章傳銀,馬 旭,章 磊,丁 劍
1. 中國測繪科學研究院,北京 100036; 2. 國家測繪產品質量檢驗測試中心,北京 100036
目前,大地水準面精度評估普遍采用實測GNSS水準數據,主要方法可歸納為兩類:一類通過統(tǒng)計GNSS水準高程異常與重力地面高程異常之間的差異,來評價重力大地水準面成果的質量[1-6];另一類是所謂的GNSS水準外部檢核方法,以未參與融合或外業(yè)實測的GNSS水準點為檢核點,通過比較檢核點實測高程異常與融合后的地面高程異常之間差異,來評估大地水準面成果的精度[7-8]。
先來分析第一類評估方法的合理性。重力地面高程異常,按全球積分確定或精化,中長波精度高,短波超短波精度低。GNSS水準點的正常高,按水準方法傳遞,誤差沿水準路線累積,導致GNSS水準高程異常的中長波誤差大。顯然,中長波誤差大的GNSS水準高程異常,無法有效評估中長波精度高的重力地面高程異常。
再分析GNSS水準外部檢核方法的有效性。由于檢核點正常高無可避免地要以參與融合的GNSS水準點起算(或誤差強相關),因此,檢核點高程異常與融合后的地面高程異常之差,只是檢核點與其距離最近GNSS水準點之間的高程異常差,所得精度指標,顯然不能代表實用地面高程異常精度。本文將采用距離等于GNSS水準點平均間距的兩點實用高程異常差的標準差(簡稱實用地面高程異常內部誤差)來表達這種精度。
可見,已有方法難以有效評價大地水準面的精度,這已成為高程基準現(xiàn)代化及其成果應用面臨的關鍵問題[6]。本文基于GNSS水準高程異常與重力場頻域誤差特性,分析GNSS水準與重力地面高程異常融合的技術要求,研究大地水準面成果的誤差表達與精度評估方法。
區(qū)域似大地水準面精化計算一般分兩步進行[1,5]:第1步,由重力場數據,按邊值問題解的積分方法,精化重力地面高程異常;第2步,將GNSS水準高程異常與重力地面高程異常融合,生成實際應用的地面高程異常(簡稱實用地面高程異常)。
GNSS水準點的正常高,按水準高差逐站傳遞方法測定。由于水準視線直接置于當地水準面中,因而距離較近的兩點間正常高差一般具有很高的精度。但是,水準傳遞誤差沿路線累積,勢必導致長距離兩點間的正常高差誤差較大。忽略GNSS大地高差誤差,兩點間GNSS水準高程異常差的精度一般隨兩點間距離的增大而降低。這表明,短距離兩點間GNSS水準高程異常差的精度高,長距離的誤差大。
重力地面高程異常,是地球重力場外部邊值問題解,由重力數據經全球積分間接確定或精化,中長波精度高、短波超短波誤差大,即空間尺度越小,相對誤差越大。在局部地區(qū)一般表現(xiàn)為兩點間重力地面高程異常差的誤差不隨距離增大而出現(xiàn)明顯變化。
由上述GNSS水準與重力地面高程異常的頻域誤差特性,不難理解,有效合理的GNSS水準與重力地面高程異常融合方法應滿足如下技術要求:
(1) 融合算法能有效整合重力地面高程異常的高精度中長波成分與實測GNSS水準高程異常高精度短波成分。
(2) 實測GNSS水準高程異常的貢獻,隨空間距離增大逐漸減弱;重力地面高程異常的貢獻,不隨空間距離增大發(fā)生明顯變化。
(3) 在誤差處理方面,能同時有效抑制短波重力地面高程異常誤差,控制長距離實測GNSS水準高程異常誤差的累積。
已有的大地水準面精度評估和GNSS水準融合方法,還未能顧及GNSS水準和重力地面高程異常誤差在頻域上的互補性質及融合的技術要求。關于GNSS水準與重力地面高程異常有效融合算法研究,已超出本文的討論范疇。
為有效利用GNSS水準和重力地面高程異常誤差在頻域中的性質,需要采用統(tǒng)計分析技術,構造似大地水準面成果誤差估計的一般方法[8-9]。
對于相距L的兩個GNSS水準點,令兩點間GNSS水準高程異常差為ΔζGNSSl,誤差為σGNSSl,重力地面高程異常差為ΔζGrav,誤差為σGrav;GNSS水準殘差高程異常差(即GNSS水準高程異常差與重力地面高程異常差之差)d=ΔζGNSSl-ΔζGrav,誤差為σd。文中的誤差一般用1倍標準差(RMS)表示,下同。按誤差傳播定律有
(1)
(2)
式中,a為GNSS基線大地高差的固定誤差,b為比例誤差系數,由GNSS定位結果給出,視為已知量;σ為每千米正常高差的誤差,為待估參數;L以千米為單位。
這里的每千米正常高差誤差σ,與兩地面點的距離相乘,用于表示兩點間正常高差的誤差;而水準網中的每千米水準高差中誤差,用于描述沿水準路線長度累積的水準高差誤差。兩者有些差別。
將式(2)代入式(1),則GNSS水準殘差高程異常差誤差滿足
(3)
(4)
(5)
(6)
可見,按式(5)評估似大地水準面精度,能有效體現(xiàn)經GNSS水準融合后的實用地面高程異常誤差特性,即中長波精度依靠重力地面高程異??刂?,短波精度用實測GNSS水準高程異常改善。
或許此時,西王當家人才意識到,一支球隊的廣告效應的確可能超過對媒體幾個億宣傳投入的傳播效果,但這種效應與用廣告費打出來的效果是不一樣的,媒體廣告只能說好,球隊帶來的反響卻是利弊相間的雙刃劍,有好有壞,甚至壞話比好話更多,負面影響比正面影響更大。
按上述方法進行似大地水準面成果精度評估的一般計算流程如下:
(1) 設GNSS水準點總數為n,分別將其實測GNSS水準高程異常減去重力地面高程異常,得到n個GNSS水準殘差高程異常,進行統(tǒng)計分析。
本文重點推薦,區(qū)域似大地水準面成果的精度評估,用如下兩項誤差指標和兩條誤差曲線完整表達:
(2) 誤差指標2:實用地面高程異常內部誤差Θ。此誤差指標可代替當前GNSS水準外部檢核方法得到的標準差,兩者性質相似。
(3) 誤差曲線1:按式(5)計算,以兩點間距離L為自變量的實用地面高程異常差誤差曲線。
(4) 誤差曲線2:按式(2)計算,以兩點間距離L為自變量的GNSS水準高程異常差誤差曲線。
以某地區(qū)似大地水準面成果為例,計算似大地水準面成果的誤差指標,繪制誤差曲線,評價似大地水準面成果的精度。
計算104個GNSS水準殘差高程異常值和5356條邊GNSS水準殘差高程異常差值,進行統(tǒng)計分析,結果見表1。
表1 GNSS水準殘差高程異常(差)
(7)
(8)
利用上面估計的兩項誤差指標和給出的算法公式,繪制該區(qū)域大地水準面成果的3項誤差曲線,如圖1所示。由圖1可直觀地得出以下結論:
(1) 實用地面高程異常差誤差(實線),既不大于重力地面高程異常差誤差,也不大于GNSS水準高程異常差誤差。實用地面高程異常差的誤差曲線總是在其余兩個誤差曲線的下方。
(2) 在距離L*=105.8 km處,GNSS水準高程異常和重力地面高程異常,對實用地面高程異常的精度貢獻相當。小于L*時,GNSS水準高程異常的貢獻大,大于L*時,重力地面高程異常的貢獻大。
(3) 實用高程異常差誤差曲線的斜率,隨距離增大而減小,且不大于GNSS水準高程異常差誤差曲線的斜率。當斜率接近零時,實用地面高程異常差的誤差逼近重力地面高程異常差的誤差。
圖1 某區(qū)域似大地水準面成果的3項誤差曲線對比Fig.1 Three kinds of error curves of quasigeoid results
為方便實際應用,可將實用地面高程異常差誤差曲線的最大最小值,作為似大地水準面成果的精度范圍(1倍標準差)。本例中,最小值1.42 cm(L=10 km),最大值3.64 cm(L=210 km),即似大地水準面成果的精度范圍 (1倍標準差)為1.42~3.64 cm。
本文基于GNSS水準高程異常與重力場的頻域誤差特性,研究GNSS水準與重力地面高程異常融合算法的技術要求,采用統(tǒng)計分析技術,提出一種大地水準面成果的誤差表達與精度評估方法。經示例測試,得出主要結論如下:
(1) 兩點間實用地面高程異常差的誤差是其距離的非線性遞增函數,區(qū)域似大地水準面精度,應采用隨距離非線性變化的實用地面高程異常差誤差曲線表達。
(2) 實用地面高程異常差的誤差,既不大于重力地面高程異常差的誤差,也不大于實測GNSS水準高程異常差的誤差。
(3) 當兩點間距離接近或小于GNSS水準點平均間距時,GNSS水準高程異常對實用地面高程異常的貢獻起主要作用。
(4) 較大空間尺度的實用地面高程異常精度,主要依靠重力地面高程異??刂?。這說明本文提出的誤差表達和估計方法,符合地球重力場性質。
(5) 區(qū)域大地水準面成果的精度評估,由本文2.4節(jié)給出的兩項誤差指標和兩條誤差曲線共4個要素完整表達。