很低,但當(dāng)磁場(chǎng)繼續(xù)增加,曲線形態(tài)曲折波動(dòng),說明亞鐵磁性礦物含量較少,磁性偏弱。剖面典型樣品飽和磁化強(qiáng)度(Ms)總體偏低,也同樣反映其中磁性礦物含量偏低。圖中未經(jīng)校正磁滯回線在300 mT以上磁化強(qiáng)度隨磁場(chǎng)強(qiáng)度線性增強(qiáng),表明HK剖面樣品中含有部分順磁性物質(zhì)。
磁化率隨溫度變化曲線(κ-T曲線)通常根據(jù)曲線轉(zhuǎn)折點(diǎn)、變化趨勢(shì)及加熱與冷卻曲線相對(duì)位置判斷磁性礦物種類和磁疇顆粒大小。圖5為HK剖面不同層位κ-T曲線,如圖所示,所有樣品加熱曲線在0~300℃加熱過程中磁化率有所升高,可能與樣品中磁性顆粒受熱解阻有關(guān)[26]。剖面上層樣品HK1、HK2、HK4的加熱與冷卻曲線居里點(diǎn)均位于580℃附近,表明樣品中主要磁性礦物為磁鐵礦。剖面所有樣品加熱與冷卻曲線均顯示為不可逆形態(tài),上層樣品HK1、HK2、HK4(圖5a、圖5b、圖5c)加熱曲線在300~450℃有明顯下降,指示樣品中有少量熱不穩(wěn)定磁赤鐵礦轉(zhuǎn)變?yōu)槿醮判猿噼F礦[27],加熱曲線在500℃附近存在微弱峰值,指示剖面上層樣品中可能存在少量有機(jī)質(zhì)成分,并且剖面上層樣品冷卻曲線位于加熱曲線上方,表明加熱過程中在有機(jī)質(zhì)參與下部分弱磁性礦物轉(zhuǎn)化為強(qiáng)磁性磁鐵礦[28-29]。剖面下層樣品HK8、HK13、HK15(圖5d、圖5e、圖5f)冷卻曲線均位于加熱曲線下方,說明加熱過程中少量磁赤鐵礦轉(zhuǎn)化為赤鐵礦,導(dǎo)致加熱后樣品磁性降低,但其居里點(diǎn)仍位于580℃附近,指示樣品中磁性礦物主要為磁鐵礦。
圖4 HK剖面典型樣品磁滯回線
圖5 HK剖面典型樣品熱磁κ-T曲線
黃土中磁性礦物主要由原生碎屑組分和次生細(xì)粒組分構(gòu)成,原生磁性礦物反映了物源區(qū)及搬運(yùn)風(fēng)力變化等信息,而次生細(xì)粒磁性礦物可指示沉積區(qū)氣候特征及成壤作用的強(qiáng)弱[1,30]。以上通過系統(tǒng)的磁學(xué)指標(biāo)分析認(rèn)為,HK剖面中磁性礦物為磁鐵礦和磁赤鐵礦,磁性顆粒以MD和粗SD為主,為原生碎屑組分,磁性礦物含量較低,與中國(guó)西北干旱區(qū)黃土磁性特征較為相似[5]。通過對(duì)比HK剖面χlf與SIRM、cARM的相關(guān)性(圖6a、圖6b)發(fā)現(xiàn),剖面χlf與SIRM呈明顯正相關(guān),表明其χlf變化主要由亞鐵磁性礦物含量決定。HK剖面χlf與cARM相關(guān)系數(shù)相對(duì)較低,兩者僅在剖面上部變化趨勢(shì)較為一致(圖2a、圖2c),說明剖面上部磁性變化受粗SD顆粒亞鐵磁性礦物影響較大。相關(guān)研究表明[5],中國(guó)西北干旱區(qū)黃土磁化率與粒度呈正相關(guān),而HK剖面中值粒徑(Md,圖2i)結(jié)果顯示,剖面粒度整體偏粗,且自底部至頂部呈減小趨勢(shì),與χlf變化趨勢(shì)相反,說明HK剖面與西北干旱區(qū)黃土磁性增強(qiáng)機(jī)制有所不同。
土壤磁性特征受區(qū)域氣候條件影響,呂厚遠(yuǎn)等[31]對(duì)中國(guó)表土磁化率研究認(rèn)為,當(dāng)區(qū)域年平均降水量低于1 100 mm界線時(shí),土壤磁化率隨著降水量的增加而增加。HK剖面與其上風(fēng)向內(nèi)蓋夫沙漠樣品對(duì)比顯示(表1),雖然兩者磁學(xué)參數(shù)總體均偏低,但存在明顯差異。除χfd%外,HK剖面磁學(xué)參數(shù)χlf、χARM、SIRM明顯高于內(nèi)蓋夫沙丘樣品,說明HK剖面磁性礦物含量較沙漠樣品相對(duì)較多。與中國(guó)干旱、半干旱區(qū)黃土如米東黃土[24]和九州臺(tái)黃土[32]相比,HK剖面所在區(qū)域現(xiàn)代降水量相對(duì)較低,磁性較弱,其χlf、χfd%、χARM、SIRM結(jié)果表明黃土沉積后期成土作用不顯著,其中磁性礦物仍以源區(qū)碎屑磁鐵礦為主。西安黃土位于半濕潤(rùn)區(qū),現(xiàn)代降水量達(dá)600 mm[33],其磁性特征明顯區(qū)別于干旱區(qū)黃土,表明隨著降水量的增加,區(qū)域風(fēng)化成土作用顯著增強(qiáng),磁性礦物性質(zhì)亦發(fā)生轉(zhuǎn)變,研究表明[1],黃土高原土壤發(fā)育過程中生成的大量細(xì)粒磁性礦物是其磁性增強(qiáng)的主要原因。而對(duì)HK剖面研究結(jié)果顯示,剖面自底部2.8 m至上部0.4 m整體磁性變化不大,僅在0.4 m以上有明顯增強(qiáng)(圖2a),表明HK剖面沉積后期物理風(fēng)化作用較強(qiáng),加之表層亦有少量植被生長(zhǎng),即受現(xiàn)代微弱成土作用影響,因此剖面上部磁性略有增加。
野外觀察發(fā)現(xiàn),HK剖面中混雜有少量粗粒碳酸鹽巖碎屑,尤其下部混雜有兩層明顯的礫石碎屑層(圖1c),多呈棱角狀且分選差,原因可能是該區(qū)域雖處亞熱帶干旱區(qū),降水量少,但多以突發(fā)性強(qiáng)降雨為主,加之區(qū)域植被覆蓋度低,因此在短期強(qiáng)烈流水沖積作用下斜坡巖石碎屑物被攜帶至山谷底部堆積。粒度頻率分布曲線可反映沉積物搬運(yùn)動(dòng)力及沉積環(huán)境的變化。HK剖面不同深度樣品的頻率分布曲線(圖6c)顯示為雙峰或三峰分布,主峰偏向粗粒一側(cè)且含量高,表現(xiàn)為尖窄峰態(tài),眾數(shù)粒徑介于70~90 μm,兩側(cè)次峰所占含量較低,說明沉積物主要通過近距離躍移搬運(yùn)堆積為主。相關(guān)研究表明[17],該區(qū)域黃土沉積物主要來自上風(fēng)向內(nèi)蓋夫沙漠,經(jīng)風(fēng)力搬運(yùn)、磨蝕而沉積于Har Keren地區(qū),因而與上風(fēng)向內(nèi)蓋夫沙漠樣品的粒度頻率分布曲線差異較大,后者頻率分布曲線為單峰態(tài),粒徑偏粗。HK剖面頻率分布曲線右側(cè)有少量粗粒組分存在,說明堆積過程中可能由于剖面位于負(fù)地形,周邊斜坡的巖石風(fēng)化碎屑物在強(qiáng)風(fēng)作用下蠕移搬運(yùn)至此,或者在短時(shí)強(qiáng)降雨條件下受斜坡沖積作用而混入其中。
表1 HK剖面與不同黃土區(qū)降水量及磁學(xué)參數(shù)對(duì)比
圖6 HK剖面磁學(xué)參數(shù)相關(guān)性及頻率分布曲線
通過對(duì)以色列Har Keren沙漠黃土(HK剖面)的沉積特征考察和磁學(xué)及粒度實(shí)驗(yàn)分析,初步探討了此區(qū)域黃土磁性特征以及與區(qū)域環(huán)境關(guān)系,得出以下結(jié)論:(1)HK剖面常溫磁學(xué)參數(shù)和高溫?zé)岽徘€結(jié)果表明,剖面中磁性礦物主要為磁鐵礦和磁赤鐵礦,磁性礦物含量較少,并且主要為粗磁性顆粒,以MD和粗SD為主,反映其是來自物源區(qū)的原生碎屑磁性礦物,磁性特征在干熱氣候條件下未發(fā)生明顯轉(zhuǎn)變。(2)HK剖面常溫磁學(xué)參數(shù)χlf、χARM、SIRM自底部至頂部整體變化較小,僅在頂部有所增強(qiáng),反映出剖面上部受現(xiàn)代微弱成土作用影響,磁性略有增加。(3)HK剖面中值粒徑整體偏粗,粒度頻率分布曲線分布較寬,并且剖面下部混雜有礫石碎屑層,反映了剖面在近源風(fēng)力搬運(yùn)堆積過程中,亦受到斜坡流水沖積作用影響。
[ 1 ] Deng C L,Liu Q S,Pan Y X,et al. Environmental magnetism of Chinese loess-paleosol sequence[J]. Quaternary Sciences,2007,27(2):193-209. [鄧成龍,劉青松,潘永信,等. 中國(guó)黃土環(huán)境磁學(xué)[J]. 第四紀(jì)研究,2007,27(2):193—209.]
[ 2 ] Liu Q S,Deng C L,Pan Y X. Temperature-dependency and frequency-dependency of magnetic susceptibility of magnetite and maghemite and their significance for environmental magnetism[J]. Quaternary Sciences,2007,27(6):955—962. [劉青松,鄧成龍,潘永信. 磁鐵礦和磁赤鐵礦磁化率的溫度和頻率特性及其環(huán)境磁學(xué)意義[J]. 第四紀(jì)研究,2007,27(6):955—962.]
[ 3 ] Liu X M,Liu Z,Lü B,et al. The magnetic properties of Serbian loess and its environmental significance[J]. Chinese Science Bulletin,2012,57(33):3173—3184. [劉秀銘,劉植,呂鑌,等. 塞爾維亞黃土的磁學(xué)性質(zhì)及其環(huán)境意義[J]. 科學(xué)通報(bào),2012,57(33):3173—3184.]
[ 4 ] Zhou L P,Oldfield F,Wintle A G,et al. Partly pedogenic origin of magnetic variations in Chinese loess[J]. Nature,1990,346(6286):737—739.
[ 5 ] Lü B,Liu X M,Zhao G Y,et al. Rock magnetic properties of Bole loess in Xinjiang and its environmental significance[J]. Journal of Lanzhou University(Natural Sciences),2012,48(5):1—8. [呂鑌,劉秀銘,趙國(guó)永,等. 新疆博樂黃土巖石磁學(xué)特征及環(huán)境意義[J]. 蘭州大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,48(5):1—8.]
[ 6 ] Jia J,Xia D S,Wang B,et al. The comparison between Loess Plateau and Ili loess magnetic properties and their implications[J]. Quaternary Sciences,2012,32(4):749—760. [賈佳,夏敦勝,王博,等. 黃土高原與伊犁黃土磁學(xué)特征對(duì)比及啟示[J]. 第四紀(jì)研究,2012,32(4):749—760.]
[ 7 ] Ma M M. Discussion on the mechanism of magnetic change of loess in Australia and New Zealand[D]. Lanzhou:Lanzhou University,2012. [馬明明. 澳大利亞與新西蘭黃土磁學(xué)變化機(jī)制探討[D].蘭州:蘭州大學(xué),2012.]
[ 8 ] Liu X M,Liu D S,Xia D S,et al. Analysis of two soil-forming models under the conditions of paleoclimate record oxidation and reduction of loess susceptibility in China and Siberia[J]. Science China:Earth Sciences,2007,37(10):1382—1391. [劉秀銘,劉東生,夏敦勝,等. 中國(guó)與西伯利亞黃土磁化率古氣候記錄—氧化和還原條件下的兩種成土模式分析[J]. 中國(guó)科學(xué):地球科學(xué),2007,37(10):1382—1391.]
[ 9 ] Liu X M,Xia D S,Liu D S,et al. Two models of Climate Records of Loess susceptibility in China and Alaska[J]. Quaternary Sciences,2007,27(2):210—220. [劉秀銘,夏敦勝,劉東生,等. 中國(guó)黃土和阿拉斯加黃土磁化率氣候記錄的兩種模式探討[J]. 第四紀(jì)研究,2007,27(2):210—220.]
[ 10 ] Crouvi O,Amit R,Enzel Y,et al. Active sand seas and the formation of desert loess[J]. Quaternary Science Reviews,2010,29(17):2087—2098.
[ 11 ] Pye K,Tsoar H. The mechanics and geological implications of dust transport and deposition in deserts with particular reference to loess formation and dune sand diagenesis in the northern Negev,Israel[J]. Geological Society London Special Publications,1987,35(1):139—156.
[ 12 ] Karimi A,Khademi H,Kehl M,et al. Distribution,lithology and provenance of peridesert loess deposits in northeastern Iran[J]. Geoderma,2009,148(3/4):241—250.
[ 13 ] Crouvi O,Amit R,Porat N,et al. Significance of primary hilltop loess in reconstructing dust chronology,accretion rates,and sources:An example from the Negev Desert,Israel[J]. Journal of Geophysical Research,2009,114(F2):1—16.
[ 14 ] Crouvi O,Amit R,Enzel Y,et al. Sand dunes as a major proximal dust source for late Pleistocene loess in the Negev Desert,Israel[J]. Quaternary Research,2008,70(2):275—282.
[ 15 ] Crouvi O,Dayan U,Amit R,et al. An Israeli haboob:Sea breeze activating local anthropogenic dust sources in the Negev loess[J]. Aeolian Research,2017,24:39—52.
[ 16 ] Enzel Y,Amit R,Dayan U,et al. The climatic and physiographic controls of the eastern Mediterranean over the late Pleistocene climates in the southern Levant and its neighboring deserts[J]. Global and Planetary Change,2008,60(3/4):165—192.
[ 17 ] Enzel Y,Amit R,Crouvi O,et al. Abrasion-derived sediments under intensified winds at the latest Pleistocene leading edge of the advancing Sinai–Negev erg[J]. Quaternary Research,2010,74(1):121—131.
[ 18 ] Liu Q S,Deng C L. Magnetic susceptibility and its environmental significance[J]. Journal of Geophysics,2009,52(4):1041—1048. [劉青松,鄧成龍. 磁化率及其環(huán)境意義[J].地球物理學(xué)報(bào),2009,52(4):1041—1048.]
[ 19 ] Guo X L. The spatial variation of loess magnetic characteristics and its mechanism on the Loess Plateau since 0.5Ma[D]. Lanzhou:Lanzhou University,2011. [郭雪蓮. 黃土高原50萬年來黃土磁性特征空間變化及其機(jī)制[D]. 蘭州:蘭州大學(xué),2011.]
[ 20 ] Wang X S,Yang Z Y,Reidar L,et al. Environmental magnetism and paleoclimatic interpretation of the Sanmenxia loess-paleosol sequence in the southeastern extremity of the Chinese Loess Plateau[J]. Chinese Science Bulletin,2006,51(13):1575—1582. [王喜生,楊振宇,Reidar Lovlie,等. 黃土高原東南緣黃土-古土壤序列的環(huán)境磁學(xué)結(jié)果及其古氣候意義[J]. 科學(xué)通報(bào),2006,51(13):1575—1582.]
[ 21 ] Thompson R,Oldfield F. Environmental magnetism[M]. London:Allen Unwin,1986.
[ 22 ] Qu Z. An introduction of magnetic parameters in environmental studies[J]. Geological Science & Technology Information,1994,13(2):98—100,104. [曲贊. 用于環(huán)境研究的磁性參數(shù)簡(jiǎn)介[J]. 地質(zhì)科技情報(bào),1994,13(2):98—100,104.]
[ 23 ] Dearing J A,Bird P M,Dann R J L,et al. Secondary ferrimagnetic minerals in Welsh soils:A comparison of mineral magnetic detection methods and implications for mineral formation[J]. Geophysical Journal International,1997,130(3):727—736.
[ 24 ] Lü B. The environmental magnetism study of loess in north Xinjiang[D]. Lanzhou:Lanzhou University,2012. [呂鑌. 北疆黃土環(huán)境磁學(xué)研究[D]. 蘭州:蘭州大學(xué),2012.]
[ 25 ] Xia D S,Ma J Y,Wang G,et al. Environmental magnetism concepts and their applications to environmental studies in arid regions,Northwest China[J]. Earth Science Frontiers,2006,13(3):168—179. [夏敦勝,馬劍英,王冠,等. 環(huán)境磁學(xué)及其在西北干旱區(qū)環(huán)境研究中的問題[J]. 地學(xué)前緣,2006,13(3):168—179.]
[ 26 ] Zhao X Y,Liu Q S. Effects of the grain size distribution on the temperature-dependent magnetic susceptibility of magnetite nanoparticles[J]. Science China:Earth Sciences,2010,40(7):873—880. [趙翔宇,劉青松. 粒徑分布對(duì)磁鐵礦磁化率變溫曲線的影響[J].中國(guó)科學(xué):地球科學(xué),2010,40(7):873—880.]
[ 27 ] Deng C,Zhu R,Jackson M J,et al. Variability of the temperature-dependent susceptibility of the holocene eolian deposits in the Chinese loess plateau:A pedogenesis indicator[J]. Physics & Chemistry of the Earth Part A Solid Earth & Geodesy,2001,26(11/12):873—878.
[ 28 ] Hanesch M,Stanjek H,Petersen N. Thermomagnetic measurements of soil iron minerals:The role of organic carbon[J]. Geophysical Journal International,2006,165(1):53—61.
[ 29 ] Han G Z,Huang L M,Li S Q,et al. Review and prospect of researches on production and transformation of magnetic minerals in paddy soils during pedogenesis[J]. Acta Pedologica Sinica,2017,54(2):309—318. [韓光中,黃來明,李山泉,等. 水耕人為土磁性礦物的生成轉(zhuǎn)化機(jī)制研究回顧與展望[J]. 土壤學(xué)報(bào),2017,54(2):309—318.]
[ 30 ] Pan Y,Hu X F. Multiple origins of magnetic minerals in soils—Discrimination between pedogenic and anthropogenic magnetism[J]. Acta Pedologica Sinica,2010,47(2):206—215. [潘赟,胡雪峰. 土壤磁性礦物的多元成因——成土作用成因與人為污染成因磁性的區(qū)分[J]. 土壤學(xué)報(bào),2010,47(2):206—215.]
[ 31 ] Lü H Y,Han J M,Wu Naiqin,et al. Magnetic susceptibility of the modern soils in China and paleoclimatic significance[J]. Science in China(Series B),1994,24(12):1290—1297. [呂厚遠(yuǎn),韓家懋,吳乃琴,等. 中國(guó)現(xiàn)代土壤磁化率分析及其古氣候意義[J].中國(guó)科學(xué)(B輯),1994,24(12):1290—1297.]
[ 32 ] Rao Z G,Chen F H,Wang H B,et al. Eastern Asian summer monsoon variation during MIS 5e as recorded by paleosol S1at Jiuzhoutai loess section[J]. Marine Geology & Quaternary Geology,2006,26(2):103—111. [饒志國(guó),陳發(fā)虎,汪海斌,等.九州臺(tái)古土壤S1記錄的末次間冰期東亞夏季風(fēng)變化[J]. 海洋地質(zhì)與第四紀(jì)地質(zhì),2006,26(2):103—111.]
[ 33 ] Zhao J B,Shao T J,Niu J J. Permeability and water bearing conditions of loess in Bailu tableland in the eastern suburbs of Xi’an[J]. Geographical Research,2009,28(5):1188—1196. [趙景波,邵天杰,牛俊杰. 西安白鹿塬黃土滲透性與含水條件[J]. 地理研究,2009,28(5):1188—1196.]
Study on Environmental Magnetic Characteristics of Loess in Har Keren Desert, Israel
SHI Yonghui1, 2, LIU Xiuming1, 3, 4, MAO Xuegang1, 3?, Lü Bin1, 3, LIU Gengyu1, 2, CHEN Jinniu1, 2
(1. State Key Laboratory for Subtropical Mountain Ecology, Fuzhou 350007, China; 2. College of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; 3. Institute of Geography, Fujian Normal University, Fuzhou 350007, China; 4. Department of Environment and Geography, Macquarie University, Sydney, NSW2109, Australia)
Aeolian loess, widely distributed over the world, is a good carrier for studying paleoclimate change. However, mechanisms of their recording climate change vary as their geographical environments from region to regions. The loess region in the south of Israel borders, a subtropical desert.To explore mechanisms of loess magnetic characteristics responding to the environment of this region, a field survey was conducted in the loess area on the fringe of the Negev Desert to investigate systems environmental magnetism and particle size composition.This study had soil samples collected from the area and analyzed for types, contents and particle sizes of magnetic domain particles therein by means of the room temperature and high temperature magnetic methods. Through analysis of particle size composition of the samples, transport process and deposition characteristics of loess were determined.Results show that the magnetic minerals in the HK profile consisted mainly of clastic magnetite and maghemite, quite low in content. The Dearing plot of the sample shows that the magnetic domain particles in the magnetic minerals were quite coarse and mainly of coarse single domain (SD) and multi-domain (MD). Analysis of particle size composition shows that particles in the HK profile varied in size, tended to be coarse, declining from the bottom to the top in the profile, with frequency distribution curve appearing to be of positive skewness and were hard to be fractionated, exhibiting the feature of a mixture of multiple transport modes, which was somewhat different from that of a typical aeolian loess.(1) Both the room-temperature magnetic parameters and high-temperature thermomagnetic curve of the HK profile show that the magnetic minerals in the HK (Har Keren) profile samples consist mainly of clastic magnetite and maghemite, quite low in content, quite coarse in particle size, and dominated with coarse SD and MD, which reflects that they are clastic magnetic minerals coming from the source area. The loess in the profile is quite similar to that in the arid region of Northwest China in magnetic characteristics. (2) The room-temperature magnetic parameters of the HK profile, as a whole, vary within a quite narrow range and ascend somewhat only in the sub-surface layer, which may be attributed to the impact of the modern soil forming process. And (3) median particle size of the HK profile displays a trend of declining from the bottom to the top, and the particles tend to coarse on the whole. Its frequency distribution curve appears to be of positive skewness and the particles are hard to be fractionated. Besides, in the bottom of the profile mixed are gravel debris layers. All of the above reflect that the process of near-source-wind-driven transport and deposition has been subjected to the fluvial effect of flows.
Environmental magnetism; Magnetic susceptibility; Desert Loess; Israel
P318.4
A
10.11766/trxb201906240232
師永輝,劉秀銘,毛學(xué)剛,呂鑌,劉庚余,陳金牛. 以色列Har Keren沙漠黃土環(huán)境磁學(xué)特征研究[J]. 土壤學(xué)報(bào),2020,57(5):1177–1185.
SHI Yonghui,LIU Xiuming,MAO Xuegang,Lü Bin,LIU Gengyu,CHEN Jinniu. Study on Environmental Magnetic Characteristics of Loess in Har Keren Desert,Israel[J]. Acta Pedologica Sinica,2020,57(5):1177–1185.
* 國(guó)家自然科學(xué)基金項(xiàng)目(41602184、41772180)、福建省自然科學(xué)基金項(xiàng)目(2017J01655)資助Supported by the National Natural Science Foundation of China(Nos. 41602184,41772180),Natural Science Foundation of Fujian Province(No.2017J01655)
,E-mail:maoxuegang1@163.com
師永輝(1993—),男,河南周口人,碩士研究生,主要從事土壤磁學(xué)與古環(huán)境研究。E-mail:shiyonghui25@163.com
2019–06–24;
2019–09–14;
優(yōu)先數(shù)字出版日期(www.cnki.net):2019–11–22
(責(zé)任編輯:檀滿枝)