陳宏健
【摘要】本文探討一類帶有無限次疊套運算的算式,類似于yn=n1+n1+n1+n1+…(n=2,3,4……) 的帶有無限次疊套運算的算式,驗證其收斂性,并在收斂的條件下轉化為有限次疊套數(shù)列yn1=1,yn2=n1+n1,yn3=n1+n1+n1,…,ynk=n1+n1+n1+…+n1的極限,通過分析簡單情形,歸納推導出一般情形,并且尋找解法,嘗試將解決方法推廣到其他無限次疊套運算中.
【關鍵詞】無限次疊套;有限次疊套;收斂;有界單調(diào)遞增數(shù)列
一、引言
數(shù)的疊套運算常見于實數(shù)的無限次重復運算中,其特征為每一步的運算又疊套在下一步的運算當中,層層疊套,直至無窮.例如初等數(shù)學中的無限連分數(shù),高等數(shù)學中有關特定函數(shù)與極限、級數(shù)的問題,以及幾何圖形中的分形圖,其中都有與無限次疊套運算相關的例子.
二、概念與記號
定義1帶有無限次疊套運算的算式(n=2,3,4,……)
yn=n1+n1+n1+n1+…,
則有y2=1+1+1+…,
y3=31+31+31+…,
y4=41+41+41+41+…,
…,
yn=n1+n1+n1+n1+….
定義2假設k為有限次疊套次數(shù),
則ynk=n1+n1+n1+…+n1k個 可?。?/p>
yn1=1,
yn2=n1+n1,
yn3=n1+n1+n1,
以此類推得出k次疊套數(shù)列:
ynk=n1+n1+n1+…+n1k個.
定義3當有限次疊套式y(tǒng)nk的極限存在時,無限次疊套式y(tǒng)n為有限次疊套式y(tǒng)nk的極限.
即當ynk的極限存在時ynk→yn(n→+∞).
反之,當有限次疊套式y(tǒng)nk的極限不存在時,無限次疊套式y(tǒng)n發(fā)散.
定理1 當k→+∞時,有限次疊套數(shù)列
ynk=n1+n1+n1+…+n1k個 的極限存在.
這個證明分兩部分:
(1)當k增加時,ynk為單調(diào)遞增數(shù)列
(2)ynk為有界數(shù)列? (k=1,2,3……).
證明(1)當n=1時,n1<n1+n1,
即yn1<yn2.
假設n=k時,ynk<ynk+1,
則當n=k+1時,n1+ynk<n1+ynk+1,
n1+n1+n1+…+n1k+1個<n1+n1+n1+…+n1k+2個
則? ynk+1<ynk+2.
由數(shù)學歸納法得ynk為單調(diào)遞增數(shù)列,
即yn1<yn2<yn3<…<ynk(n=2,3,4……).
(2)依據(jù)開方運算性質(zhì)易知
nx<n-1x<…<x(x>0).
則對任意的t(t=2,3,4,…,n-1),有
t+11+t+11+t+11+…+t+11k個<t1+t1+t1+…+t1k個,
即y(t+1)k<ytk,
1<ynk<y(n-1)k<y(n-2)k<…<y3k<y2k.
由于1+1<3,
1+1+1<1+3<3,
1+1+1+1<1+3<3,
以此類推,
有y2k=1+1+…+1< 1+3<3,
則1<ynk<3(n=2,3,4……).
即 y2k,y3k,…,ynk當中的每個數(shù)列均為有界單調(diào)遞增數(shù)列.
根據(jù)有界單調(diào)遞增數(shù)列極限存在定理有
limk→∞=yn.
定理2當n→+∞時有限次疊套式y(tǒng)nk的極限為1.
證明1<yk<3(n=2,3,4……),
ynk=n1+yn(k-1),
則1<n1+yn(k-1)<n4,
1<ynk<n4,
limn→+∞n4=1,
由夾值法有l(wèi)imn→+∞ynk=1(k=1,2,3……).
三、有限次疊套式y(tǒng)nk的簡單情形
當n=2時,y2=1+1+1+…,
y2k有極限,
則 y2=1+y2,
y22=y2+1,
則 y22-y2-1=0(y2>0),
解得y2=1+52≈1.618.
疊套次數(shù)y21y22y23y24y25…極限值y2y2k大約值11.4141.5521.5981.612…1.618y2k為有界遞增數(shù)列,y2k有極限,
即當k→+∞時,y2k→y2.
當n=3時,
y3=31+31+31+…,
y3=31+y3,
則y33=y3+1,
即 y33-y3-1=0.
根據(jù)三次方程求根公式,有
y3=3-q2+q22+p33+
3-q2-q22+p33
=312+23108+312-23108
≈1.3247.
疊套次數(shù)y31y32y33y34y35…極限值y3y3大約值11.2601.3121.3221.324…1.3247則有 y3k為有界遞增數(shù)列,y3k有極限.
即當k→+∞時,
y3k→y3.
當n=4時,
y4=41+41+41+…,
y44=1+y4,
以此類推,
當k→+∞時,y4k→y4 .
代入Matlab求解y4≈1.2207.
四、一般情形的推廣
yn=n1+n1+n1+n1+…,
yn=n1+yn,ynk極限存在,
則ynn-yn-1=0.
代入Matlab求解如下:
clc,clear
fid=fopen('d:\\char1.txt','at+');
for n=2:40
p=[1,zeros(1,n-2),-1,-1];
gen=roots(p);
fprintf(fid,'%g\\n',gen);
end
fclose(fid);
ynkyn1yn2yn3yn4yn5…極限值 yny2k11.41421.55381.59811.6119…約1.6180y3k11.25991.31231.32241.3243…約1.3247y4k11.18921.21641.22011.2207…約1.2207y5k11.14871.16531.16711.1673…約1.1673y6k11.12251.13361.13461.1347…約1.1347…y(10)k11.07181.07561.07581.0758…約1.0758…y(20)k11.03531.03621.03621.0362…約1.0362…y(40)k11.01751.01771.01771.0177…約1.0177…極限值ynk11111…1定理3:當n→+∞時,無限次疊套算式
yn=n1+n1+n1+n1+…的極限為1,
即limn→+∞yn=1.
證明 (1)ynk=n1+n1+n1+…+n1的極限存在,
當k=1時,由于n1<n1+n1,
即yn1<yn2,
假設n=k時,ynk<yn(k+1),
則當n=k+1時,由于ynk<yn(k+1),
0<1+ynk<1+yn(k+1),
n1+ynk<n1+yn(k+1),
yn(k+1)<yn(k+2),
由數(shù)學歸納法得ynk<yn(k+1)(k=1,2,3……),
則ynk(k=1,2,3……)為單調(diào)遞增數(shù)列.
(2) 假設 limn→∞yn=a,
limn→∞yn=limn→∞n1+limn→∞yn,
則a=limn→∞(1+a)1n.
因為 limn→∞1n=0,
所以a=limn→∞yn=1.
五、推廣與應用
定理4:收斂的有限連分數(shù)的極限為無限連分數(shù)
[a0,a1,a2,a3,…,an]=a0+1a1+1a2+…+1an
limn→∞[a0,a1,a2,a3,…,an]=[a0,a1,a2,a3……]
【參考文獻】
[1]同濟大學數(shù)學系.高等數(shù)學[M].北京:高等教育出版社,2014.
[2]菲赫金哥爾茨.微積分學教程[M].北京:人民教育出版社,1956.