孫 晗,郭廣川,唐 帥,薛金林,林相澤,李 群
蔬菜育苗播種流水線壓穴滾筒裝置改進(jìn)與控制系統(tǒng)設(shè)計(jì)
孫 晗1,郭廣川1,唐 帥1,薛金林1※,林相澤1,李 群2
(1. 南京農(nóng)業(yè)大學(xué)工學(xué)院,南京 210031;2. 江蘇云馬農(nóng)機(jī)制造有限公司,鹽城 224199)
為進(jìn)一步提高蔬菜育苗播種流水線的控制精度和生產(chǎn)效率,對(duì)現(xiàn)有蔬菜育苗播種流水線進(jìn)行了改進(jìn)設(shè)計(jì)。首先將被動(dòng)壓穴滾筒改造為主動(dòng)壓穴滾筒;然后進(jìn)行了流水線控制系統(tǒng)總體方案改進(jìn)設(shè)計(jì),完成了以傳送帶速度檢測(cè)與控制、壓穴裝置的初始化與位置控制和播種裝置的初始化與位置控制為核心內(nèi)容的控制系統(tǒng)設(shè)計(jì);最后進(jìn)行了流水線的播種試驗(yàn)。試驗(yàn)結(jié)果表明主動(dòng)壓穴裝置修正了被動(dòng)型壓穴出現(xiàn)偏差的問題,流水線的播種合格率大于90.8%,空穴率小于5.3%,重播率小于3.9%,最高生產(chǎn)效率可以達(dá)到800盤/h。該改進(jìn)設(shè)計(jì)提高了播種流水線的播種控制精度和生產(chǎn)效率。
農(nóng)業(yè)機(jī)械;試驗(yàn);控制系統(tǒng);播種流水線;工廠化育苗
工廠化育苗可以提升種苗成活率,降低勞動(dòng)力成本投入,從而提高經(jīng)濟(jì)效益[1-4],而蔬菜育苗播種流水線是蔬菜工廠化育苗中的重要裝備,通過其可以自動(dòng)實(shí)現(xiàn)鋪土、壓穴、播種、覆土等作業(yè)環(huán)節(jié),能極大地提高生產(chǎn)效率[5-8]。
國際上生產(chǎn)播種流水線的公司有美國Blackmore公司與SEEDERMAN公司、英國Hamilton公司、意大利MOSA公司等[9-11]。Blackmore公司的播種流水線產(chǎn)品能夠播種不同類型的種子,播種效率為300盤/h[12]。SEEDERMAN公司的GS1半自動(dòng)針式播種,更適用于小型溫室育苗,播種效率在120盤/h左右[13]。英國Hamilton公司用氣吸式播種滾筒,能夠適應(yīng)市面上所有的育苗盤和種子,可以完成對(duì)一個(gè)育苗盤進(jìn)行單行、多行播種[14]。
近年來,我國的蔬菜育苗播種流水線也取得了較大的進(jìn)展[15-17]。浙江博仁工貿(mào)有限公司生產(chǎn)的2YB-500-GT、2YB-G30A、2YB-G60型號(hào)育苗流水線,采用氣吸滾筒式播種機(jī)構(gòu),對(duì)球形種子播種效果較好,生產(chǎn)效率可達(dá)600盤/h[18];浙江臺(tái)州一鳴設(shè)備有限公司生產(chǎn)的YM-0911型號(hào)育苗流水線,能夠播種直徑在0.1-5 mm的蔬菜和花卉種子,生產(chǎn)效率可達(dá)360盤/h[19];劉中正等[20]設(shè)計(jì)的智能化蔬菜育苗流水線通過將播種滾筒上的吸嘴的形狀結(jié)構(gòu)設(shè)計(jì)為三層形式,解決了由于氣腔內(nèi)壓力分布不均和氣流不穩(wěn)定導(dǎo)致的吸嘴堵塞問題,試驗(yàn)表明該流水線的播種合格率可達(dá)93%,生產(chǎn)效率為450 盤/h;張峰峰等[21]設(shè)計(jì)的自動(dòng)蔬菜穴盤育苗流水線具有穴盤進(jìn)給裝置,通過氣吸式多路吸嘴并聯(lián)播種機(jī)構(gòu)實(shí)現(xiàn)多路同步播種。
蔬菜育苗流水線的研發(fā)促進(jìn)了蔬菜工廠化育苗的大力發(fā)展,但總體而言,國內(nèi)生產(chǎn)的蔬菜育苗流水線存在的問題多是難以在提高生產(chǎn)效率的同時(shí)保證播種精度[22-25],所以仍需要在流水線的壓穴和播種結(jié)構(gòu)及其控制系統(tǒng)上進(jìn)行研究。因此,本文在江蘇云馬農(nóng)機(jī)制造有限公司生產(chǎn)的2BSL-320型育苗播種流水線的基礎(chǔ)上,對(duì)壓穴滾筒結(jié)構(gòu)與控制系統(tǒng)進(jìn)行改進(jìn),以期進(jìn)一步提高播種流水線的播種控制精度和生產(chǎn)效率。
蔬菜育苗播種流水線機(jī)械結(jié)構(gòu)包括鋪土裝置、掃土裝置、壓穴裝置、播種裝置、覆土裝置、傳動(dòng)裝置如圖1所示。
接通流水線的氣路和電路后,在播種流水線的線首位置放上空育苗盤并隨著流水線傳送帶移動(dòng),到達(dá)鋪土裝置(圖2a)時(shí)電機(jī)帶動(dòng)箱中的培養(yǎng)土落入育苗盤,經(jīng)過掃土裝置(圖2b)由滾筒上的毛刷旋轉(zhuǎn)清掃表層多余的培養(yǎng)土;到達(dá)壓穴裝置(圖2c)時(shí)對(duì)育苗盤壓出種穴,本文采用的壓穴結(jié)構(gòu)是在原有結(jié)構(gòu)基礎(chǔ)上進(jìn)行改進(jìn)的,原有的壓穴滾筒沒有步進(jìn)電機(jī)驅(qū)動(dòng)控制,只是在合適的位置安裝上兩塊擋板,下文將詳細(xì)介紹;隨后播種裝置(圖2d)向?qū)?yīng)的種穴置入一粒蔬菜種子,播種滾筒共包含72個(gè)吸種孔,氣腔可與負(fù)壓、大氣壓和正壓導(dǎo)氣孔相連,實(shí)現(xiàn)吸種、落種和吹掃;最后經(jīng)覆土裝置并覆上薄土,掃土裝置掃去多余培養(yǎng)土,取下播種完成的育苗盤完成整個(gè)播種流程。
播種流水線的設(shè)計(jì)要滿足工程技術(shù)指標(biāo)需求,設(shè)計(jì)出蔬菜種子能夠正常出芽的育苗播種流水線,本文的改進(jìn)需滿足如表1所示的播種技術(shù)指標(biāo)。
表1 蔬菜育苗播種流水線播種技術(shù)指標(biāo)
原有的育苗播種流水線上的壓穴滾筒為被動(dòng)型壓穴滾筒,即在滾筒上裝有兩塊擋板。當(dāng)傳送帶移動(dòng)的育苗盤撞擊該壓穴滾筒的前置擋板時(shí),壓穴滾筒隨著育苗盤的移動(dòng)而轉(zhuǎn)動(dòng)。單個(gè)育苗盤經(jīng)過后,壓穴滾筒正好轉(zhuǎn)動(dòng)一周。
在實(shí)際生產(chǎn)中,被動(dòng)型壓穴滾筒的工作效果不佳。壓穴滾筒與育苗盤構(gòu)成的是開環(huán)系統(tǒng),二者初次對(duì)準(zhǔn)并進(jìn)行一個(gè)周期壓穴后,由于滾筒質(zhì)量不均勻,在慣性的影響下,滾筒會(huì)前后擺動(dòng),壓穴位置出現(xiàn)誤差,壓頭難以對(duì)準(zhǔn)種穴中心。數(shù)個(gè)育苗盤工作后,系統(tǒng)的累計(jì)誤差增加,導(dǎo)致流水線連續(xù)工作的精度大幅降低。
基于被動(dòng)型壓穴滾筒的不足,本文進(jìn)行改造設(shè)計(jì)。卸掉原結(jié)構(gòu)的擋板,并補(bǔ)上壓頭,然后添加行程開關(guān)、步進(jìn)電機(jī)與齒輪傳動(dòng)機(jī)構(gòu),形成主動(dòng)型壓穴滾筒,利用步進(jìn)電機(jī)來精準(zhǔn)控制壓穴滾筒轉(zhuǎn)動(dòng)的角度、速度、位置。
經(jīng)過改進(jìn)的主動(dòng)型壓穴滾筒的工作原理是,當(dāng)育苗盤經(jīng)過壓穴裝置時(shí),觸發(fā)安裝在壓穴滾筒下方的行程開關(guān)。微控制器向壓穴裝置的步進(jìn)電機(jī)驅(qū)動(dòng)器發(fā)送脈沖信號(hào),步進(jìn)電機(jī)通過傳動(dòng)齒輪來帶動(dòng)壓穴滾筒隨著育苗盤轉(zhuǎn)動(dòng),并在育苗盤上壓出種穴。當(dāng)育苗盤完全經(jīng)過壓穴滾筒時(shí),步進(jìn)電機(jī)停止轉(zhuǎn)動(dòng),壓穴滾筒停止,等待流水線傳送帶上下一個(gè)育苗盤的到來。
圖3為滾筒與壓頭結(jié)構(gòu)圖,要使壓頭在育苗盤中的每個(gè)育苗穴的中心位置壓出播種穴孔,需要兩個(gè)壓頭圓周弧長S與育苗盤相鄰兩個(gè)種穴中心孔距D相等。壓頭圓周陣列數(shù)量N用式(1)表示。
式中R為壓穴滾筒的柱體半徑,m;h為壓頭高度,m。
注:S為相鄰壓頭圓周弧長,m;R為壓穴滾筒的柱體半徑,m;h為壓頭高度,m。
Note:Sis arc length of the two adjacent indenters, m;Ris the radius of the cavitation roller cylinder, m; his the height of the indenter, m.
圖3 滾筒與壓頭結(jié)構(gòu)圖
Fig.3 Structure of roller and indenter
壓穴滾筒的結(jié)構(gòu)設(shè)計(jì)需要考慮穴盤的尺寸排列。
本文選用的是6行12列高度為45 mm的72穴孔的穴盤,因此壓穴滾筒上的壓穴頭的行數(shù)設(shè)計(jì)為6行,為了兼容更多規(guī)格的穴盤,壓穴頭的列數(shù)設(shè)計(jì)為15列。所設(shè)計(jì)的主動(dòng)型壓穴裝置與壓穴滾筒結(jié)構(gòu)及原被動(dòng)型壓穴滾筒如圖4所示。
蔬菜育苗播種流水線控制系統(tǒng)包含硬件電路與軟件系統(tǒng),如圖5所示。
硬件電路包括微控制器、傳感器和執(zhí)行器。微控制器采用Arduino Mega2560單片機(jī)[26-28]。在傳感器方面,主要包含轉(zhuǎn)速傳感器、角位移傳感器、行程開關(guān)等。轉(zhuǎn)速傳感器為歐姆龍E6B2-CWZ6C編碼器,安裝在育苗流水線一側(cè),與流水線傳動(dòng)軸同軸轉(zhuǎn)動(dòng),直接測(cè)量流水線傳送帶的實(shí)際速度,從而間接測(cè)量流水線傳送帶上育苗盤的速度。角位移傳感器為GTCA3636非接觸/磁感應(yīng)角度位移傳感器,檢測(cè)壓穴滾筒和播種滾筒轉(zhuǎn)動(dòng)的實(shí)時(shí)角度值,由于壓穴和播種滾筒的控制精度較高,兩個(gè)裝置各安裝一個(gè)傳感器。行程開關(guān)為OMRON Z-15GW22-B接觸式行程開關(guān),用來檢測(cè)育苗流水線傳送帶上的育苗盤的位置,其安裝位置分別在鋪土裝置、壓穴裝置、播種裝置和覆土裝置。
流水線控制系統(tǒng)中的執(zhí)行器包括步進(jìn)電機(jī)、交流電機(jī)、步進(jìn)電機(jī)驅(qū)動(dòng)器和交流電機(jī)變頻調(diào)速器。步進(jìn)電機(jī)安裝在壓穴裝置中、播種裝置中,壓穴裝置中采用普菲德86BYG-250H步進(jìn)電機(jī),播種裝置采用F-86BYG18120天晨時(shí)代步進(jìn)電機(jī),轉(zhuǎn)矩均為12 N·m。壓穴裝置中采用的電機(jī)驅(qū)動(dòng)器是普菲德DMA860H驅(qū)動(dòng)器,播種裝置采用普菲德MA860H驅(qū)動(dòng)器。采用三個(gè)220 V三相交流減速電機(jī)驅(qū)動(dòng)傳送帶,功率均為120 W,覆土裝置處的交流電機(jī)通過400 W調(diào)速器控制,其他位置的交流電機(jī)通過750 W調(diào)速器統(tǒng)一控制,均采用川沃嵌入式變頻器。
控制系統(tǒng)的軟件主要針對(duì)各關(guān)鍵部件設(shè)計(jì)以完成鋪土、壓穴、播種、覆土等作業(yè),主要內(nèi)容為育苗盤各工位的位置檢測(cè)、傳送速度檢測(cè)與控制及電機(jī)轉(zhuǎn)速的控制??傮w設(shè)計(jì)流程如圖6所示。
為了提高壓穴裝置、播種裝置的控制精度,兩裝置的滾筒轉(zhuǎn)速自動(dòng)匹配流水線傳送帶速度。流水線傳送帶即使在同一個(gè)輸入信號(hào)下,實(shí)際速度值仍然存在小幅度波動(dòng),為降低干擾對(duì)控制精度的影響,滾筒與傳送帶速度匹配時(shí),采用傳送帶的實(shí)際速度值,而非設(shè)定速度值。
3.2.1 傳送帶速度檢測(cè)
流水線傳送帶的速度直接影響壓穴與播種時(shí)的控制精度,需要準(zhǔn)確檢測(cè)傳送帶的速度,并保證壓穴滾筒與播種滾筒的轉(zhuǎn)速與之相匹配。傳送帶速度由轉(zhuǎn)速傳感器來檢測(cè),其檢測(cè)程序如圖7所示。
3.2.2 速度開環(huán)控制
由于壓穴裝置、播種裝置是伺服控制系統(tǒng),兩裝置滾筒的轉(zhuǎn)動(dòng)只是跟隨傳送帶速度實(shí)際值。為了降低微控制器處理指令需求,流水線傳送帶速度采用開環(huán)方式控制。工控機(jī)發(fā)送指令,微控制器接收后執(zhí)行對(duì)應(yīng)生產(chǎn)效率的速度調(diào)節(jié)函數(shù),并向交流變頻電機(jī)調(diào)速器發(fā)送調(diào)速指令[29-30]。
為獲取不同生產(chǎn)效率所需的傳送帶速度,通過試驗(yàn)辨識(shí)獲取傳送帶速度與變頻電機(jī)調(diào)速器的調(diào)速頻率值之間的對(duì)應(yīng)關(guān)系,如式(2)所示[31-32]。
式中V()是當(dāng)前采樣時(shí)刻傳送帶上育苗盤的速度值,m/s;1是系數(shù),由試驗(yàn)辨識(shí)獲取得到;f()是變頻電機(jī)調(diào)速器的調(diào)速頻率值,Hz。
又因?yàn)樯a(chǎn)效率與傳送帶速度之間有如下線性關(guān)系,即
式中η()是當(dāng)前控制周期生產(chǎn)效率設(shè)定值,盤/h;l是育苗盤的長度,m。
根據(jù)式(2)與式(3),得到生產(chǎn)效率與調(diào)速頻率值之間的對(duì)應(yīng)關(guān)系,如式(4)所示,其中2是系數(shù)。
3.3.1 壓穴滾筒位置初始化
壓穴滾筒工作前需要設(shè)置初始位置,即確定壓穴滾筒的初始位置壓頭。在整個(gè)壓穴滾筒的15行壓頭中,設(shè)定第1行、第6行、第11行壓頭為初始?jí)侯^。工作時(shí)根據(jù)壓穴裝置角度傳感器輸出,判斷電機(jī)需要正轉(zhuǎn)還是反轉(zhuǎn),從而實(shí)現(xiàn)壓穴滾筒的快速初始化。
根據(jù)壓穴滾筒轉(zhuǎn)動(dòng)的運(yùn)行機(jī)理,建立控制輸入變量Q()與下一個(gè)控制周期步進(jìn)電機(jī)轉(zhuǎn)動(dòng)的脈沖數(shù)量P(1)之間的離散時(shí)域數(shù)學(xué)表達(dá)式,如式(5)所示。
式中,P(1)是下一個(gè)控制周期步進(jìn)電機(jī)轉(zhuǎn)動(dòng)的脈沖數(shù)量,個(gè);Q()是當(dāng)前采樣時(shí)刻壓頭角度實(shí)際數(shù)字量,(°);Q是設(shè)定初始?jí)侯^角度數(shù)字量(=1,2,3,分別對(duì)應(yīng)于第1行、第6行與第11行的初始?jí)侯^),(°);N是步進(jìn)電機(jī)驅(qū)動(dòng)器設(shè)置微步數(shù),設(shè)為3 200;是A/D轉(zhuǎn)換器分辨率,為1 024。
3.3.2 壓穴裝置的位置校正
為了提高壓穴滾筒的壓穴位置的控制精度,采用基于角度反饋的閉環(huán)速度控制,如圖8所示。壓穴滾筒在完成一次壓穴過程后,壓穴裝置的角度傳感器采集壓穴滾筒當(dāng)前角度值,并上傳給微控制器;微控制器計(jì)算采集到的角度值與設(shè)定的角度值之間的差值,如果差值為零,則不對(duì)步進(jìn)電機(jī)進(jìn)行補(bǔ)償。如果差值不為零,根據(jù)差值正負(fù)及數(shù)值大小,對(duì)上一個(gè)壓穴過程中產(chǎn)生的位置誤差進(jìn)行校正。
3.4.1 播種滾筒位置初始化
播種裝置初始化是指吸附種子過程初始化,即工作前需要播種滾筒轉(zhuǎn)動(dòng)一定角度以使一定數(shù)量的吸種孔吸附上種子,并停在一定的位置。行程開關(guān)觸發(fā)后,播種滾筒轉(zhuǎn)動(dòng),把吸附的種子播種到壓穴后的種穴里,實(shí)現(xiàn)播種。
選定12行吸種孔中某一行為初始吸種行,對(duì)12行吸種孔的角度位置進(jìn)行標(biāo)定。根據(jù)播種裝置滾筒轉(zhuǎn)動(dòng)的運(yùn)行機(jī)理,建立角度位置輸入變量Q()與電機(jī)轉(zhuǎn)動(dòng)所需要脈沖輸出變量P(1)之間的時(shí)域離散數(shù)學(xué)表達(dá)式,如式(6)所示。
式中P(1)是下一個(gè)控制周期步進(jìn)電機(jī)轉(zhuǎn)動(dòng)的脈沖數(shù)量;Q()是當(dāng)前時(shí)刻吸種孔角度位置值,(°);Q1是初始吸種孔角度位置設(shè)定值,(°);N是步進(jìn)電機(jī)驅(qū)動(dòng)器設(shè)置微步數(shù),值為1 000。
3.4.2 播種滾筒的位置校正
與壓穴裝置的位置校正相似,為提高播種滾筒位置的控制精度,采用基于角度反饋的位置校正。
播種滾筒在完成一次播種過程后,播種裝置的角度傳感器采集播種滾筒的當(dāng)前角度值,并傳給微控制器;微控制器對(duì)比當(dāng)前角度值與設(shè)定角度值。如果兩者差值不為零,則控制滾筒正轉(zhuǎn)或反轉(zhuǎn)以校正上一個(gè)播種過程中產(chǎn)生的位置誤差。反饋校正在每一次播種過程完成后進(jìn)行校正,所以每次播種過程引起的偏差比較小。
在所研發(fā)的蔬菜育苗播種流水線(如圖9所示)上分別進(jìn)行傳送帶速度與控制、壓穴裝置控制與播種裝置控制試驗(yàn)。試驗(yàn)育苗盤采用黑色聚氯乙烯72孔育苗盤,為便于觀察試驗(yàn)結(jié)果,采用白色粉末狀育苗土和“秦油2號(hào)”油菜種子,種子千粒質(zhì)量為3.56 g。臺(tái)架試驗(yàn)要求電控系統(tǒng)準(zhǔn)確控制生產(chǎn)作業(yè),且在生產(chǎn)效率為800盤/h的情況下播種合格率大于90%。
根據(jù)前文,傳送帶速度檢測(cè)與控制主要是找出傳送帶速度、調(diào)速頻率值與生產(chǎn)效率之間的關(guān)系,即通過實(shí)驗(yàn)辨識(shí)求出式(2)與式(4)中的系數(shù)值。
首先通過變頻電機(jī)調(diào)速器上的調(diào)速旋鈕來設(shè)定頻率值,然后通過電腦上串口監(jiān)視器來顯示傳感器反饋值,由傳感器反饋值計(jì)算得到傳送帶速度值。記錄3次5~50 Hz不同頻率值時(shí)的傳送帶速度值,如表2所示。根據(jù)表2,可以得到式(2)中的辨識(shí)系數(shù)1=0.002 56。因此,可得到式(4)中系數(shù)2=9.216。另外,試驗(yàn)用育苗盤的長度l=0.54 m。
然后設(shè)定不同生產(chǎn)效率值,通過式(2)與式(4)可以得到生產(chǎn)效率設(shè)定值與調(diào)速頻率值、速度設(shè)定值之間的對(duì)應(yīng)關(guān)系,同時(shí)通過測(cè)量轉(zhuǎn)速傳感器數(shù)據(jù)獲得實(shí)際傳送帶的速度值。表3為試驗(yàn)中得到的數(shù)據(jù)。
表2 速度傳感器采集數(shù)據(jù)表
表3 不同生產(chǎn)效率下的調(diào)速頻率值與速度值
試驗(yàn)結(jié)果表明,在不同生產(chǎn)效率設(shè)定值下,速度設(shè)定值與測(cè)量值之間誤差很小,速度控制誤差的最大值為8.3%,滿足速度控制要求。
通過對(duì)改進(jìn)后的被動(dòng)式壓穴裝置進(jìn)行試驗(yàn),對(duì)比開環(huán)與閉環(huán)控制的壓穴效果。由于壓穴裝置對(duì)控制精度要求較高,如果壓穴過程調(diào)用串口數(shù)據(jù)顯示功能,會(huì)導(dǎo)致壓穴滾筒轉(zhuǎn)速降低,影響實(shí)際壓穴效果,故僅將壓穴中心相對(duì)種穴中心的偏移量作為壓穴質(zhì)量的參考。
壓穴裝置開環(huán)控制時(shí),步進(jìn)電機(jī)會(huì)出現(xiàn)丟步現(xiàn)象,導(dǎo)致壓頭初始位置改變,圖10a中可以看出,從首排壓穴開始即出現(xiàn)了較為明顯的誤差,偏移量為9.8 mm,此后系統(tǒng)的累積誤差不斷增加,造成整體的壓穴效果出現(xiàn)較大偏差,末排壓穴中心偏移種穴中心12.5 mm。
采用壓穴裝置閉環(huán)反饋控制時(shí),可以對(duì)壓穴滾筒的位置進(jìn)行校正補(bǔ)償,每一排的壓頭落點(diǎn)都在中心,從而能夠解決壓穴位置偏差現(xiàn)象,如圖10b所示。
前期試驗(yàn)表明,原播種流水線的最高生產(chǎn)效率為600 盤/h,在此情況下,其播種合格率僅為74.6%。
通過調(diào)節(jié)播種裝置的吹掃口氣壓、播種滾筒內(nèi)部的負(fù)壓值以及清堵氣壓,實(shí)現(xiàn)播種裝置每個(gè)吸種孔吸附一顆種子的要求。試驗(yàn)中吹掃正壓值設(shè)定為11 kPa、振動(dòng)正壓值設(shè)定為163 kPa、清堵正壓值設(shè)定為10 kPa、負(fù)壓吸附值設(shè)定為7.2 kPa,進(jìn)行了數(shù)組播種試驗(yàn),試驗(yàn)結(jié)果如表4所示。
圖11為生產(chǎn)效率依次為200、400、600、800盤/h的播種情況。試驗(yàn)結(jié)果表明,隨著生產(chǎn)效率的提高,播種合格率逐漸下降,但是生產(chǎn)效率800 盤/h的情況下合格率仍可達(dá)到90.8%,空穴率為5.3%,重播率為3.9%,試驗(yàn)結(jié)果滿足設(shè)計(jì)要求。
表4 不同生產(chǎn)效率下播種試驗(yàn)數(shù)據(jù)
1)為進(jìn)一步提高蔬菜育苗播種流水線的控制精度和生產(chǎn)效率,將2BSL-320型蔬菜育苗播種流水線的被動(dòng)型壓穴滾筒改造為主動(dòng)型壓穴滾筒,并完成了以傳送帶速度檢測(cè)與控制、壓穴裝置的初始化與控制和播種裝置的初始化與控制為核心內(nèi)容的控制系統(tǒng)設(shè)計(jì)。最后分別進(jìn)行了傳送帶速度檢測(cè)與控制、壓穴裝置的初始化與控制和播種裝置的初始化與控制等試驗(yàn)。
2)試驗(yàn)結(jié)果表明,傳送帶的速度誤差控制在8.3%以內(nèi);改進(jìn)的主動(dòng)型壓穴裝置成功修正了被動(dòng)型壓穴出現(xiàn)偏差的問題;流水線的播種合格率在90.8%以上,相比原裝置,播種速度和合格率都得到了提高,生產(chǎn)效率為800 盤/h時(shí),空穴率在5.3%以下,重播率在3.9%以下。該改進(jìn)設(shè)計(jì)可以實(shí)現(xiàn)蔬菜育苗播種的農(nóng)藝生產(chǎn)要求和設(shè)備的技術(shù)要求指標(biāo),并且提高了播種流水線的播種控制精度和生產(chǎn)效率。
[1] 郭孟報(bào),楊明金,劉斌,等. 我國蔬菜育苗產(chǎn)業(yè)現(xiàn)狀及發(fā)展動(dòng)態(tài)[J]. 農(nóng)機(jī)化研究,2015,37(1):250-253.
Guo Mengbao, Yang Mingjin, Liu Bin, et al. Status and development trend of vegetable seedling industry in China[J]. Journal of Agricultural Mechanization Research, 2015, 37(1): 250-253. (in Chinese with English abstract)
[2] 于亞波,伍萍輝,馮青春,等. 我國蔬菜育苗裝備研究應(yīng)用現(xiàn)狀及發(fā)展對(duì)策[J]. 農(nóng)機(jī)化研究,2017,39(6):1-6.
Yu Yabo, Wu Pinghui, Feng Qingchun, et al. Situation and strategy of automatic seedling machine in China[J]. Journal of Agricultural Mechanization Research, 2017, 39(6): 1-6. (in Chinese with English abstract)
[3] 陳永生,劉先才,韓柏和,等. 2020年中國蔬菜生產(chǎn)機(jī)械化發(fā)展報(bào)告[J]. 中國農(nóng)機(jī)化學(xué)報(bào),2021,42(6):1-9,34.
Chen Yongsheng, Liu Xiancai, Han Baihe, et al. Development report of China vegetable production mechanization in 2020[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(6): 1-9,34. (in Chinese with English abstract)
[4] 肖體瓊,崔思遠(yuǎn),陳永生,等. 我國蔬菜生產(chǎn)概況及機(jī)械化發(fā)展現(xiàn)狀[J]. 中國農(nóng)機(jī)化學(xué)報(bào),2017,38(8):107-111.
Xiao Tiqiong, Cui Siyuan, Chen Yongsheng, et al. Development status of vegetable production and its mechanization in China[J]. Journal of Chinese Agricultural Mechanization, 2017, 38(8): 107-111. (in Chinese with English abstract)
[5] 楊文彩,徐路路,杜一帆,等. 三七育苗播種壓輪仿形開溝裝置的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(7):53-62.
Yang Wencai, Xu Lulu, Du Yifan, et al. Design and experiment of the pressing wheel profiling ditching device for sowing panax notoginseng to grow seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(7): 53-62. (in Chinese with English abstract)
[6] 楊昌敏,莊文化,徐一,等. 蔬菜穴盤育苗精量播種機(jī)研究[J]. 中國農(nóng)機(jī)化學(xué)報(bào),2020,41(2):13-18.
Yang Changmin, Zhuang Wenhua, Xu Yi, et al. Study on vegetable tray precision seeder[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(2): 13-18. (in Chinese with English abstract)
[7] 王歡. 我國蔬菜生產(chǎn)效率及其時(shí)空效應(yīng)研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2018.
Wang Huan. The Research on Vegetable Production Efficiency and Its Time and Space Effect in China[D]. Beijing: China Agricultural University, 2018. (in Chinese with English abstract)
[8] Chilur R, Nandede B M, Tiwari P S. Development of an auger conveyor type metering device for transplanting of vegetable seedlings raised in paper pots[J]. Tropical Agricultural Research, 2018, 29(4): 258-270.
[9] Qin K, Leskovar D I. Humic. Substances improve vegetable seedling quality and post-transplant yield performance under stress conditions[J]. Agriculture, 2020, 10(7): 1-18.
[10] Dong C, Young W, Si H, et al. Responses of vegetable seedlings grown on cylindrical paper pots or plug trays to water stress[J]. Korean Journal of Horticultural Science & Technology, 2020, 38(2): 158-168.
[11] Yang Q, Xu L, Shi X, et al. Design of seedlings separation device with reciprocating movement seedling cups and its controlling system of the full-automatic plug seedling transplanter[J]. Computers & Electronics in Agriculture, 2018, 147(4): 131-145.
[12] 韓綠化,毛罕平,趙慧敏,等. 蔬菜穴盤育苗底部氣吹式缽體松脫裝置設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(4):37-45.
Han Lvhua, Mao Hanping, Zhao Huimin, et al. Design of root lump loosening mechanism using air jets to eject vegetable plug seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(4): 37-45. (in Chinese with English abstract)
[13] Abdel-Razzak H, Alkoaik F, Rashwan M, et al. Tomato waste compost as an alternative substrate to peat moss for the production of vegetable seedlings[J]. Journal of Plant Nutrition, 2018, 42(3): 287-295.
[14] Jin X, Li M, Li D, et al. Development of automatic conveying system for vegetable seedlings[J]. EUASIP Journal on Wireless Communications and Networking, 2018, 178(1): 1-9.
[15] 田素博,趙晨希,胡熙,等. 蔬菜移栽機(jī)自動(dòng)喂苗裝置關(guān)鍵部件設(shè)計(jì)與試驗(yàn)[J]. 沈陽農(nóng)業(yè)大學(xué)學(xué)報(bào),2020,51(5):586-592.
Tian Subo, Zhao Chenxi, Hu Xi, et al. Design and experiment on automatic feeding-seedling device of vegetable transplanter[J]. Journal of Shenyang Agricultural University, 2020, 51(5): 586-592. (in Chinese with English abstract)
[16] 馬廣. 氣吸滾筒式穴盤精量播種流水線設(shè)計(jì)[J]. 浙江大學(xué)學(xué)報(bào):農(nóng)業(yè)與生命科學(xué)版,2018,44(4):476-480.
Ma Guang. Design of air-aspiration drum type tray precision seeding streamline[J]. Journal of Zhejiang University: Agriculture and Life Sciences, 2018, 44(4): 476-480. (in Chinese with English abstract)
[17] 袁昊,劉彩玲,宋建農(nóng),等. 超級(jí)雜交稻穴盤育苗精量排種器壓電振動(dòng)供種裝置研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(S2):31-40.
Yuan Hao, Liu Cailing, Song Jiannong, et al. Piezoelectric vibration seed supply device of precision metering device for plug seedling of super hybrid rice[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 31-40. (in Chinese with English abstract)
[18] 夏紅梅, 周士琳, 劉園杰, 等. 扁平茄果類種子導(dǎo)向振動(dòng)供種裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2020, 51(9): 82-88.
Xia Hongmei, Zhou Shilin, Liu Yuanjie, et al. Design and test of directional vibrating seed-feeding device for flat solanaceous vegetable seeds[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(9): 82-88. (in Chinese with English abstract)
[19] 辜松,楊艷麗,張躍峰,等. 荷蘭蔬菜種苗生產(chǎn)裝備系統(tǒng)發(fā)展現(xiàn)狀及對(duì)中國的啟示[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(14):185-194.
Gu Song, Yang Yanli, Zhang Yuefeng, et al. Development status of automated equipment systems for greenhouse vegetable seedlings production in Netherlands and its inspiration for China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(14): 185-194. (in Chinese with English abstract)
[20] 劉中正,侯加林,辛杰,等. 智能化設(shè)施育苗機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(S1):136-142.
Liu Zhongzheng, Hou Jialin, Xin Jie, et al. Design and experiment of intelligent facilities seedling machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(S1): 136-142. (in Chinese with English abstract)
[21] 張峰峰,王家勝,王東偉,等. 自動(dòng)蔬菜穴盤育苗精量播種機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)機(jī)化研究,2017,39(11):93-98.
Zhang Fengfeng, Wang Jiasheng, Wang Dongwei, et al. Design and test of automatic vegetable tray precision seeder[J]. Journal of Agricultural Mechanization Research, 2017, 39(11): 93-98. (in Chinese with English abstract)
[22] 陳書法,張石平,李耀明. 壓電型振動(dòng)氣吸式穴盤育苗精量播種機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(S1):15-20. Chen Shufa, Zhang Shiping, Li Yaoming. Design and experiment of piezoelectric type vibration air-suction precision seeder with holey tray[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(S1): 15-20. (in Chinese with English abstract)
[23] 趙鄭斌,王俊友,劉立晶,等. 穴盤育苗精密播種機(jī)的研究現(xiàn)狀分析[J]. 農(nóng)機(jī)化研究,2015,37(8):1-5,25.
Zhao Zhengbin, Wang Junyou, Liu Lijing, et al. Advance research of tray precision sowing equipment[J]. Journal of Agricultural Mechanization Research, 2015, 37(8): 1-5,25. (in Chinese with English abstract)
[24] 劉云強(qiáng),趙鄭斌,劉立晶,等. 蔬菜穴盤育苗播種機(jī)研究現(xiàn)狀及發(fā)展趨勢(shì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,8(1):6-12.
Liu Yunqiang, Zhao Zhengbin, Liu Lijing, et al. Research status and development trend of vegetable plug seedling seeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 8(1): 6-12. (in Chinese with English abstract)
[25] 劉云強(qiáng). 氣吸滾筒式蔬菜育苗播種機(jī)試驗(yàn)研究[D]. 北京:中國農(nóng)業(yè)機(jī)械化科學(xué)研究院,2018.
Liu Yunqiang. Experimental Study on Air-suction Drum-type Vegetable Seedling Seeder[D]. Beijing: Chinese Academy of Agricultural Mechanization Sciences, 2018. (in Chinese with English abstract)
[26] 蔡敬鵬. 旋轉(zhuǎn)編碼器自動(dòng)校裝系統(tǒng)開發(fā)[D]. 上海:東華大學(xué),2020.
Cai Jingpeng. Development of Automatic Calibration System for Rotary Encoder[D]. Shanghai: Donghua University, 2020 (in Chinese with English abstract)
[27] 彭平. 基于ATmega2560無人飛艇飛行控制系統(tǒng)設(shè)計(jì)[J]. 電子測(cè)量技術(shù),2019,42(19):59-62.
Peng Ping. Control system design of unmanned airship based on ATmega2560[J]. Electronic Measurement Technology, 2019, 42(19): 59-62. (in Chinese with English abstract)
[28] 張金,葉艾,岳偉甲,等. Arduino程序設(shè)計(jì)與實(shí)踐[M]. 北京:電子工業(yè)出版社,2019:5-20.
[29] 李寧,白晶,陳桂,等. 電力拖動(dòng)與運(yùn)動(dòng)控制系統(tǒng)[M]. 北京:高等教育出版社,2009,202-203.
[30] 李勇,潘松峰. 基于DSP的M/T法測(cè)速研究[J]. 工業(yè)控制計(jì)算機(jī),2018,31(5):145-146.
Li Yong, Pan Songfeng. Research on M/T method based on DSP[J]. Industrial Control Computer, 2018, 31(5): 145-146. (in Chinese with English abstract)
[31] 竺熔. 氣力滾筒式異形種子精量排種器的設(shè)計(jì)與研究[D]. 杭州:浙江理工大學(xué),2017.
Zhu Rong. Design and Research on Pneumatic Cylinder type Precision Seed-metering Device for Irregular-shape Vegetable Seeds[D]. Hangzhou: Zhejiang Sci-Tech University, 2017. (in Chinese with English abstract)
[32] 夏紅梅,李志偉,甄文斌. 氣力板式蔬菜排種器設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(6):56-60.
Xia Hongmei, Li Zhiwei, Zhen Wenbin. Design and experiment of the vegetable seed metering device in pneumatic plate-type[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(6): 56-60. (in Chinese with English abstract)
Improvement of hole pressing roller device and design of the control system for vegetable seedling’s seeding assembly line
Sun Han1, Guo Guangchuan1, Tang Shuai1, Xue Jinlin1※, Lin Xiangze1, Li Qun2
(1.,,210031,; 2..,,224199,)
An automatic seedling machine line has been widely used for the seedling of vegetables and fruits in an intensive and efficient farming. It is a high demand for higher accuracy, production efficiency, and quality of seeding in the current vegetable seeding line. In this study, an improved active hole pressing roller device was designed with a new control system for a vegetable seeding line. The existing 2BSL-320 seeding assembly line was also optimized, including the soil paving, soil sweeping, hole pressing, seeding, soil covering, and transmission devices. The specific procedure was as followed. First of all, the seedling tray was filled with the soil at the soil paving device, where the brush was used to sweep the excess culture soil. The low accuracy of the original passive hole pressing roller was attributed to the uneven quality of the roller during the swing operation, where the seedling tray hit the baffle to rotate. Therefore, a new baffle was designed to replace the indenters in the device, resulting in the fact that the rotation was controlled by a stepping motor. Specifically, the arc length of two adjacent indenters was equal to the distance between the two centers of adjacent holes in the seedling tray. As such, 16 rows of indenters were installed for one revolution of the roller. The active hole pressing roller was then used to accurately press out the seed holes. Taking the Arduino Mega2560 as the control core, the control system of the seeding line mainly included the speed detection and control of the conveyor belt, while the initialization and control of the hole pressing and seeding device. Furthermore, a sensor system was selected, including the speed encoder, angle sensor, and a travel switch. A real-time measurement was made on the speed of the conveyor belt, the angular displacement of the hole pressing and seeding drum, as well as the position of the seedling tray on the conveyor belt. The actuator included the stepping and AC geared motor driven by stepper motor driver and AC motor frequency converter, respectively. Finally, the white powdery nursery soil and "Qinyou No. 2" rapeseed were taken to optimize the bench test. According to the requirement of technical standards, the seeding pass rate was greater than 90% when the production efficiency was 800 trays/h. After that, the speed control accuracy of the conveyor belt was verified under the given production efficiency of 100-800 trays/h. A comparison was made to evaluate the performance of the hole pressing with/without the closed-loop control. The open-loop controlled hole pressing roller was offset the seed hole center by 9.8-12.5 mm. A closed-loop control was also added. It was found that the hole pressing precision of the closed-loop control system was greatly improved, where each pressure head was pressed in the center of the seed cavity. Moreover, the highest production efficiency reached 800 trays/h in the seeding test. The results showed that the seeding pass rate of the seeding assembly line was greater than 90.8%, the repeat seeding rate was less than 3.9% and the empty rate was less than 5.3%, meeting the test requirements. Consequently, an automated seeding assembly line was developed to improve the traditional one that was controlled by a single-chip microcomputer and driven by a stepping motor. The control accuracy was also greatly improved under a higher production efficiency. The finding can offer a strong reference for the automatic vegetable seedlings.
agricultural machinery; experiment; control system; seeding assembly line; factory seedling
孫晗,郭廣川,唐帥,等. 蔬菜育苗播種流水線壓穴滾筒裝置改進(jìn)與控制系統(tǒng)設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(22):41-48.doi:10.11975/j.issn.1002-6819.2021.22.005 http://www.tcsae.org
Sun Han, Guo Guangchuan, Tang Shuai, et al. Improvement of hole pressing roller device and design of the control system for vegetable seedling’s seeding assembly line[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(22): 41-48. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.22.005 http://www.tcsae.org
2021-08-16
2021-10-25
江蘇省農(nóng)業(yè)自主創(chuàng)新資金項(xiàng)目(CX(19)2025)
孫晗,博士生,研究方向?yàn)檗r(nóng)業(yè)裝備控制與智能化。Email:18088786141@163.com
薛金林,教授,博士生導(dǎo)師,研究方向?yàn)檗r(nóng)業(yè)裝備測(cè)控與智能化。Email:xuejinlin@njau.edu.cn
10.11975/j.issn.1002-6819.2021.22.005
S223.2
A
1002-6819(2021)-22-0041-08