郭獻(xiàn)洲 劉文文
摘要 設(shè)遞推數(shù)列[an+1=fn(an)],[fn(x)]為其壓縮映射。利用不動(dòng)點(diǎn)定理引入并證明一致壓縮定理、冪壓縮定理等,從而求解收斂遞推數(shù)列的極限并判斷遞推數(shù)列發(fā)散的快慢。將結(jié)果推廣到更廣泛的完備錐度量空間。
關(guān) 鍵 詞 不動(dòng)點(diǎn)定理;遞推數(shù)列;一致壓縮;冪壓縮;錐度量空間
中圖分類(lèi)號(hào) O177.91? ? ?文獻(xiàn)標(biāo)志碼 A
文章編號(hào):1007-2373(2021)06-0051-05
Abstract Recursive sequence[an+1=fn(an)], [fn(x)]is the compression mapping. We introduce the fixed point theorem and prove the uniform compression theorem, the power reduction theorem and so on to solve the limit of the convergence of the recursive sequence and judge the divergent speed of the recurrence sequence . Then we generalize the result to a wider range of complete cone metric space.
Key words fixed point theorem; recursive sequence; uniform compression; power compres-sion; cone metric spaces
0 引言
利用不動(dòng)點(diǎn)列來(lái)求數(shù)列極限是一種有效簡(jiǎn)便的方法。首先,它能夠去掉遞推函數(shù)只能與通項(xiàng)有關(guān)的限制;再者,用遞推關(guān)系式表達(dá)的序列其通項(xiàng)表達(dá)式不易得到,但不動(dòng)點(diǎn)列可以直接求解得到其一般的通項(xiàng)表達(dá)式,更易得其極限。這樣,對(duì)于由遞推公式給出的數(shù)列,可以把求數(shù)列本身極限的問(wèn)題轉(zhuǎn)化為求不動(dòng)點(diǎn)列的極限問(wèn)題[1]。本文用Banach不動(dòng)點(diǎn)定理來(lái)討論遞推數(shù)列[an]的斂散性,將求數(shù)列的極限問(wèn)題轉(zhuǎn)化為求方程[fx=x]是否有唯一解的問(wèn)題。類(lèi)似的,在考慮如何判斷數(shù)列發(fā)散快慢的問(wèn)題時(shí),本文提出初等發(fā)散列的概念作為比較對(duì)象,再引入發(fā)散不動(dòng)點(diǎn)的概念,就可以更簡(jiǎn)單的判斷數(shù)列發(fā)散時(shí)的階的情況。
參考文獻(xiàn):
[1]? ? 江正華. Banach不動(dòng)點(diǎn)定理的一個(gè)推廣[J]. 南京大學(xué)學(xué)報(bào)(自然科學(xué)),2014,50(1):9-13.
[2]? ? HUANG L G,ZHANG X. Cone metric spaces and fixed point theorems of contractive mappings[J]. Journal of Mathematical Analysis and Applications,2007,332(2):1468-1476.
[3]? ? REZAPOUR S,HAMLBARANI R. Some notes on the paper “Cone metric spaces and fixed point theorems of contractive mappings”[J]. Journal of Mathematical Analysis and Applications,2008,345(2):719-724.
[4]? ? RAJA P,VAEZPOUR S M. Some extensions of banach's contraction principle in complete cone metric spaces[J]. Fixed Point Theory and Applications,2008,2008(1):768294.
[5]? ? HUANG H P,HAN Y,XU S Y. Some fixed point results on a class of contractive mappings in cone metric spaces[J]. Chinese Quarterly Journal of Mathematics,2013,28(4):539-545.
[6]? ? ASADI M,RHOADES B E,SOLEIMANI H. Some notes on the paper “The equivalence of cone metric spaces and metric spaces”[J]. Fixed Point Theory and Applications,2012,2012(87):1-4.
[7]? ? 綦建剛,劉衍勝,呂永敬. 函數(shù)的不動(dòng)點(diǎn)與數(shù)列的極限研究[J]. 山東師大學(xué)報(bào)(自然科學(xué)版),1997,12(1):87-90.
[8]? ? 董巧麗,郭文雅. 非擴(kuò)張映像的一類(lèi)慣性θ方法[J]. 河北工業(yè)大學(xué)學(xué)報(bào),2018,47(1):44-47.
[9]? ? 李娟. 利用壓縮映像原理處理有關(guān)數(shù)列收斂性[J]. 甘肅聯(lián)合大學(xué)學(xué)報(bào)(自然科學(xué)版),2011,25(5):29-31.
[10]? 郭獻(xiàn)洲,張相梅. 一類(lèi)算子的換位代數(shù)的K-群[J]. 河北工業(yè)大學(xué)學(xué)報(bào),2015,44(6):73-75.
[11]? 童裕孫. 泛函分析教程[M]. 上海:復(fù)旦大學(xué)出版社,2003:49-56.