国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

炭肥比和膨潤(rùn)土粘結(jié)劑對(duì)炭基肥顆粒理化及緩釋特性的影響

2020-11-30 13:59:30牛智有牛文娟邵愷懌黃金芝周凱強(qiáng)
關(guān)鍵詞:粘結(jié)劑氯化鉀基肥

牛智有,劉 鳴,牛文娟,邵愷懌,耿 婕,唐 震,黃金芝,周凱強(qiáng)

·農(nóng)業(yè)生物環(huán)境與能源工程·

炭肥比和膨潤(rùn)土粘結(jié)劑對(duì)炭基肥顆粒理化及緩釋特性的影響

牛智有1,2,劉 鳴1,牛文娟1,2,邵愷懌1,耿 婕1,唐 震1,黃金芝1,周凱強(qiáng)1

(1.華中農(nóng)業(yè)大學(xué)工學(xué)院,武漢 430070;2.農(nóng)業(yè)農(nóng)村部長(zhǎng)江中下游農(nóng)業(yè)裝備重點(diǎn)實(shí)驗(yàn)室,武漢 430070)

為探究炭肥比和膨潤(rùn)土粘結(jié)劑對(duì)生物炭基肥理化及緩釋特性的影響,以生物炭為基底,分別制備了炭肥比1:4,膨潤(rùn)土粘結(jié)劑質(zhì)量分?jǐn)?shù)為20%、15%、10%、5%和粘結(jié)劑質(zhì)量分?jǐn)?shù)10%,炭肥比為1:6、1:5、1:4、1:3的柱狀尿素和氯化鉀生物炭基肥顆粒,分析了生物炭基肥顆粒的理化及緩釋特性。結(jié)果表明,在炭肥比為1:4條件下,膨潤(rùn)土粘結(jié)劑質(zhì)量分?jǐn)?shù)越高,生物炭基肥微觀結(jié)構(gòu)越緊密,力學(xué)和緩釋特性越好,質(zhì)量分?jǐn)?shù)為20%時(shí),氯化鉀和尿素生物炭基肥平均抗壓強(qiáng)度分別為286.78和281.27 N,前3天養(yǎng)分淋出率分別為45.53%和36.87%。在膨潤(rùn)土粘結(jié)劑質(zhì)量分?jǐn)?shù)為10%條件下,炭肥比越高,生物炭基肥緩釋性能越好,炭肥比為1:3時(shí),氯化鉀和尿素生物炭基肥前3天養(yǎng)分淋出率分別為42.06%和40.32%。同時(shí),氯化鉀生物炭基肥表面孔隙先增后減,炭肥比為1:6和1:3的平均抗壓強(qiáng)度分別為271.25和282.42 N。尿素生物炭基肥內(nèi)部結(jié)構(gòu)中孔隙變多,炭肥比為1:6時(shí),平均抗壓強(qiáng)度為最大值267.84 N。綜合考慮,滿足中等肥料濃度要求時(shí),膨潤(rùn)土粘結(jié)劑質(zhì)量分?jǐn)?shù)為20%、炭肥比為1:4或膨潤(rùn)土粘結(jié)劑質(zhì)量分?jǐn)?shù)為10%、炭肥比為1:3的生物炭基肥成型配方較優(yōu)。

尿素;氯化鉀;生物炭基肥;理化特性;緩釋特性

0 引 言

近年來(lái),中國(guó)化肥施用總量逐年上升,長(zhǎng)期施用化肥會(huì)加速土壤酸化,且傳統(tǒng)速溶性肥料施用后營(yíng)養(yǎng)元素流失嚴(yán)重,易造成環(huán)境污染[1-2]。玉米秸稈生物炭呈堿性,具有穩(wěn)定的碳架結(jié)構(gòu)、發(fā)達(dá)的孔隙結(jié)構(gòu)和較大的比表面積,可作為土壤的改良劑和碳匯劑,可改變土壤的物理性狀和結(jié)構(gòu)[3-6]。將生物炭與速效肥料以及粘結(jié)劑按照一定配比混合可以制成長(zhǎng)效緩釋肥料,在土壤中施加生物炭基肥料,可以使土壤pH值向中性靠近,適合作物生長(zhǎng),降低土壤的容重從而改善土壤通氣透水性能,同時(shí)提高農(nóng)作物產(chǎn)量[7-10]。

現(xiàn)代粉體造粒技術(shù)能將粉體組合成粒,充分利用微粉化、功能化、復(fù)合化、精細(xì)化及粒子設(shè)計(jì)等技術(shù)使成品顆粒符合應(yīng)用需要,解決粉狀肥料難以運(yùn)輸、存儲(chǔ)與施用等問(wèn)題[11-13]。以平模擠壓造粒為代表的模輥成型技術(shù)與傳統(tǒng)的圓盤(pán)造粒成型方式相比,具有成型原料含水率低、成品顆粒力學(xué)性能好、成型密度大、成型率高、生產(chǎn)率高等優(yōu)點(diǎn)[14-18]。肥料顆粒的抗壓強(qiáng)度、表面基團(tuán)、孔隙結(jié)構(gòu)和緩釋效果等是評(píng)判生物炭基肥顆粒品質(zhì)的重要指標(biāo)。目前,學(xué)者們對(duì)生物炭基肥的理化特性和緩釋特性只進(jìn)行了單一特性的研究,如試驗(yàn)不同配方或成型方式,獲得最優(yōu)方法,使肥料顆粒有較高抗壓強(qiáng)度和成型率[19-20],但未對(duì)其緩釋性能進(jìn)行驗(yàn)證,無(wú)法反映其緩釋特性?;虿捎猛林苋?、靜態(tài)釋放或掃描電子顯微鏡等試驗(yàn)方法,研究不同配方及內(nèi)部結(jié)構(gòu)對(duì)肥顆粒緩釋性能影響[21-24],并未同時(shí)對(duì)肥料顆粒的力學(xué)性能進(jìn)行研究。因此,綜合研究生物炭基肥的理化特性及緩釋特性,獲得兩者兼優(yōu)的造粒配方和成型方法具有重要意義。

為了使生物炭基肥具有較好的理化特性和緩釋特性,在保證緩釋效果同時(shí),更容易運(yùn)輸、存儲(chǔ)與施用。本文參考GB/T 23348-2009 緩釋肥料標(biāo)準(zhǔn)要求[25],以膨潤(rùn)土為粘結(jié)劑,玉米秸稈生物炭為基底,運(yùn)用平模擠壓成型原理,制備了尿素生物炭基肥及氯化鉀生物炭基肥。通過(guò)單因素試驗(yàn),研究在相同含水率情況下,不同膨潤(rùn)土粘結(jié)劑含量及炭肥比對(duì)生物炭基肥顆粒的理化特性及緩釋特性的影響,從而獲得合適的粘結(jié)劑含量及炭肥比范圍,旨在為優(yōu)化炭基肥原料配比奠定理論基礎(chǔ)。

1 材料與方法

1.1 材料與設(shè)備

玉米秸稈生物炭粉(含水率為4.53%,灰分為31.23%,揮發(fā)分為26.78%,固定碳為37.46%);鈉基膨潤(rùn)土(pH值為8~8.5,粒度為0.08 mm,純度≥97%);風(fēng)干土壤,采自華中農(nóng)業(yè)大學(xué)試驗(yàn)田表層5~20 cm(全氮為0.23 mg/kg、速效鉀37.99 mg/kg、速效磷為2.23 mg/kg,土壤pH值為6.67);水為去離子超純水;其余試劑均為分析純。

1.2 生物炭基肥顆粒制備

將尿素、氯化鉀肥先經(jīng)粉碎機(jī)粉碎,然后將尿素、氯化鉀、生物炭和膨潤(rùn)土粘結(jié)劑分別過(guò)0.38 mm標(biāo)準(zhǔn)篩網(wǎng),置于45 ℃恒溫電熱鼓風(fēng)干燥箱中烘制24 h。將尿素、氯化鉀、生物炭、膨潤(rùn)土、去離子水分別按表1中方案混合均勻后,經(jīng)平模擠壓成型裝置制成長(zhǎng)度為6~10 mm、直徑為4 mm的柱狀生物炭基肥顆粒,由3.35 mm孔徑標(biāo)準(zhǔn)篩網(wǎng)篩除粉末及小顆粒后,于干燥箱中按尿素生物炭基肥45 ℃、氯化鉀肥105 ℃烘制6 h獲得成品顆粒。試驗(yàn)所用原料和成型顆粒如圖1所示。

圖1 原料及肥料成品

表1 生物炭基肥的單因素試驗(yàn)配方設(shè)計(jì)方案

1.3 生物炭基肥理化特性測(cè)定

1.3.1 生物炭基肥力學(xué)特性測(cè)定

于每組生物炭基肥中隨機(jī)抽取若干顆粒,制備長(zhǎng)(6±0.05)mm兩端平整的樣本,并在鼓風(fēng)干燥箱中烘干至恒質(zhì)量。每次取1個(gè)生物炭基肥顆粒垂直立于質(zhì)構(gòu)儀(美國(guó)FTC公司,TMS-Pro型)測(cè)試平臺(tái)上,以壓縮速度10 mm/min,壓縮距離3 mm進(jìn)行抗壓特性試驗(yàn),獲得樣品壓縮位移-受力曲線圖,以受力最大值為此顆??箟簭?qiáng)度(N),重復(fù)10次取平均值。

1.3.2 生物炭基肥傅里葉變換紅外光譜分析

按1:100質(zhì)量比稱(chēng)取生物炭基肥和干燥溴化鉀置于研缽,研磨均勻后取100 mg壓片,使用傅里葉變換紅外光譜分析儀(美國(guó)Thermo Fisher Scientific公司,Nicolet iS50 FT-IR型)在4 000~400 cm-1波數(shù)范圍內(nèi)掃描,測(cè)定試樣的紅外光譜。

1.3.3 生物炭基肥電子顯微鏡掃描分析

每組生物炭基肥中隨機(jī)抽取5顆顆粒,表面噴金后使用掃描電子顯微鏡(荷蘭FEI公司,Nova NanoSEM 450型),對(duì)成型生物炭基肥外表面進(jìn)行觀察,獲得掃描圖片。

1.4 生物炭基肥緩釋特性測(cè)定

1.4.1 生物炭基肥淋出液制備

土柱淋溶裝置如圖2所示,將550 mL同一形狀的礦泉水瓶去掉底蓋改制成淋溶管主體,瓶底直徑6.0 cm,瓶高22.0 cm,瓶口作為淋溶出口。用打孔器在每個(gè)瓶蓋上打3個(gè)均勻分布的小孔,在瓶口淋溶出口處加少量棉花并附上1層0.08 mm孔徑濾布。設(shè)置土柱高度 15 cm,壓實(shí),均勻鋪滿 5 g(準(zhǔn)確至0.1 g)成品顆粒,對(duì)照組為對(duì)應(yīng)速效肥料5 g,再覆蓋5 cm厚度的土層。試驗(yàn)第1天加入蒸餾水250 mL,之后每天緩慢加入加蒸餾水100 mL,下方用250 mL三角瓶收集淋出液,測(cè)量并記錄其體積,質(zhì)量,試驗(yàn)周期為10 d,室溫為25 ℃。由于供試土壤為風(fēng)干土,土壤潤(rùn)濕需要一定量的水分,所以第1天加入的水分較多,從流下第1滴淋出液起開(kāi)始記時(shí)。將收集到的液體放入裝液瓶中編號(hào)、保存。

圖2 土柱淋溶裝置

1.4.2 生物炭基肥養(yǎng)分淋出率的測(cè)定

氯化鉀生物炭基肥淋出液中K+濃度用原子吸收分光光度計(jì)進(jìn)行測(cè)量(蘇州島津儀器有限公司,AA-6 880型),尿素生物炭基肥料淋出液經(jīng)過(guò)全自動(dòng)消解萃取儀(美國(guó)CEM公司,CEM MARS 6型)消解稀釋后,用全自動(dòng)化學(xué)分析儀(意大利AMS公司,SmartChem 200型)測(cè)量出其中總氮(total nitrogen,TN)的濃度,每個(gè)樣品做3次平行試驗(yàn)。養(yǎng)分單次淋出質(zhì)量為單次養(yǎng)分淋出濃度與淋出液體積的乘積,如式(1)所示:

式中m為養(yǎng)分單次淋出質(zhì)量,g;為對(duì)應(yīng)養(yǎng)分測(cè)量濃度,mg/L;為對(duì)應(yīng)淋出液稀釋倍數(shù);為對(duì)應(yīng)淋出液體積,mL。

養(yǎng)分單次淋出率為淋出的養(yǎng)分質(zhì)量占生物炭基肥中的百分比,如式(2)所示:

式中m為5 g該配比肥料中對(duì)應(yīng)養(yǎng)分總質(zhì)量,g。

1.4.3 生物炭基肥電導(dǎo)率及pH值測(cè)定

試驗(yàn)前電導(dǎo)率儀和pH計(jì)校準(zhǔn),待生物炭基肥淋出液樣品溫度穩(wěn)定至室溫后,測(cè)定溶液電導(dǎo)率和pH值。

1.5 統(tǒng)計(jì)方法

使用Origin9.1軟件作圖;采用Excel2010計(jì)算樣本平均值、標(biāo)準(zhǔn)偏差和相對(duì)標(biāo)準(zhǔn)偏差;利用SPSS23.0軟件進(jìn)行顯著性分析。

2 結(jié)果與分析

2.1 生物炭基肥顆粒力學(xué)特性分析

不同粘結(jié)劑質(zhì)量分?jǐn)?shù)和炭肥比的生物炭基肥顆粒平均抗壓強(qiáng)度及相對(duì)標(biāo)準(zhǔn)偏差分別如表2所示。粘結(jié)劑質(zhì)量分?jǐn)?shù)和炭肥比對(duì)氯化鉀和尿素生物炭基肥的平均抗壓強(qiáng)度具有顯著性差異(<0.05)。隨粘結(jié)劑添加量的增加,氯化鉀生物炭基肥顆粒的平均抗壓強(qiáng)度由粘結(jié)劑添加量5%時(shí)的216.60 N上升至20%的286.78 N,且組內(nèi)抗壓強(qiáng)度相對(duì)標(biāo)準(zhǔn)偏差隨粘結(jié)劑質(zhì)量分?jǐn)?shù)增大而減小。尿素生物炭基肥顆粒的平均抗壓強(qiáng)度由粘結(jié)劑添加量為5%時(shí)的222.71 N逐漸增加到20%時(shí)的281.27 N,組內(nèi)抗壓強(qiáng)度相對(duì)標(biāo)準(zhǔn)偏差不大,力學(xué)穩(wěn)定性較好。這是因?yàn)殡S著粘結(jié)劑增多,粘結(jié)劑在顆粒內(nèi)部分布更均勻, 造粒時(shí)經(jīng)水潤(rùn)濕作用后粘結(jié)作用使整體物料充分接觸, 顆粒間機(jī)械嚙合力和物理化學(xué)力增大,顆粒內(nèi)部結(jié)合更加緊密[26],從而使生物炭基肥顆粒平均抗壓強(qiáng)度逐漸增大。

表2 不同粘結(jié)劑質(zhì)量分?jǐn)?shù)和炭肥比的生物炭基肥顆粒平均抗壓強(qiáng)度及其相對(duì)標(biāo)準(zhǔn)偏差

注:結(jié)果表示為“平均值±標(biāo)準(zhǔn)偏差”,不同小寫(xiě)字母表示抗壓強(qiáng)度的顯著性(<0.05)。

Note: Results are expressed as “mean ± standard deviation”. Different letters indicate significant compressive strength (<0.05).

隨炭肥比的增加,氯化鉀生物炭基肥的平均抗壓強(qiáng)度平均值整體呈先下降后上升趨勢(shì),炭肥比為1:6和1:3時(shí)分別為271.25和282.42 N,但炭肥比為1:3時(shí)平均抗壓強(qiáng)度相對(duì)標(biāo)準(zhǔn)偏差最大,尿素生物炭基肥顆??箟簭?qiáng)度平均值減小,由炭肥比為1:6的267.84 N下降到1:3的248.56 N。這是因?yàn)槁然涱w粒質(zhì)地較硬而尿素顆粒較軟,且兩者在水分作用下易潮解,表面溶解結(jié)晶產(chǎn)生結(jié)塊現(xiàn)象,在壓力作用下氯化鉀會(huì)形成含孔隙的結(jié)合體,尿素則變形貼合形成較密實(shí)的整體,同時(shí)生物炭沒(méi)有黏性[27],生物炭質(zhì)量分?jǐn)?shù)增多,生物炭基肥顆粒內(nèi)部氯化鉀或尿素顆粒間接觸面積減少,阻礙結(jié)晶結(jié)塊,使抗壓強(qiáng)度呈減小趨勢(shì)。但對(duì)于氯化鉀生物炭基肥,當(dāng)生物炭達(dá)到一定量,成型時(shí)會(huì)填充結(jié)合體內(nèi)部孔隙,可能使生物炭基肥顆粒平均抗壓強(qiáng)度提升。平模擠壓成型的生物炭基肥平均抗壓強(qiáng)度均超過(guò)了200 N,遠(yuǎn)大于常用的圓盤(pán)造粒成型肥料強(qiáng)度[27-28],均達(dá)抗壓強(qiáng)度大于10 N的市場(chǎng)要求。從力學(xué)性能上考慮,生物炭基肥顆粒在粘結(jié)劑質(zhì)量分?jǐn)?shù)20%、炭肥比1:4或粘結(jié)劑質(zhì)量分?jǐn)?shù)10%、炭肥比1:6時(shí)肥料顆粒強(qiáng)度更高,便于保存運(yùn)輸。

2.2 生物炭基肥傅里葉變換紅外光譜分析

不同粘結(jié)劑質(zhì)量分?jǐn)?shù)和炭肥比的生物炭基肥紅外光譜(Fourier transform infrared spectrum,F(xiàn)TIR)如圖3所示。氯化鉀生物炭基肥紅外光譜幾個(gè)吸收峰位置主要存在于3 400、1 100和500 cm-1附近,在3 400 cm-1處的寬吸收峰可能是仲胺的-NH伸縮振動(dòng),也可能是醇的-OH伸縮振動(dòng)。1 100 cm-1處的特征吸收峰可能是C-H和C-N同時(shí)伸縮振動(dòng)。Si-O-Si的伸縮振動(dòng)產(chǎn)生了500 cm-1處的吸收峰[29],這是因?yàn)槁然浬锾炕手新然浲腹庑愿撸t外吸收峰主要由生物炭中官能團(tuán)產(chǎn)生,生物質(zhì)炭表面豐富的羥基、羧基和羰基等化學(xué)性官能團(tuán)則賦予了生物質(zhì)炭強(qiáng)大的吸附性能[7]。尿素生物炭基肥相比于氯化鉀生物炭基肥,在3 400、1 615、1 465和1 154 cm-1附近分別多了1個(gè)吸收峰,3 400 cm-1處的特征吸收雙峰可能是尿素中伯胺的-NH2伸縮振動(dòng)雙峰與生物炭中-NH、-OH伸縮振動(dòng)吸收峰重疊。1 615 cm?1處的吸收峰可能是由-NH2的彎曲振動(dòng)引起的,1 465 cm-1處的吸收峰可能為N-C-N的剪切振動(dòng),1 154 cm-1處的吸收峰是由C-N的伸縮振動(dòng)引起的[30],這是因?yàn)槟蛩厣锾炕手心蛩睾行碌墓倌軋F(tuán),產(chǎn)生了新的吸收峰。

2.3 生物炭基肥電子顯微鏡掃描分析

不同粘結(jié)劑質(zhì)量分?jǐn)?shù)和炭肥比的生物炭基肥的掃描電鏡如圖4所示。粘結(jié)劑質(zhì)量分?jǐn)?shù)為5%時(shí),氯化鉀生物炭基肥和尿素生物炭基肥都有明顯的氯化鉀或尿素顆粒,其表面顆粒疏松粗糙,孔隙大且多、結(jié)構(gòu)疏松。質(zhì)量分?jǐn)?shù)10%和15%時(shí),生物炭基肥顆粒中的氯化鉀和尿素表面部分被膨潤(rùn)土覆蓋,孔隙變小,數(shù)量減少,結(jié)構(gòu)較緊密,質(zhì)量分?jǐn)?shù)20%時(shí),表面已無(wú)明顯氯化鉀或尿素顆粒,生物炭基肥表面均勻平整,孔隙最少,微粒之間最緊密。這可能是因?yàn)榉柿项w粒成型時(shí),粘結(jié)劑在壓力作用下,其粘接作用使原料中各組分粘聚在一起,粘結(jié)劑質(zhì)量分?jǐn)?shù)越高,聚合效果越好,肥料顆粒內(nèi)部孔隙越少,結(jié)構(gòu)更緊密、均勻,不容易破裂,平均抗壓強(qiáng)度越高、相對(duì)標(biāo)準(zhǔn)偏差越小,也更有利于肥料的緩釋作用。

圖3 不同粘結(jié)劑質(zhì)量分?jǐn)?shù)和炭肥比生物炭基肥紅外光譜

圖4 不同粘結(jié)劑質(zhì)量分?jǐn)?shù)和炭肥比生物炭基肥的掃描電鏡

氯化鉀生物炭基肥炭肥比1:6時(shí),生物炭基肥顆粒表面團(tuán)聚成集團(tuán)并互相接觸結(jié)合,形成一個(gè)整體。炭肥比1:5時(shí)也呈團(tuán)聚結(jié)合狀,相比于1:6,其孔隙更深,結(jié)構(gòu)更疏松。炭肥比1:4時(shí),氯化鉀集團(tuán)變小、數(shù)量減少,其余成分填充集團(tuán)間孔隙,部分氯化鉀料顆粒鑲嵌在表面,使其表面粗糙。炭肥比1:3時(shí),肥料顆粒表面孔隙最少,結(jié)構(gòu)均勻,基本沒(méi)有團(tuán)聚現(xiàn)象。這是因?yàn)樵现新然涱w粒表面會(huì)在水分作用下潮解,當(dāng)肥料顆粒成型烘干后,氯化鉀顆粒間會(huì)橋接重結(jié)晶,形成團(tuán)聚集團(tuán),而生物炭顆粒填充其間,會(huì)降低氯化鉀顆粒間的接觸面積,阻礙其團(tuán)聚,使集團(tuán)變小或消失。尿素生物炭基肥炭肥比1:6時(shí),肥料顆粒表面平整,基本沒(méi)有孔隙,結(jié)構(gòu)均勻。1:4和1:3時(shí)生物炭基肥顆粒表面孔隙密布、粗糙。因?yàn)殡S炭肥比增加,尿素生物炭基肥中尿素顆粒質(zhì)量分?jǐn)?shù)降低,使顆粒間接觸面積減小,橋接表面孔隙變多,結(jié)構(gòu)變得疏松,其力學(xué)特性會(huì)大大降低。

2.4 生物炭基肥單因素養(yǎng)分淋溶試驗(yàn)結(jié)果分析

不同粘結(jié)劑質(zhì)量分?jǐn)?shù)和炭肥比生物炭基肥養(yǎng)分淋出率圖5所示。前3天為生物炭基肥養(yǎng)分主要釋放期,除對(duì)照組外,各組均在第2天淋溶時(shí)出現(xiàn)養(yǎng)分釋放率最高峰,這是因?yàn)樵诹苋芮?天,水分逐漸浸入生物炭基肥顆粒內(nèi)部,使其逐漸溶解破裂并大量釋放養(yǎng)分,而隨著破裂程度的增加和養(yǎng)分不斷釋放,養(yǎng)分釋放率在前3天較高且呈先增后減趨勢(shì)。氯化鉀生物炭基肥對(duì)照組前3天釋放了75.80%的鉀素,尿素生物炭基肥對(duì)照組前3天釋放了70.06%的氮素。粘結(jié)劑質(zhì)量分?jǐn)?shù)分別為5%、10%、15%、20%時(shí),氯化鉀生物炭基肥中前3天鉀素釋放率分別為65.55%、54.11%、50.30%、45.53%(圖5a),尿素生物炭基肥前3天氮素釋放率分別為59.33%、42.02%、37.48%、36.87%(圖5b)。粘結(jié)劑質(zhì)量分?jǐn)?shù)越高,炭基顆粒緩釋效果越好,原因可能是粘結(jié)劑質(zhì)量分?jǐn)?shù)的增加使得生物炭基肥的結(jié)構(gòu)更加緊密,養(yǎng)分元素的運(yùn)動(dòng)受到阻力限制,所以移動(dòng)到顆粒表面所需時(shí)間越長(zhǎng),但過(guò)多粘結(jié)劑添加會(huì)使肥料和生物炭比例降低,也會(huì)使生物炭基肥的有效成分降低,應(yīng)用時(shí)應(yīng)該綜合考慮。炭肥比分別為1:6、1:5、1:4、1:3時(shí),氯化鉀生物炭基肥中前3天鉀素釋放率分別為64.45%、60.85%、54.11%、42.06%(圖5c),尿素生物炭基肥對(duì)照組中前3天氮素釋放率分別為50.10%、49.09%、42.02%、40.32%(圖5d)。炭肥比越高,生物炭基肥顆粒緩釋效果越好,原因是生物炭中含有大量孔隙,比表面積巨大,官能團(tuán)總類(lèi)豐富,對(duì)肥料中的陰陽(yáng)離子和分子有很強(qiáng)的吸附作用,生物炭質(zhì)量分?jǐn)?shù)越高肥料緩釋效果越好[31-33]。從緩釋性能上考慮,生物炭基肥顆粒在粘結(jié)劑質(zhì)量分?jǐn)?shù)20%和炭肥比1:3時(shí)緩釋效果更好,但同時(shí)由于粘結(jié)劑質(zhì)量分?jǐn)?shù)高或生物炭占比增高,會(huì)使肥料中營(yíng)養(yǎng)成分含量降低,2種配方炭基肥理論總養(yǎng)分含量只能達(dá)到國(guó)家標(biāo)準(zhǔn)中的中等濃度要求。本文采用的平模擠壓成型法比圓盤(pán)造粒成型生產(chǎn)的肥料緩釋效果好,且加工藝簡(jiǎn)單、原料易得、成本低、環(huán)境友好,是一種較為理想的生產(chǎn)方法[22,27,31]。

注:對(duì)照組為添加5 g氯化鉀或尿素分析純,下同。

2.5 生物炭基肥電導(dǎo)率及pH值分析

各組生物炭基肥淋出液電導(dǎo)率及pH值如圖6所示。隨著淋溶天數(shù)的增加,各配比氯化鉀生物炭基肥的第1、2天淋出液電導(dǎo)率均遠(yuǎn)高于其他天數(shù),第2天淋出液電導(dǎo)率均達(dá)到峰值,第4天淋溶后基本達(dá)到穩(wěn)定,與圖5中鉀素淋出率趨勢(shì)相吻合。而pH值均為初期上升,第3天后基本達(dá)到穩(wěn)定,原因是氯化鉀是強(qiáng)電解質(zhì),濃度越高電導(dǎo)率越大,但其為中性化合物,濃度對(duì)pH值幾乎沒(méi)有影響。整體而言,電導(dǎo)率可作為氯化鉀生物炭基肥鉀素淋出率趨勢(shì)參考,而pH值變化對(duì)氯化鉀生物炭基肥養(yǎng)分淋出率無(wú)參考意義。

各配比尿素生物炭基肥的第2天淋出液pH值均達(dá)到峰值,部分組第4天淋出液pH值出現(xiàn)小峰值,而電導(dǎo)率在第3、4天出現(xiàn)峰值,但均未超過(guò)0.8 mS/cm,因?yàn)槟蛩厥怯袡C(jī)物,對(duì)電導(dǎo)率幾乎沒(méi)有影響。施用尿素可明顯提高土壤pH值,同時(shí)促進(jìn)脲酶活性,加速尿素水解,且在施肥前期脲酶活性逐漸提高[34],所以第3、4天的淋出液尿素濃度雖沒(méi)第1、2天高,但脲酶活性高,水解產(chǎn)生的銨根離子提高了電導(dǎo)率和pH值。整體而言,尿素生物炭基肥鉀素淋出液的pH值變化趨勢(shì)與圖5中氮素釋放率趨勢(shì)相近,而電導(dǎo)率對(duì)其氮素釋放率趨勢(shì)無(wú)參考意義。

2.6 生物炭基肥生產(chǎn)經(jīng)濟(jì)性評(píng)價(jià)

根據(jù)市場(chǎng)調(diào)研,氯化鉀肥價(jià)格為2 100~2 500元/t,尿素肥為1 800~2 000元/t,生物炭1 800~2 400元/t,鈉基膨潤(rùn)土1 500~1 900元/t,取中間值作為原料價(jià)格,對(duì)力學(xué)特性及緩釋特性好的配方進(jìn)行成型成本計(jì)算,即粘結(jié)劑質(zhì)量分?jǐn)?shù)20%、炭肥比1:4(配方1);粘結(jié)劑含量10%、炭肥比1:3(配方2);粘結(jié)劑含量10%、炭肥比1:6(配方3),分別生產(chǎn)1 t氯化鉀柱狀生物炭基肥和尿素生物炭基肥顆粒,其顆粒成型各項(xiàng)成本如表3所示。

圖6 各組生物炭基肥淋出液電導(dǎo)率及pH值

表3 顆粒成型各項(xiàng)成本

注:配方1為粘結(jié)劑質(zhì)量分?jǐn)?shù)20%、炭肥比1:4;配方2為粘結(jié)劑質(zhì)量分?jǐn)?shù)10%、炭肥比1:3;配方3為粘結(jié)劑質(zhì)量分?jǐn)?shù)10%、炭肥比1:6。

Note: Formulation 1 is 20% binder mass fraction and 1:4 biochar fertilizer ratio. Formulation 2 is 10% binder mass and 1:3 biochar fertilizer ratio. Formulation 3 is 10% binder mass fraction and 1:6 biochar fertilizer ratio.

由表3可知,基于3種配方,由于氯化鉀單價(jià)較高,1 t氯化鉀炭基肥的成型成本低于單一的農(nóng)用氯化鉀肥,尿素價(jià)格較低,尿素炭基肥的成型成本高于單一的尿素肥,但價(jià)格差距不大。粘結(jié)劑質(zhì)量分?jǐn)?shù)為20%時(shí),2種生物炭基肥的總成本最低,分別為2 081.66和1 913.14元/t,這是因?yàn)樽鳛檎辰Y(jié)劑的鈉基膨潤(rùn)土價(jià)格較低,含量越高成本越低,但整體而言同種類(lèi)生物炭基肥不同配方間成型成本相差不大,且均低于市場(chǎng)中炭基肥及緩釋肥價(jià)格。綜合炭基肥顆粒成型成本、力學(xué)特性及理化特性考慮,選用粘結(jié)劑質(zhì)量分?jǐn)?shù)20%、炭肥比1:4或粘結(jié)劑質(zhì)量分?jǐn)?shù)10%、炭肥比1:3的成型配方時(shí),肥料生產(chǎn)成本低于市場(chǎng)價(jià)格、力學(xué)特性較優(yōu)、緩釋性能最好。

3 結(jié) 論

炭肥比1:4條件下,膨潤(rùn)土粘結(jié)劑質(zhì)量分?jǐn)?shù)增加,氯化鉀和尿素生物炭基肥顆粒的微觀表面孔隙減少,力學(xué)和緩釋性能提高。粘結(jié)劑質(zhì)量分?jǐn)?shù)20%時(shí),2種生物炭基肥力學(xué)和緩釋性能最好,平均抗壓強(qiáng)度分別為最大值286.78、281.27 N,前3天營(yíng)養(yǎng)元素淋出率分別為最小值45.53%、36.87%。膨潤(rùn)土粘結(jié)劑質(zhì)量分?jǐn)?shù)10%條件下,炭肥比增加,生物炭基肥顆粒的緩釋性能提高,炭肥比1:3時(shí),2種生物炭基肥緩釋性能最好,前3天營(yíng)養(yǎng)元素淋出率分別42.06%和40.32%。氯化鉀生物炭基肥表面孔隙量先增后減,平均抗壓強(qiáng)度在1:6和1:3時(shí)分別為271.25、282.42 N,力學(xué)特性較好,尿素生物炭基肥表面孔隙量逐漸變多,1:6時(shí)平均抗壓強(qiáng)度為最大值267.84 N。

綜合理化特性和緩釋特性試驗(yàn)結(jié)果,氯化鉀生物炭基肥淋出液的電導(dǎo)率及尿素生物炭基肥淋出液的pH值變化規(guī)律可作為各自養(yǎng)分淋出率趨勢(shì)參考。本文中氯化鉀生物炭基肥和尿素生物炭基肥顆粒的平均抗壓強(qiáng)度均高于200 N,均達(dá)到市場(chǎng)要求,且成本低于市場(chǎng)中炭基肥及緩釋肥價(jià)格。綜合炭基肥顆粒成型成本、力學(xué)特性及理化特性考慮,選用膨潤(rùn)土粘結(jié)劑質(zhì)量分?jǐn)?shù)20%、炭肥比1:4或膨潤(rùn)土粘結(jié)劑質(zhì)量分?jǐn)?shù)10%、炭肥比1:3的成型配方時(shí),肥料成型成本較低,力學(xué)特性較優(yōu),緩釋特性最好,總養(yǎng)分量達(dá)到GB/T 23348-2009中的中濃度標(biāo)準(zhǔn)。

[1] 朱建華,李俊良,李曉林,等.幾種復(fù)合肥施用對(duì)蔬菜保護(hù)地土壤環(huán)境質(zhì)量的影響[J]. 農(nóng)業(yè)環(huán)境保護(hù),2002,21(1):5-8.

Zhu Jianhua, Li Junliang, Li Xiaolin, et al. Effects of compound fertilizers utilized on soil environmental quality inprotectedvegetable field[J]. Journal of Agro-Environment Science, 2002, 21(1): 5-8.(in Chinese with English abstract)

[2] 胡樹(shù)文. 緩/控釋肥料[M]. 北京:化學(xué)工業(yè)出版社,2014.

[3] 張千豐,王光華. 生物炭理化性質(zhì)及對(duì)土壤改良效果的研究進(jìn)展[J]. 土壤與作物,2012,1(4):219-226.

Zhang Qianfeng, Wang Guanghua.Research progress of physiochemical properties of biochar and Its effects as soil amendments[J]. Soil and Crop, 2012, 1(4): 219-226. (in Chinese with English abstract)

[4] 勾芒芒,屈忠義,王凡,等. 生物炭施用對(duì)農(nóng)業(yè)生產(chǎn)與環(huán)境效應(yīng)影響研究進(jìn)展分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(7):1-12.

Gou Mangmang, Qu Zhongyi, Wang Fan, et al. Progress in research on biochar affecting soil-water environment and carbon sequestration-mitigating emissions in agricultural fields[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(7): 1-12. (in Chinese with English abstract)

[5] 周強(qiáng),黃代寬,余浪,等. 熱解溫度和時(shí)間對(duì)生物炭pH值的影響[J]. 地球環(huán)境學(xué)報(bào),2015,6(3):195-200.

Zhou Qiang, Huang Daikuan, Yu Lang, et al. Effect of pyrolysis temperature, time and biochar mass ratio on PH value determination for four biochar solutions[J].Journal of Earth Environment, 2015, 6(3): 195-200. (in Chinese with English abstract)

[6] 李艷梅,張興昌,廖上強(qiáng),等. 生物炭基肥增效技術(shù)與制備工藝研究進(jìn)展分析[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(10):1-14.

Li Yanmei,Zhang Xingchang,Liao Shangqiang, et al. Research progress on synergy technologies of carbon-based fertilizer and its application[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(10): 1-14. (in Chinese with English abstract)

[7] 張?chǎng)?,耿增超,何緒生,等. 生物質(zhì)炭基氮肥中制備工藝與特性分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(3):129-133.

Zhang Wen, Geng Zengchao, He Xusheng, et al.Pilot preparation technology and properties of new biochar-based nitrogenous fertilizers[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(3): 129-133. (in Chinese with English abstract)

[8] Glaser B, Lehmann J, Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal: A review[J]. Biology & Fertility of Soils, 2002, 35(4): 219-230.

[9] Warnock D D, Lehmann J, Kuyper T W, et al. Mycorrhizal responses to biochar in soil-concepts and mechanisms. Plant Soil[J]. Plant & Soil, 2007, 300(12): 9-20.

[10] Grutzmacher P, Puga A P, Bibar M P S, et al. Carbon stability and mitigation of fertilizer induced N2O emissions in soil amended with biochar[J]. Science of the Total Environment, 2018, 625: 1459-1466.

[11] 劉峰. 生物炭顆粒肥擠出滾圓成型裝備與試驗(yàn)研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2016.

Liu Feng. Study on Extrusion-spheronization Molding Equipment and Experiments for Biochar Granular Fertilizer[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese with English abstract)

[12] 易從圣,杜衍紅,宗同強(qiáng),等. 生物炭基復(fù)混肥成型及力學(xué)特性研究[J]. 廣州化工,2018,46(13):58-60.

Yi Congsheng, Du Yanhong, Zong Tongqiang, et al.Study on shaping and mechanics property of compound fertilizers based on biochar[J]. Guangzhou Chemical Industry, 2018, 46(13): 58-60. (in Chinese with English abstract)

[13] 原魯明. 炭基肥成型設(shè)備的設(shè)計(jì)與試驗(yàn)研究[D]. 青島:青島農(nóng)業(yè)大學(xué),2016.

Yuan Luming. Design and Experimental Research on Biochar-based Fertilizer Granulation Equipment[D]. Qingdao: Qingdao Agricultural University, 2016. (in Chinese with English abstract)

[14] 梁曉琳,鐘茜,高旭,等.復(fù)合微生物肥料圓盤(pán)造粒工藝研究[J]. 土壤通報(bào),2016,47(3):695-700.

Liang Xiaolin, Zhong Xi, Gao Xu, et al. Research on the pan granulation technique for compound microbial fertilizer [J].Chinese Journal of Soil Science, 2016, 47(3): 695-700. (in Chinese with English abstract)

[15] 張喜瑞,王俊霖,李粵,等.香蕉秸稈顆粒燃料固體成型機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(11):22-26.

Zhang Xirui, Wang Junlin, Li Yue, et al. Design and experiment on biomass pellet densifying machine for banana stem[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2012, 28(11): 22-26. (in Chinese with English abstract)

[16] 姚宗路,趙立欣,田宜水,等. 立式環(huán)模生物質(zhì)成型機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(11):139-143.

Yao Zonglu, Zhao Lixin, Tian Yishui, et al. Study on biomass briquetting machines with vertical ring die[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(11): 139-143. (in Chinese with English abstract)

[17] 姚宗路,張妍,趙立欣,等. 立式雙層孔環(huán)模生物質(zhì)壓塊機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016(增刊1):8-12.

Yao Zonglu, Zhang Yan, Zhao Lixin, et al. Design and experiment of biomass briquetting machine with vertical double circular mould[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016(Suppl 1): 8-12. (in Chinese with English abstract)

[18] 陳忠加,俞國(guó)勝,王青宇,等. 柱塞式平模生物質(zhì)成型機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(19):31-38.

Chen Zhongjia, Yu Guosheng, Wang Qingyu, et al. Design and experiment of flat die pellet mill with plunger[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(19): 31-38. (in Chinese with English abstract)

[19] 馬謙,蔣恩臣,王明峰,等. 生物質(zhì)炭基緩釋肥的成型特性研究[J]. 農(nóng)機(jī)化研究,2015,37(4):242-246.

Ma Qian, Jiang Enchen, Wang Mingfeng, et al.Molding characteristics study of carbon-based diomass release fertilizer[J]. Journal of Agricultural Mechanization Research, 2015, 37(4): 242-246. (in Chinese with English abstract)

[20] 魏春輝,任奕林,苑曉辰,等. 柱狀竹炭基肥擠壓造粒成型工藝的研究[J]. 安徽農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,44(5):947-952.

Wei Chunhui, Ren Yilin, Yuan Xiaochen, et al.Research on extrusion granulation forming process of columnar bamboo charcoal based fertilizer[J]. Journal of Anhui Agricultural University, 2017, 44(5): 947-952. (in Chinese with English abstract)

[21] 楊凱,王家寶,王莉,等. 炭基復(fù)混肥氮鉀緩釋特性研究[J].熱帶作物學(xué)報(bào),2018,39(4):641-645.

Yang Kai, Wang Jiabao, Wang Li, et al. Slow-release characteristics of nitrogen and potassium of a carbon-based fertilizer[J].Chinese Journal of Tropical Crops, 2018, 39(4): 641-645. (in Chinese with English abstract)

[22] 王劍,張硯銘,鄒洪濤,等. 生物質(zhì)炭包裹緩釋肥料的制備及養(yǎng)分釋放特性[J]. 土壤,2013,45(1):186-189.

Wang Jian, Zhang Yanming, Zou Hongtao, et al. Preparation and nutrient release characteristics of coated slow-release fertilizer with biochar[J].Soils, 2013, 45(1): 186-189. (in Chinese with English abstract)

[23] Lilis H, Joni A. Slow release urea fertilizer synthesized through recrystallization of urea incorporating natural bentonite using various binders[J]. Environmental Technology & Innovation, 2019, 13: 113-121.

[24] Chandra WP, Andi R, Eva PS, et al. Slow release fertilizer preparation from sugar cane industrial waste[J]. Environmental Technology & Innovation, 2018, 10: 275-280.

[25] 中華人民共和國(guó)國(guó)家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局,中國(guó)國(guó)家標(biāo)準(zhǔn)化管理委員會(huì). GB/T 23348-2009 緩釋肥料[S]. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2009.

[26] 張金山,郭振坤,榮令坤,等. 鈉基膨潤(rùn)土粘結(jié)劑在粉煤成型中的研究[J]. 內(nèi)蒙古科技大學(xué)學(xué)報(bào),2016,35(3):252-254,268.

Zhang Jinshan, Guo Zhenkun, Rong Lingkun, et al.Research on sodium bentonite binder in powder coal forming[J].Journal of Inner Mongolia University of Science and Technology, 2016, 35(3): 252-254, 268. (in Chinese with English abstract)

[27] 張偉. 水稻秸稈炭基緩釋肥的制備及性能研究[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2014.

Zhang Wei. Study on Preparation and Properties of Fertilizer Based on Rice Straw Biochar[D]. Harbin: Northeast Agricultural University, 2014. (in Chinese with English abstract)

[28] 李彥富,許鵬翔,李國(guó)學(xué),等.淀粉基粘結(jié)劑在垃圾堆肥加工顆粒有機(jī)復(fù)混肥中的應(yīng)用研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2008(2):778-782.

Li Yanfu, Xu Pengxian, Li Guoxue, et al.Application of a new type starch-based granulation adhesive on granular slow-release fertilizers made from MSW compost[J].Journal of Agro-Environment Science, 2008(2): 778-782. (in Chinese with English abstract)

[29] Ye Zhixiong, Zhang Limei, Huang Qiaoyun, et al. Development of a carbon-based slow release fertilizer treated by bio-oil coating and study on its feedback effect on farmland application[J]. Journal of Cleaner Production, 2019, 239: 1-14.

[30] 陸建華. 秸稈基炭/高吸水樹(shù)脂緩釋尿素的制備及緩釋性能研究[J].廣東化工,2018,45(12):287-289.

Lu Jianhua. Preparation and sustained-release properties of straw-based carbon/high water-absorbing resin sustained-release urea[J]. Guangdong Chemical Industry, 2018, 45(12): 287-289. (in Chinese with English abstract)

[31] 呂娟,任永志,王明峰,等.淀粉膠生物質(zhì)炭基氮肥制備及其緩釋特性分析. 農(nóng)機(jī)化研究,2019,41(6):175-180.

Lü Juan, Ren Yongzhi, Wang Mingfeng, et al.Biochar based nitrogen fertilizer preparation with starch as adhesive and Its release rroperty analysis[J]. Journal of Agricultural Mechanization Research, 2019, 41(6): 175-180. (in Chinese with English abstract)

[32] González M E, Cea M, Medina J, et al. Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material[J]. Science of The Total Environment, 2015, 505: 446-453.

[33] 陳劍秋. 幾種新型緩控釋肥工藝及養(yǎng)分釋放特征研究[D]. 泰安:山東農(nóng)業(yè)大學(xué),2012.

Chen Jianqiu. Study on Technology and Nutrient Release Characteristics of New Slow/Controlled Release Fertilizer[D]. Taian: Shandong Agricultural University, 2012. (in Chinese with English abstract)

[34] 閔偉,侯振安,梁永超,等. 土壤鹽度和施氮量對(duì)灰漠土尿素N 轉(zhuǎn)化的影響[J]. 土壤通報(bào),2012,43(6):1372-1379.

Min Wei, Hou Zhen’an, Liang Yongchao, et al. Effects of soilsalinity level and nitrogen rate on urea-N transformation in greydesert soil[J]. Chinese Journal of Soil Science, 2012, 43(6): 1372-1379. (in Chinese with English abstract)

Effects of biochar fertilizer ratio and bentonite binder on physicochemical properties and slow release properties of biochar fertilizer particles

Niu Zhiyou1,2, Liu Ming1, Niu Wenjuan1,2, Shao Kaiyi1, Geng Jie1, Tang Zhen1, Huang Jinzhi1, Zhou Kaiqiang1

(1.,430070,;2.-,,430070,)

The blend ratio of biochar and fast-release fertilizer (urea and potassium chloride, respectively) and the content of bentonite binder may influence the physicochemical and slow-release properties of biochar-based fertilizers particles. Experiments were carried out under 2 conditions: 1) biochar fertilizer ratio of 1:4, bentonite binder mass ratio of 5%, 10 %, 15% and 20%, and 2) bentonite binder mass ratio of 10%, biochar fertilizer ratio of 1:6, 1:5, 1:4 and 1:3. Based on corn straw biochar, cylindrical biochar based fertilizer particles with urea and potassium chloride were prepared by flat mold extrusion device. Their mechanical properties, surface functional groups, surface topography, soil column leaching properties, pH value and conductivity of biochar-based fertilizers were analyzed. The results showed that the average compressive strength of biochar-based particles urea and potassium chloride were higher than 200 N, greater than that prepared by pan granulation technique. The nutrient leaching rates in the first 3 days were lower than that of pure urea and potassium chloride. It meant that they had good mechanical properties and certain slow-release effect. The average compressive strength of biochar-based fertilizer particles of potassium chloride biochar-based fertilizer particles and urea biochar-based fertilizer for the 4 different contents of bentonite were significantly different (<0.05). The high content of bentonite binder and the low biochar and fertilizer content would lead to closer microstructure, more uniform composition distribution, and fewer surface pores. The mechanical properties and slow-release properties were better. When the mass fraction of bentonite binder was 20%, the average compressive strength of potassium chloride biochar-based fertilizer particles and urea biochar-based fertilizer were the maximum value of 286.78 and 281.27 N, respectively, the nutrient leaching rate of potassium chloride biochar-based fertilizer particles and urea biochar-based fertilizer in the first 3 days were the minimum value of 45.53% and 36.87%, respectively. The high biochar fertilizer ratios would result in the better slow-release performances. When the biochar fertilizer ratio was 1:3, the nutrient leaching rates of potassium chloride biochar-based fertilizer particles and urea biochar-based fertilizer particles in the first 3 days were the minimum values of 42.06% and 40.32%, respectively. The pores on the surface of potassium chloride biochar fertilizer particles increased first and then decreased. When the biochar fertilizer ratios were 1:6 and 1:3, the average compressive strength were 271.25 and 282.42 N, respectively, but the relative standard deviation of the average compressive strength at 1:3 was the maximum. The pores in the internal structure of urea biochar-based fertilizer particles gradually increased. When the biochar fertilizer ratio was 1:6, the average compressive strength was the minimum values of 267.84 N. At the same time, the electrical conductivity of potassium chloride biochar-based fertilizer leachate and the pH value of urea biochar-based fertilizer leachate were similar to their respective nutrient leaching rates in change rule, which could be used for prediction of their nutrient leachate trends. Thus, the formulation of biochar-based fertilizer with the mass fraction of bentonite binder and the ratio of carbon to fertilizer of 20% and 1:4 or 10% and 1:3 are suggested to meet medium fertilizer concentration.

urea; potassium chloride; biochar-based fertilizer; physicochemical properties; slow release characteristics

牛智有,劉 鳴,牛文娟,邵愷懌,耿 婕,唐 震,黃金芝,周凱強(qiáng). 炭肥比和膨潤(rùn)土粘結(jié)劑對(duì)炭基肥顆粒理化及緩釋特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(2):219-227.doi:10.11975/j.issn.1002-6819.2020.02.026 http://www.tcsae.org

Niu Zhiyou, Liu Ming, Niu Wenjuan, Shao Kaiyi, Geng Jie, Tang Zhen, Huang Jinzhi, Zhou Kaiqiang. Effects of biochar fertilizer ratio and bentonite binder on physicochemical properties and slow release properties of biochar fertilizer particles[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(2): 219-227. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.02.026 http://www.tcsae.org

2019-09-23

2019-12-10

公益性行業(yè)(農(nóng)業(yè))科研專(zhuān)項(xiàng)(No.201503135)

牛智有,教授,博生生導(dǎo)師,研究方向:現(xiàn)代農(nóng)業(yè)技術(shù)與裝備。Email:nzhy@mail.hzau.edu.cn

10.11975/j.issn.1002-6819.2020.02.026

S226.4

A

1002-6819(2020)-02-0219-09

猜你喜歡
粘結(jié)劑氯化鉀基肥
約旦APC與印度IPL簽署氯化鉀合同
不同基肥對(duì)濕加松生長(zhǎng)的影響*
桃樹(shù)施基肥“五字訣”
蠟基溫拌添加劑對(duì)橡膠粉改性瀝青性能影響研究
隧道復(fù)合式路面高粘改性乳化瀝青防水粘結(jié)劑開(kāi)發(fā)
石油瀝青(2019年3期)2019-07-16 08:48:20
中國(guó)化肥信息(2019年2期)2019-04-04 05:53:24
一次氯化鉀滾鍍鋅故障處理
一種型煤粘結(jié)劑及其制備方法
腐植酸(2016年1期)2016-12-16 08:28:50
氯化鉀市場(chǎng)成交寡淡
長(zhǎng)焰煤型煤復(fù)合粘結(jié)劑的研究
上虞市| 方山县| 沅江市| 龙里县| 高安市| 社会| 新乡县| 林甸县| 邢台市| 怀化市| 静宁县| 年辖:市辖区| 类乌齐县| 木兰县| 沂南县| 息烽县| 大方县| 惠水县| 株洲市| 邹城市| 盐城市| 嘉鱼县| 鸡西市| 治多县| 新龙县| 兴山县| 宁武县| 安康市| 西华县| 潼关县| 上杭县| 肃宁县| 岳池县| 香河县| 岳阳县| 龙胜| 嘉兴市| 绍兴市| 大同县| 英超| 兰坪|