雷豪杰,李貴春,柯華東,魏崍,丁武漢,徐馳,李虎
滴灌施肥對兩種典型作物系統(tǒng)土壤N2O排放的影響及其調(diào)控差異
雷豪杰1,李貴春2,柯華東1,魏崍1,丁武漢1,徐馳1,李虎1
1中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所/中國農(nóng)業(yè)綠色發(fā)展研究中心,北京 100081;2中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所,北京 100081
【】探明滴灌施肥對華北典型種植類型農(nóng)田N2O排放的影響差異與減排貢獻,并明確其綜合調(diào)控機制,為區(qū)域農(nóng)業(yè)生產(chǎn)碳氮優(yōu)化調(diào)控及滴灌施肥技術(shù)在華北推廣應(yīng)用提供科學(xué)支撐和技術(shù)儲備。選擇兩種典型的作物種植模式(冬小麥-夏玉米輪作和設(shè)施菜地)為研究對象,分別設(shè)置了4個處理,即對照(CK)、常規(guī)漫灌施肥(FP)、滴灌施肥(FPD)和滴灌優(yōu)化施肥(OPTD),利用自動靜態(tài)箱-氣相色譜法對這兩種系統(tǒng)土壤N2O排放進行了連續(xù)觀測分析。兩種作物系統(tǒng)N2O排放通量變化均與5 cm深土壤溫度顯著正相關(guān)(<0.05),均在基肥期出現(xiàn)最高排放峰值。在設(shè)施蔬菜和糧食作物系統(tǒng)中,F(xiàn)P處理N2O排放總量均為最高,分別達到(5.47±0.23)和(1.70±0.02)kg N·hm-2。對于N2O排放強度,設(shè)施蔬菜系統(tǒng)中FP處理為(159.72±2.47)g N·t-1,遠低于糧食作物系統(tǒng)(258.41±6.35)g N·t-1,未來N2O減排的關(guān)注點仍在糧食作物生產(chǎn)。滴灌施肥可顯著降低兩種系統(tǒng)N2O排放總量,相比FP處理,在設(shè)施蔬菜系統(tǒng)中滴灌施肥可顯著減少19.0%(<0.05),而在糧食作物系統(tǒng)中可減少達到35.0%(<0.05)。此外,當兩種系統(tǒng)施氮量分別降低50%和30%后,在保證作物產(chǎn)量下其減排貢獻可分別擴大到30.2%和45.8%。設(shè)施蔬菜和糧食作物系統(tǒng)土壤N2O排放特征存在明顯差異,糧食作物生產(chǎn)N2O排放強度明顯高于設(shè)施蔬菜生產(chǎn),應(yīng)進一步關(guān)注。同時,滴灌施肥技術(shù)在華北農(nóng)田兩種典型的作物系統(tǒng)中均能較好地減少N2O排放,對冬小麥-夏玉米輪作系統(tǒng)N2O減排貢獻更大,具有在華北平原進一步推廣應(yīng)用的潛力。
滴灌施肥;設(shè)施蔬菜;糧食作物;氧化亞氮(N2O);減排貢獻
【研究意義】2004年以來,我國糧食產(chǎn)量穩(wěn)增,實現(xiàn)了“十五連豐”,2015—2018年產(chǎn)量均穩(wěn)定在6.5億噸以上。不斷增加的水肥投入對保障中國糧食安全貢獻巨大,但由此造成的溫室氣體,如氧化亞氮(N2O)排放的增加等問題對區(qū)域乃至全球大氣環(huán)境帶來重大影響。相比于糧食作物產(chǎn)量,我國蔬菜產(chǎn)量自2011年起已超過糧食產(chǎn)量成為第一大農(nóng)產(chǎn)品[1]。其中,設(shè)施菜地占蔬菜總種植面積的32.3%以上[2],其“大水大肥”的種植模式極易導(dǎo)致土壤硝態(tài)氮累積、硝態(tài)氮淋失和N2O排放[3]。根據(jù)《中華人民共和國氣候變化第三次國家信息通報》,中國農(nóng)業(yè)活動產(chǎn)生的N2O占全國總排放量的65.4%,而且在人為擾動不斷加強下,未來排放總量還將繼續(xù)增加。同時,我國農(nóng)業(yè)生產(chǎn)也面臨著水資源短缺、農(nóng)業(yè)面源污染日趨嚴重的矛盾和巨大挑戰(zhàn)。以我國重要的糧食主產(chǎn)區(qū)華北平原為例,溫室氣體排放已經(jīng)成為不可忽視的環(huán)境問題。前人已有研究得到,華北平原冬小麥-夏玉米輪作系統(tǒng)在常規(guī)種植管理模式下N2O排放量可達4.1—7.6 kgN·hm-2·a-1[4-5];而且水資源供需矛盾突出,農(nóng)業(yè)耗水高達用水總量的75%以上,傳統(tǒng)大水漫灌的高耗水種植方式不能適應(yīng)農(nóng)業(yè)的發(fā)展,未來必須通過節(jié)水灌溉技術(shù)來滿足糧食產(chǎn)量需求。因此,如何平衡農(nóng)產(chǎn)品有效供給、緩解水資源缺乏和減少農(nóng)業(yè)源溫室氣體排放之間的關(guān)系,不僅是當前科學(xué)領(lǐng)域的前沿研究內(nèi)容,也是我國農(nóng)業(yè)可持續(xù)發(fā)展的現(xiàn)實要求?!厩叭搜芯窟M展】滴灌施肥是實現(xiàn)“資源節(jié)約和環(huán)境友好”兩型農(nóng)業(yè)的關(guān)鍵技術(shù)。該技術(shù)可節(jié)水40%以上,節(jié)肥20%以上,增產(chǎn)幅度達30%—50%,能有效保護生態(tài)環(huán)境[6],也被認為是最高效的施肥技術(shù)[7-8]。當前,滴灌水肥一體化技術(shù)在我國華北地區(qū)得到良好發(fā)展[9]。然而,不同于漫灌,滴灌施肥具有較高的灌溉頻率,使土壤干濕交替過程頻繁而影響土壤水分狀況及O2供應(yīng),勢必會對土壤N2O排放以及其通量特征產(chǎn)生重要的影響。因此,水分管理是減緩農(nóng)田N2O排放的重要措施[10]。研究表明,土壤水分飽和時會阻礙土壤中氣體的擴散,嫌氣環(huán)境抑制硝化過程,增加了反硝化潛勢、速率和N2O排放。而未飽和時,反硝化作用一般發(fā)生在土壤團聚體、植物凋落物降解和根際微域環(huán)境中[11]。王艷麗等[12]對滴灌施肥條件下設(shè)施蔬菜N2O排放研究表明,滴灌施肥既提高了氮素的利用率,又降低了硝化-反硝化反應(yīng)的底物濃度。張西超等[13]對設(shè)施土壤溫室氣體排放的影響也表明,覆膜滴灌方式可以使N2O、CO2、CH4的綜合排放量最少,達到最大程度的減排效果。陳靜等[14]對冬小麥-夏玉米作物系統(tǒng)研究認為,由于降雨驅(qū)動的作用減少了土壤表層NO3--N的含量,滴灌施肥比漫灌施肥減少了43%的N2O排放量。但王維漢等[15]研究表明,滴灌施肥促進了N2O排放,其主要原因是增加了土壤干濕交替過程。郭樹芳等[16]研究得到,微噴水肥一體化下華北平原冬小麥田土壤濕度更大,導(dǎo)致土壤N2O排放通量值比漫灌高76.22%?!颈狙芯壳腥朦c】以往對滴灌條件下N2O排放的研究多集中于單一系統(tǒng)[17-19],且研究結(jié)果存在爭議,不利于對滴灌減排效果的系統(tǒng)評價。而灌溉方式改變下不同作物體系N2O排放通量如何變化,尤其在人為設(shè)施影響和自然降水驅(qū)動下N2O排放差異及其調(diào)控機制仍不明晰?;诖耍訌姷喂鄺l件下不同種植模式N2O氣體排放的研究和探討,可為農(nóng)業(yè)土壤增匯減排提供技術(shù)參考,也是農(nóng)業(yè)綠色發(fā)展的需要?!緮M解決的關(guān)鍵問題】本研究以華北平原地區(qū)兩種主要的作物系統(tǒng)——設(shè)施蔬菜和大田糧食作物種植的N2O氣體排放為研究對象,同時開展田間原位監(jiān)測,以期弄清不同種植系統(tǒng)之間N2O的排放差異及主要影響因子,明確滴灌施肥對農(nóng)田土壤N2O的減排貢獻,從而為進一步推廣應(yīng)用滴灌施肥技術(shù)提供科學(xué)指導(dǎo)和數(shù)據(jù)支撐。
試驗點分別設(shè)在北京市順義區(qū)大孫各莊鎮(zhèn)(116°28'E,40°00'N)和山東省桓臺縣新城鎮(zhèn)逯家村(117°58'E,36°57'N)。氣候類型均為暖溫帶大陸性季風(fēng)氣候。其中,順義年均氣溫11.5℃,年均降水量625 mm,年相對濕度50%,土壤類型為潮褐土?;概_年均日照時數(shù)2 832.7 h,年均氣溫12.5℃,無霜期平均198 d,年降水量587 mm左右,土壤質(zhì)地為粉壤土。供試土壤基礎(chǔ)理化性質(zhì)見表1。
表1 供試農(nóng)田土壤基礎(chǔ)理化性質(zhì)
順義試驗點:供試蔬菜系統(tǒng)為普通半拱形塑料溫室大棚(75 m×7 m)。棚面為無色透明塑料棚膜,膜上蓋有保溫棉被。溫室頂部和低端設(shè)有通風(fēng)口,以控制溫室內(nèi)的溫度和濕度。試驗觀測期為2017年9—12月,作物類型選擇黃瓜。分別設(shè)置了對照(CK)、農(nóng)民習(xí)慣漫灌施肥(FP)、滴灌施肥(FPD)和滴灌優(yōu)化施肥(OPTD)4個處理,其中,對照處理為不施氮肥處理,灌溉管理與農(nóng)民習(xí)慣處理保持一致。每個處理有3次重復(fù),共12個小區(qū),小區(qū)面積為24 m2(4 m×6 m),小區(qū)之間由隔離帶(埋1 m深,長6 m塑料布)隔開。滴灌系統(tǒng)采用滴灌管,每個小區(qū)配有水表,用來記錄和控制灌溉水量。灌溉和施肥同時進行,滴灌下肥料隨水滴施,漫灌下將肥料溶于水后隨水施入。灌溉量依據(jù)田間持水量和當?shù)毓喔人看_定。黃瓜季分別在幼苗期、初花期和結(jié)果期進行追肥。各處理肥料施用量、灌溉水用量及灌溉施肥日期如表2所示。
表2 各處理施肥量和灌溉量
桓臺試驗點:供試糧食作物系統(tǒng)為已多年免耕和秸稈還田管理的冬小麥-夏玉米輪作農(nóng)田,采用隨機區(qū)組設(shè)計,于小麥季開展試驗,觀測期為2016年10月至2017年6月。滴灌系統(tǒng)采用滴灌線,每行小麥布設(shè)1條毛管,滴頭間距30 cm,滴灌量與當?shù)氐喂喙喔人恳恢?。試驗小區(qū)面積50 m2(5 m×10 m),小區(qū)四周均有寬2.5m的保護行,以保證小區(qū)間單獨灌水和施肥。試驗處理設(shè)置及肥料施用量見表2,各處理重復(fù)3次。其中,F(xiàn)P處理的施肥方式為撒施,灌溉、施肥量和時間與當?shù)剞r(nóng)民習(xí)慣一致。底肥使用NPK復(fù)合肥料,氮肥和鉀肥全部滴施,磷肥的20%作為底肥施入,其余80%追肥滴施。
土壤N2O氣體的采集和分析利用自動靜態(tài)箱-氣相色譜法。取樣時,將箱體置于底座凹槽中,并在凹槽中注水以確保密封性良好。每個小區(qū)每次取5袋氣體樣品,取樣間隔為6 min。取樣時間保持在當?shù)貢r間的9:00—11:00之間,以便于比較和減少日變化所導(dǎo)致的N2O排放通量差異。每次灌溉和施肥后連續(xù)取樣1周,直至各處理氣體濃度無明顯差異停止。順義試驗點其他時間取樣頻率為每周2—3次;桓臺試驗點每次10 mm以上日降雨后,增加逐日采樣5 d,3—11月每周采樣1次,12月、1月和2月份每2周采樣1次,降雨量的觀測設(shè)備為田間氣象站。采氣時,通過箱體上的溫度傳感器,記錄箱體內(nèi)部和5 cm深度土壤的溫度。采集的氣體樣品用Agilent 7890A氣相色譜儀分析N2O濃度。采樣過程中同步記錄樣地的氣溫、土溫、土壤含水量等環(huán)境因子。
N2O排放通量:
式中:代表N2O排放通量(μg N·m-2·h-1),正值表示土壤向大氣排放,負值表示吸收;為標準狀態(tài)下氣體的密度(g·L-1);為采樣箱氣室高度(m);為采樣箱內(nèi)氣溫(℃);d/d為采樣箱內(nèi)N2O氣體濃度隨時間變化的速率(μl·L-1·h-1);為采樣時氣壓(mmHg);0為標準大氣壓(mmHg);0≈1。
N2O氣體累積排放量:利用內(nèi)插法計算相鄰兩個監(jiān)測日之間未監(jiān)測的排放通量,將觀測值和內(nèi)插法計算出的值累加便可算出N2O排放總量。
N2O排放強度:N2O排放強度為N2O排放總量與產(chǎn)量的比值,可以反映作物產(chǎn)量的環(huán)境效益。計算公式如下:
=103×E/(2)
式中,為N2O排放強度(g N·t-1);E為N2O排放總量(kg N·hm-2);是相應(yīng)處理的蔬菜產(chǎn)量(t·hm-2)。
N2O排放系數(shù):N2O排放系數(shù)為由化肥氮施用引起的N2O-N排放總量與施氮量的比值,計算公式如下:
EF=100(F-C)/N(3)
式中,EF為N2O排放系數(shù)(%);F和C分別為施化肥氮和不施化肥氮處理下N2O排放總量(kg N·hm-2),N是化肥氮施用量,kg N·hm-2。
土壤孔隙含水量:由體積含水量計算得到。計算公式為:
=(4)
式中,是土壤孔隙含水量(%);θ是土壤體積含水量(cm3·cm-3);ρ是土壤容重(g·cm-3);ρ為土壤比重。
采用Excel 2016、Origin 2017對試驗數(shù)據(jù)進行計算和制圖。采用SPSS 24.0軟件對N2O排放指標(排放通量、總量、強度及系數(shù))進行方差分析或相關(guān)性分析。方差分析時,處理間多重比較選用Duncan0.05法。
兩個系統(tǒng)整個生長季N2O的排放通量變化見圖1。由于外源氮肥的施入提高底物濃度進而促進土壤硝化和反硝化反應(yīng),兩個系統(tǒng)中N2O排放高峰均出現(xiàn)在每次灌溉及施肥之后,各處理N2O的排放通量排序一致,均為FP處理>FPD處理>OPTD處理>CK處理。不同的是,設(shè)施蔬菜系統(tǒng)N2O的排放通量隨生長季下降趨勢明顯,且與追肥期相比,基肥期N2O的排放峰值持續(xù)時間更長,為6—8 d。糧食作物系統(tǒng)N2O的排放通量變化隨季節(jié)動態(tài)和灌溉施肥事件變化更明顯。在設(shè)施蔬菜生產(chǎn)系統(tǒng)中,F(xiàn)P、FPD、OPTD、CK處理N2O的平均排放通量分別為(798.08±28.12)、(610.29± 21.03)、(421.30±16.86)、(149.75±22.62)μg N·m-2·h-1。相比FP處理,N2O的排放通量在FPD和OPTD處理中分別顯著降低23.53%和47.21%(<0.05);糧食作物系統(tǒng)中,F(xiàn)P、FPD、OPTD、CK處理N2O的平均排放通量分別為(46.82±2.23)、(34.91±0.70)、(23.40±2.31)、(9.80±0.37)μg N·m-2·h-1。相比FP處理,N2O的排放通量在FPD處理中顯著降低25.43%(<0.05),OPTD處理中顯著降低50.01%(<0.05)??梢?,不同處理間N2O的排放通量存在顯著差異。
設(shè)施蔬菜和糧食作物系統(tǒng)各處理N2O排放通量與5 cm土溫、WFPS及氣溫的相關(guān)性分析結(jié)果見圖2。水熱條件是影響N2O排放的重要因子,5 cm土溫與季節(jié)氣溫均達到極顯著正相關(guān)關(guān)系(<0.01),設(shè)施蔬菜土溫范圍為(12.97—30.65)℃,糧食作物土溫變化范圍為(-0.47—23.85)℃;從土壤WFPS(0—15 cm)的變化來看,設(shè)施蔬菜和糧食作物系統(tǒng)的土壤WFPS均受灌溉影響較大,其變化范圍分別為46.58%— 75.55%和9.14%—95.41%??梢?,設(shè)施菜地溫度和濕度都相對較高,并比較恒定。整個觀測周期內(nèi),糧食作物系統(tǒng)各處理土壤WFPS沒有顯著差異,而設(shè)施蔬菜系統(tǒng)中,OPTD處理的土壤WFPS顯著低于FP和FPD處理(<0.05);兩個系統(tǒng)中CK處理N2O排放通量均與5 cm土壤溫度達到極顯著正相關(guān)(<0.01)。在設(shè)施蔬菜系統(tǒng)中,F(xiàn)P處理N2O排放通量與5 cm土壤溫度呈極顯著正相關(guān)關(guān)系(<0.01),F(xiàn)PD和OPTD處理N2O排放通量均與5 cm土壤溫度和WFPS達到極顯著正相關(guān)(<0.01);糧食作物系統(tǒng)中FP處理的N2O排放通量僅與土壤WFPS、5 cm土溫達到極顯著正相關(guān)(<0.01),F(xiàn)PD處理N2O排放通量與5 cm土壤溫度和WFPS達到顯著正相關(guān)(<0.01),OPTD處理N2O排放通量與5 cm土壤溫度呈極顯著正相關(guān)關(guān)系(<0.01),可見,不同環(huán)境條件下影響N2O排放的關(guān)鍵環(huán)境因子不同。
設(shè)施蔬菜和糧食作物系統(tǒng)中N2O排放總量情況如表3所示。各處理N2O季節(jié)排放總量排序在兩個系統(tǒng)內(nèi)一致,均為FP處理>FPD處理>OPTD處理>CK處理,F(xiàn)P、OPTD和FPD處理N2O排放量均顯著高于CK處理(<0.05)。在設(shè)施蔬菜系統(tǒng)中,與FP相比,F(xiàn)PD處理N2O排放總量顯著減少19.0%(<0.05),OPTD處理在FPD處理的基礎(chǔ)上使N2O季節(jié)排放總量進一步減少13.7%;在糧食作物系統(tǒng)中,與FP相比,OPTD和FPD處理的N2O排放總量分別顯著減少45.8%、35.0%(<0.05),施氮量和灌溉方式的改變都顯著影響了N2O的排放總量。各處理的N2O排放系數(shù)都低于IPCC的默認值(1%)。設(shè)施蔬菜系統(tǒng)中,不同處理間N2O排放系數(shù)排序為OPTD(0.66%)>FP(0.57%)>FPD(0.42%);糧食作物系統(tǒng)不同處理間N2O排放系數(shù)排序為FP(0.47%)>OPTD(0.31%)>FPD(0.29%)。
圖中的紅色向下箭頭表示每次施肥灌溉事件 The red downward arrow in the figure represents each fertilization and irrigation event
1-設(shè)施蔬菜系統(tǒng)Facility vegetable system;2-糧食作物系統(tǒng)Food crop system
表3 設(shè)施蔬菜系統(tǒng)和糧食作物系統(tǒng)各處理季度N2O累積排放總量及排放系數(shù)
不同字母表示系統(tǒng)內(nèi)處理之間的N2O排放總量差異顯著(<0.05)
Different letters indicate significant differences in total N2O emissions between treatments in the same system (<0.05)
設(shè)施蔬菜和糧食作物系統(tǒng)的N2O排放強度如圖3所示。兩個系統(tǒng)的N2O排放強度排序均為:FP處理>FPD處理>OPTD處理>CK處理。設(shè)施蔬菜系統(tǒng)中,F(xiàn)P、FPD、OPTD和CK處理的排放強度分別為:(159.72±2.47)、(138.13±12.04)、(113.61±7.70)、(46.36±8.03)g N·t-1。在糧食作物系統(tǒng)中,F(xiàn)P、FPD、OPTD和CK處理的N2O排放強度分別為:(258.41± 6.35)、(169.67±11.11)、(142.97±28.39)、(119.41±2.63)g N·t-1,F(xiàn)P和FPD處理N2O的排放強度在糧食作物系統(tǒng)中均大于其在設(shè)施菜地系統(tǒng)的強度。從滴灌施肥對N2O減排效果差異上分析表明,與FP處理相比,F(xiàn)PD處理在設(shè)施蔬菜系統(tǒng)中減少了13.5%的N2O排放強度,但未達到顯著水平,而在糧食作物系統(tǒng)中能夠顯著降低34.3%的N2O排放強度(<0.05)。此外,OPTD處理在設(shè)施蔬菜和糧食作物系統(tǒng)中均可以進一步降低N2O排放強度,較FP處理分別降低28.9%和44.7%。因此,相比設(shè)施蔬菜系統(tǒng),糧食作物系統(tǒng)的N2O的排放強度較高,但滴灌施肥技術(shù)下其排放強度減排效果明顯,依然是N2O減排的關(guān)注重點。
圖3 設(shè)施蔬菜和糧食作物系統(tǒng)各處理N2O排放強度
設(shè)施蔬菜系統(tǒng)基肥期后N2O排放通量變化下降趨勢明顯,而糧食作物系統(tǒng)中N2O排放通量在越冬后逐漸升高且隨季節(jié)動態(tài)和灌溉施肥事件變化更明顯。和以往研究結(jié)果一致[20-21],兩個系統(tǒng)內(nèi)各處理均在每次灌溉施肥后觀察到排放高峰,峰值的持續(xù)時間會因處理間化肥施用量和灌溉水量的不同而出現(xiàn)差異[22-23]。設(shè)施菜地系統(tǒng)峰值高、持續(xù)時間短(除基肥期),約3—5 d,尤其是施入大量化肥和有機肥的基肥期,較高的碳源和底物濃度有效地促進了反硝化作用的速率[24-25],且其土壤溫度和濕度一直保持在較高水平,土壤中硝化-反硝化反應(yīng)的微生物及酶的活性高,利于N2O的產(chǎn)生和排放。而糧食作物系統(tǒng)由于生長周期較長,越冬時節(jié)的低溫抑制了土壤中硝化-反硝化過程,導(dǎo)致N2O排放通量處于較低水平。開春后,溫度回升,N2O的排放通量也隨之升高。王艷麗等[12]對春夏季黃瓜的研究和張婧等[26]對冬小麥/夏玉米輪作系統(tǒng)的研究也觀測到類似N2O季節(jié)動態(tài)特征。劉巧等[27]研究得到,葡萄種植系統(tǒng)中N2O排放通量受水氮調(diào)控顯著影響,且各處理均在灌溉施肥后出現(xiàn)排放峰。同樣,本研究中兩個系統(tǒng)N2O排放峰出現(xiàn)的頻率及時間和灌溉施肥事件保持一致,水氮的投入明顯激發(fā)了N2O的產(chǎn)生[25,28],但設(shè)施菜地中N2O更易被激發(fā),其FP處理的N2O排放通量介于(27.01—4524.69)μg N·m-2·h-1,與其他觀測結(jié)果一致[29]。而糧食作物N2O排放通量介于(-6.34—330.29)μg N·m-2·h-1之間,與黃淮海地區(qū)其他研究結(jié)果類似[5,30]。對比兩個系統(tǒng)CK處理,設(shè)施菜地系統(tǒng)背景N2O排放通量達到149.75 μg N·m-2·h-1,遠高于糧食作物系統(tǒng)??梢姡O(shè)施菜地系統(tǒng)N2O的排放通量遠高于大田作物系統(tǒng),系統(tǒng)差異主要來自N2O排放通量的背景值[31]。徐玉秀等[32]對旱地農(nóng)田N2O背景排放量的研究也表明,蔬菜系統(tǒng)的N2O背景排放量最高,系統(tǒng)間的不同土壤背景、水熱條件和人為管理共同影響土壤硝化和反硝化作用。目前對N2O的研究多集中于灌溉、施肥等宏觀因子的探討,有待加強農(nóng)田環(huán)境因子變化與土壤N2O排放的關(guān)系方面的研究[33],進一步明確N2O排放的微觀機理及系統(tǒng)間的排放差異來源。
在設(shè)施蔬菜和糧食作物系統(tǒng)內(nèi),F(xiàn)P、FPD和OPTD處理N2O排放量一致顯著高于CK處理(<0.05),且FP處理均出現(xiàn)季節(jié)最高N2O排放總量。灌施肥可顯著降低兩種系統(tǒng)N2O排放量。相比FP處理,滴灌施肥FPD處理在設(shè)施菜地和糧食作物系統(tǒng)中N2O排放總量可分別顯著減少19.0%和35.0%(<0.05)??梢?,N2O排放量除了與施氮量呈顯著相關(guān)關(guān)系外[34-36],也與灌溉方式的改變密切相關(guān)。此外,糧食作物系統(tǒng)N2O排放強度明顯大于設(shè)施蔬菜系統(tǒng)。本研究中設(shè)施蔬菜系統(tǒng)N2O排放強度為(46.36—159.72)g N·t-1,低于謝海寬等[19]的研究結(jié)果((80—240)g N·t-1)。而在糧食作物系統(tǒng)中單位產(chǎn)量N2O排放強度為(119.41— 258.41)g N·t-1,與徐鈺等[37-38]在華北地區(qū)的研究結(jié)果基本一致。CUI等[39]對中國水稻、小麥和玉米生產(chǎn)系統(tǒng)的205項已發(fā)表研究進行meta分析得到,水稻、小麥和玉米系統(tǒng)單位產(chǎn)量N2O排放強度范圍分別為(140—290)、(160—450)和(210—440)g N·t-1。雖然設(shè)施蔬菜季節(jié)N2O排放量是糧食作物的3—4倍,然而其季節(jié)產(chǎn)量是糧食作物系統(tǒng)的5—9倍,使得生產(chǎn)單位產(chǎn)量的N2O排放量設(shè)施蔬菜系統(tǒng)要明顯低于糧食作物生產(chǎn)系統(tǒng)。可見,糧食作物系統(tǒng)中N2O排放強度由于基礎(chǔ)水平較高,減排潛力巨大。另外,有研究也表明,在滴灌條件下優(yōu)化施氮量后,兩個系統(tǒng)的N2O排放強度均可進一步降低。ZHANG等[40]對典型蔬菜集約種植體系的研究也發(fā)現(xiàn),菜地減少1/3的施氮量能有效降低菜地單位產(chǎn)量N2O排放量。吳震等[41]基于文獻整合分析對集約化菜地N2O排放及減排的研究結(jié)果也證明了這一點。巨曉棠等[42]揭示了華北平原小麥季N2O的排放強度會隨施氮量增加呈二次增長模式。綜上分析,在兩個系統(tǒng)中減少氮肥的使用量是N2O減排的關(guān)鍵,但相比設(shè)施蔬菜系統(tǒng),糧食作物系統(tǒng)N2O減排潛力巨大,其較高的N2O排放強度不能忽視,未來N2O減排的關(guān)注點仍是糧食作物系統(tǒng)。
施氮量不變的條件下改漫灌為滴灌,設(shè)施蔬菜和糧食作物系統(tǒng)N2O排放總量分別顯著減少19.0%和35.0%,N2O排放強度分別減少13.5%和34.3%(<0.05)。而分別減氮50%和30%后,兩系統(tǒng)N2O排放總量、強度分別顯著減少30.2%和45.8%、28.9%和44.7%(<0.05)。黃麗華等[43]的研究表明,滴灌施肥區(qū)的設(shè)施蔬菜地單位產(chǎn)量N2O排放量能減少53.2%—58.9%。江雨倩等[21]研究也表明,施氮量不變下滴灌施肥能比漫灌減少29.41%的N2O排放總量,減氮40%其減排效果可達到32.63%??梢?,滴灌施肥技術(shù)N2O減排效果顯著[44-45],優(yōu)化施氮量能夠進一步減排,且在兩個系統(tǒng)中糧食作物系統(tǒng)的減排效果更大。一般認為,灌溉方式的改變引起土壤WFPS差異而影響N2O排放[46],如漫灌條件下土壤表面氮素、濕度均勻分布,表層飽和后易形成厭氧環(huán)境,促進反硝化反應(yīng)。滴灌施肥條件下土壤WFPS較低,有效抑制土壤的反硝化作用[47-49]。同時,不同水肥管理模式會導(dǎo)致硝化和反硝化細菌群落結(jié)構(gòu)改變進而顯著影響N2O排放量。優(yōu)化氮肥用量后,N2O的排放過程由氨氧化細菌(AOB)主導(dǎo)逐漸轉(zhuǎn)為氨氧化古菌(AOA)主導(dǎo)[50]。曹子敏[51]的研究也證明了增加施肥會顯著增加AOB的數(shù)量,當AOB的數(shù)量增加時,N2O的排放量也會增加,而滴灌施肥能夠顯著增加氨氧化古菌(AOA)的數(shù)量。在本研究中,兩個系統(tǒng)中漫灌和滴灌處理之間WFPS均未觀察到顯著差異,土壤5 cm土溫也未顯著差異,說明每個系統(tǒng)中漫灌和滴灌下土壤硝化-反硝化作用受水熱條件影響一致,土壤硝化-反硝化作用的整體方向沒有因滴灌施肥而發(fā)生變化。故滴灌施肥雖在設(shè)施蔬菜和糧食作物系統(tǒng)中均形成了土壤硝化-反硝化反應(yīng)的有利環(huán)境,但其顯著的減排效果主要是因為水肥利用效率的提高。因為滴灌施肥顯著提高0—40 cm土層脲酶活性,進而促進施入土壤中尿素的水解,保證植物生長所需的氮源,促進氮素吸收利用率升高,反而降低了土壤進行硝化-反硝化作用反應(yīng)底物濃度,削減了N2O的排放量[21,52]。其次,本研究中滴灌施肥在兩個系統(tǒng)中N2O減排量差異較大,主要因為兩個系統(tǒng)間土壤本底、施氮量和作物類型不一致,共同導(dǎo)致土壤硝化或反硝化的反應(yīng)底物濃度出現(xiàn)差異,最終影響滴灌施肥的N2O減排效果。此外,設(shè)施菜地是封閉系統(tǒng),土壤表面覆膜的增溫保濕作用使滴頭附近濕潤區(qū)WFPS較高,而該區(qū)域強反硝化作用的發(fā)生將土壤中來不及釋放到空氣中的N2O進一步被還原為N2,從而抵消了一部分減排效果[48,53]。而糧食作物為開放系統(tǒng),滴灌施肥條件下土壤經(jīng)常達到飽和含水量,土壤中殘留的N素更易受到降雨影響淋失到土壤深處,減少了土壤表層多余氮素殘留,一定程度地促進了N2O減排。綜上分析,在糧食作物系統(tǒng)中滴灌施肥的減排效果影響因素更多,除提高作物根部養(yǎng)分利用率[54],同時受氮素損失途徑、氣候條件的多重影響。鑒于N2O僅是氮素損失的一種途徑,而不同途徑之間存在“trade-off”效應(yīng)[55],因此有必要同步開展N2O排放、氨揮發(fā)、硝酸鹽淋洗的長期研究。
4.1 設(shè)施蔬菜和糧食作物系統(tǒng)N2O排放通量均在常規(guī)漫灌下最高,分別達到4 524.69和330.29 μg N·m-2·h-1。N2O排放通量均與5 cm深土壤溫度達到顯著正相關(guān)(<0.05),灌溉施肥激發(fā)了N2O排放。設(shè)施蔬菜系統(tǒng)基肥期N2O排放峰最高,隨后下降。而糧食作物系統(tǒng)中其隨季節(jié)和灌溉施肥的變化趨勢更明顯。
4.2 設(shè)施蔬菜和糧食作物系統(tǒng)的N2O季節(jié)排放總量分別為1.50—5.47和0.43—1.70 kg N·hm-2,以常規(guī)漫灌處理排放最高。N2O排放強度在糧食作物系統(tǒng)中顯著高于設(shè)施菜地系統(tǒng),分別為258.41和159.72 g N·t-1,未來N2O減排的關(guān)注點仍在糧食作物生產(chǎn),減排潛力較大。
4.3 滴灌施肥能顯著降低N2O排放總量,糧食作物系統(tǒng)中可顯著降低35.0%(<0.05),設(shè)施蔬菜系統(tǒng)中為19.0%。進一步優(yōu)化施氮量和灌溉水量后,在設(shè)施蔬菜和糧食作物系統(tǒng)中減排量可擴大為30.2%和45.8%。滴灌施肥技術(shù)在設(shè)施蔬菜和糧食作物系統(tǒng)均具有顯著的減排效果,特別是糧食作物系統(tǒng),值得在華北農(nóng)業(yè)生產(chǎn)中進一步推廣應(yīng)用。
[1] 李曉冉, 張銀平, 刁培松, 王振偉, 姚文燕, 王占濱. 我國蔬菜生產(chǎn)概況及精量播種機研究現(xiàn)狀. 農(nóng)機化研究, 2021, 43(5): 263-268.
LI X R, ZHANG Y P, DIAO P S, WANG Z W, YAO W Y, WANG Z B. General situation of vegetable production and research status of precision seeder in China. Journal of Agricultural Mechanization Research, 2021, 43(5): 263-268. (in Chinese)
[2] 李世楠. 我國設(shè)施蔬菜產(chǎn)業(yè)發(fā)展現(xiàn)狀與未來發(fā)展趨勢探討. 中國林副特產(chǎn), 2019(1): 84-85.
LI S N. Discussion on the development status and future development trend of my country's protected vegetable industry. Forest By-Product and Speciality in China, 2019(1): 84-85. (in Chinese)
[3] 李若楠, 武雪萍, 張彥才, 王麗英, 陳麗莉, 翟鳳芝. 節(jié)水減氮對溫室土壤硝態(tài)氮與氮素平衡的影響. 中國農(nóng)業(yè)科學(xué), 2016, 49(4): 695-704.
LI R N, WU X P, ZHANG Y C, WANG L Y, CHEN L L, ZHAI F Z. Effects of reduced application of nitrogen and irrigation on soil nitrate nitrogen content and nitrogen balance in greenhouse production. Scientia Agricultura Sinica, 2016, 49(4): 695-704. (in Chinese)
[4] 邱建軍, 王立剛. 環(huán)渤海區(qū)域農(nóng)業(yè)碳氮平衡定量評價及調(diào)控技術(shù)研究. 北京: 科學(xué)技術(shù)出版社, 2012.
QIU J J, WANG L G. Study on agricultural C, N balance and mitigation technique in Bohai Coastal Region. Beijing: Science and Technology Press, 2012. (in Chinese)
[5] 裴淑瑋, 張圓圓, 劉俊鋒, 倫小秀, 牟玉靜. 華北平原玉米-小麥輪作農(nóng)田N2O交換通量的研究. 環(huán)境科學(xué), 2012, 33(10): 3641-3646.
PEI S W, ZHANG Y Y, LIU J F, LUN X X, MOU Y J. N2O exchange fluxes from wheat-maize crop rotation system in the North China Plain. Environmental Science, 2012, 33(10): 3641-3646. (in Chinese)
[6] 高祥照, 杜森, 鐘永紅, 吳勇, 張賡. 水肥一體化發(fā)展現(xiàn)狀與展望. 中國農(nóng)業(yè)信息, 2015(2): 14-19, 63.
GAO X Z, DU S, ZHONG Y H, WU Y, ZHANG Q. The present situation and prospect of the integrated development of water and fertilizer. China Agricultural Information, 2015(2): 14-19, 63. (in Chinese)
[7] FEIGIN A, LETEY J, JARRELL W M. N utilization efficiency by drip irrigated celery receiving preplant or water applied N fertilizer. Agronomy Journal, 1982, 74(6): 978-983.
[8] 白由路. 高效施肥技術(shù)研究的現(xiàn)狀與展望. 中國農(nóng)業(yè)科學(xué), 2018, 51(11): 2116-2125.
BAI Y L. The situation and prospect of research on efficient fertilization. Scientia Agricultura Sinica, 2018, 51(11): 2116-2125. (in Chinese)
[9] 農(nóng)業(yè)部辦公廳. 推進水肥一體化實施方案(2016-2020年). 2017-11- 27. http://www.moa.gov.cn/nybgb/2016/diwuqi/201711/t20171127_ 5920793.htm.
General Office of the Ministry of Agriculture. Fertigation implementation (2016-2020). 2017-11-27. http://www.moa.gov.cn/ nybgb/2016/diwuqi/201711/t20171127_ 5920793.htm. (in Chinese)
[10] TYAGI L, KUMARI B, SINGH S N. Water management-A tool for methane mitigation from irrigated paddy fields. Science of the Total Environment, 2010, 408: 1085-1090.
[11] ROBERTSON G P, GROFFIMAN P M. Nitrogen transformations// Paul E A. Soil Microbiology, Ecology and Biochemistry. Massachusetts: Academic Press, 2015: 421-446.
[12] 王艷麗, 李虎, 孫媛, 王立剛. 水肥一體化條件下設(shè)施菜地的N2O排放. 生態(tài)學(xué)報, 2016, 36(7): 2005-2014.
WANG Y L, LI H, SUN Y, WANG L G. N2O emissions from a vegetable field with fertigation management and under greenhouse conditions. Acta Ecologica Sinica, 2016, 36(7): 2005-2014. (in Chinese)
[13] 張西超, 葉旭紅, 韓冰, 李文, 范慶鋒, 鄒洪濤, 張玉龍. 灌溉方式對設(shè)施土壤溫室氣體排放的影響. 環(huán)境科學(xué)研究, 2016, 29(10): 1487-1496.
ZHANG X C, YE X H, HAN B, LI W, FAN Q F, ZOU H T, ZHANG Y L. Effects of irrigation methods on emissions of greenhouse gases from facilities soil. Research of Environmental Sciences, 2016, 29(10): 1487-1496. (in Chinese)
[14] 陳靜, 王迎春, 李虎, 王立剛, 邱建軍, 肖碧林. 滴灌施肥對冬小麥農(nóng)田土壤NO3--N分布、累積及氮素平衡的影響. 植物營養(yǎng)與肥料學(xué)報, 2015, 21(4): 927-935.
CHEN J, WANG Y C, LI H, WANG L G, QIU J J, XIAO B L. Characteristics soil nitrate nitrogen distribution,accumulation and nitrogen balance in winter wheat field under drip fertigation. Journal of Plant Nutrition and Fertilizers, 2015, 21(4): 927-935. (in Chinese)
[15] 王維漢, 毛前, 嚴愛蘭. 滴灌下青椒地N2O排放規(guī)律研究. 中國農(nóng)村水利水電, 2014(7): 31-34.
WANG W H, MAO Q, YAN A L. N2O emission from green pepper field under drip irrigation. China Rural Water and Hydropower, 2014(7): 31-34. (in Chinese)
[16] 郭樹芳, 齊玉春, 尹飛虎, 彭琴, 董云社, 賀云龍, 閆鐘清. 不同灌溉方式對華北平原冬小麥田土壤CO2和N2O排放通量的影響. 環(huán)境科學(xué), 2016, 37(5): 1880-1890.
GUO S F, QI Y C, YIN F H, PENG Q, DONG Y S, HE Y L, YAN Z Q. Effect of irrigation patterns on soil CO2and N2O emissions from winter wheat field in North China plain. Environmental Science, 2016, 37(5): 1880-1890. (in Chinese)
[17] KENNEDY T L, SUDDICK E C, SIX J. Reduced nitrous oxide emissions and increased yields in California tomato cropping systems under drip irrigation and fertigation. Agriculture, Ecosystems & Environment, 2013, 170: 16-27.
[18] HUA K, ZHU B, WANG X. Soil organic carbon loss from carbon dioxide and methane emissions, as well as runoff and leaching on a hillslope of Regosol soil in a wheat-maize rotation. Nutrient Cycling in Agro-ecosystems, 2015, 103(1): 75-86.
[19] 謝海寬, 江雨倩, 李虎, 徐馳, 丁武漢, 王立剛, 張婧. 北京設(shè)施菜地N2O和NO排放特征及滴灌優(yōu)化施肥的減排效果. 植物營養(yǎng)與肥料學(xué)報, 2019, 25(4): 591-600.
XIE H K, JIANG Y Q, LI H, XU C, DING W H, WANG L G, ZHANG J. N2O and NO emissions from greenhouse vegetable fields and the mitigation efficacy of the optimized fertigation in Beijing. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 591-600. (in Chinese)
[20] 張仲新, 李玉娥, 華珞, 萬運帆, 姜寧寧. 不同施肥量對設(shè)施菜地N2O排放通量的影響. 農(nóng)業(yè)工程學(xué)報, 2010, 26(5): 269-275.
ZHANG Z X, LI Y E, HUA L, WAN Y F, JIANG N N. Effects of different fertilizer levels on N2O flux from protected vegetable land. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(5): 269-275. (in Chinese)
[21] 江雨倩, 李虎, 王艷麗, 張婧, 孫媛, 王立剛, 黃誠誠, 張建峰. 滴灌施肥對設(shè)施菜地N2O 排放的影響及減排貢獻. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2016, 35(8): 1616-1624.
JIANG Y Q, LI H, WANG Y L, ZHANG J, SUN Y, WANG L G, HUANG C C, ZHANG J F. Effects of fertigation on N2O emissions and their mitigation in greenhouse vegetable fields. Journal of Agro-Environment Science, 2016, 35(8):1616-1624. (in Chinese)
[22] 陳海燕, 李虎, 王立剛, 邱建軍. 京郊典型設(shè)施蔬菜地N2O排放規(guī)律及影響因素研究. 中國土壤與肥料, 2012(5): 5-10.
CHEN H Y, LI H, WANG L G, QIU J J. Characteristics and influencing factors on nitrous oxide emissions from typical greenhouse vegetable fields in Beijing suburbs. Soil and Fertilizer Sciences in China, 2012(5): 5-10. (in Chinese)
[23] 張婧, 李虎, 王立剛, 邱建軍. 京郊典型設(shè)施蔬菜地土壤N2O排放特征. 生態(tài)學(xué)報, 2014, 34(14): 4088-4098.
ZHANG J, LI H, WANG L G, QIU J J. Characteristics of nitrous oxide emissions from typical greenhouse vegetable fields in Beijing suburbs. Acta Ecologica Sinica, 2014, 34(14): 4088-4098. (in Chinese)
[24] 王敬, 程誼, 蔡祖聰, 張金波. 長期施肥對農(nóng)田土壤氮素關(guān)鍵轉(zhuǎn)化過程的影響. 土壤學(xué)報, 2016, 53(2): 292-304.
WANG J, CHENG Y, CAI Z C, ZHANG J B. Effect of long-term fertilization on key processes of soil nitrogen cycling in agricultural soil:A review. Acta Pedologlca Sinica, 2016, 53(2): 292-304. (in Chinese)
[25] 呂玉, 周龍, 龍光強, 湯利. 不同氮水平下間作對玉米土壤硝化勢和氨氧化微生物數(shù)量的影響. 環(huán)境科學(xué), 2016, 37(8): 3229-3236.
Lü Y, ZHOU L, LONG G Q, TANG L. Effect of different nitrogen rates on the nitrification potential and abundance of ammoniaoxidizer in intercropping maize soils. Environmental Sciences, 2016, 37(8): 3229-3236. (in Chinese)
[26] 張婧, 夏光利, 李虎, 朱國梁, 牟小翎, 王立剛, 黃誠誠, 江雨倩. 一次性施肥技術(shù)對冬小麥/夏玉米輪作系統(tǒng)土壤N2O排放的影響. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2016, 35(1): 195-204.
ZHANG J, XIA G L, LI H, ZHU G L, MOU X L, WANG L G, HUANG C C, JIANG Y Q. Effect of single basal fertilization on N2O emissions in wheat and maize rotation system. Journal of Agro- Environment Science, 2016, 35(1): 195-204. (in Chinese)
[27] 劉巧, 吉艷芝, 郭艷杰, 張麗娟, 張杰, 韓建. 水氮調(diào)控對葡萄園土壤溫室氣體排放及其增溫潛勢的影響. 中國農(nóng)業(yè)科學(xué), 2019, 52(8): 1413-1424.
LIU Q, JI Y Z, GUO Y J, ZHANG L J, ZHANG J, HAN J. Effects of water and nitrogen regulation on greenhouse gas emissions and warming potential in vineyard soil. Scientia Agricultura Sinica, 2019, 52(8): 1413-1424. (in Chinese)
[28] BROKEN W, MATZNER E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Global Change Biology, 2009, 15(4): 808-824.
[29] He F F, Jiang R F, Chen Q, Zhang F S, Su F. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China. Environmental Pollution, 2009, 157(5): 1666-1672.
[30] Wang L G, Li H, Qiu J J. Characterization of emissions of nitrous oxide from soils of typical crop fields in Huang-Huai-Hai Plain. Scientia Agricultura Sinica, 2008, 41(4): 1248-1254.
[31] ALIYU G, SANZ-COBENA A, MüLLER C, ZAMAN M, LUO J F, LIU D Y, YUAN J J, CHEN Z M, NIU Y H, AROWOLO A, DING W X. A meta-analysis of soil background N2O emissions from croplands in China shows variation among climatic zones. Agriculture, Ecosystems and Environment, 2018, 267.
[32] 徐玉秀, 郭李萍, 謝立勇, 云安萍, 李迎春, 張璇, 趙迅, 刁田田. 中國主要旱地農(nóng)田N2O背景排放量及排放系數(shù)特點. 中國農(nóng)業(yè)科學(xué), 2016, 49(9): 1729-1743.
XU Y X, GUO L P, XIE L Y, YUN A P, LI Y C, ZHANG X, ZHAO X, DIAO T T. Characteristics of background emissions and emission factors of N2O from major upland fields in China. Scientia Agricultura Sinica, 2016, 49(9): 1729-1743. (in Chinese)
[33] 呂曉東, 王婷. 旱地農(nóng)田氧化亞氮排放研究進展. 甘肅農(nóng)業(yè)科技, 2018(10): 67-73.
Lü X D, WANG T. Research progress of nitrous oxide emissions from dryland farmland. Gansu Agricultural Science and Technology, 2018(10): 67-73. (in Chinese)
[34] SONG X T, LIU M, JU X T, GAO B, SU F, CHEN X P, REES R M. Nitrous oxide emissions increase exponentially when optimum nitrogen fertilizer rates are exceeded in the north China plain. Environmental Science & Technology, 2018, 52(21): 12504-12513.
[35] MILLAR N, ROBERTSON G P, GRACE R R, GEHL R J, HOBEN J P. Nitrogen fertilizer management for nitrous oxide (N2O) mitigation in intensive corn (Maize) production: an emissions reduction protocol for US Midwest agriculture. Mitigation and Adaptation Strategies for Global Change, 2010, 15: 185-204.
[36] 李燕青, 唐繼偉, 車升國, 溫延臣, 孫文彥, 趙秉強. 長期施用有機肥與化肥氮對華北夏玉米N2O和CO2排放的影響. 中國農(nóng)業(yè)科學(xué), 2015, 48(21): 4381-4389.
LI Y Q, TANG J W, CHE S G, WEN Y C, SUN W Y, ZHAO B Q. Effect of organic and inorganic fertilizer on the emission of CO2and N2O from the summer maize field in the North China plain. Scientia Agricultura Sinica, 2015, 48(21): 4381-4389. (in Chinese)
[37] 徐鈺, 劉兆輝, 張建軍, 石璟, 王梅, 楊巖, 江麗華. 不同氮肥管理措施對華北地區(qū)夏玉米田增產(chǎn)減排的效果分析. 中國土壤與肥料, 2018(1): 9-15.
XU Y, LIU Z H, ZHANG J J, SHI J, WANG M, YANG Y, JIANG L H. Effect of different nitrogen management measures on yield and nitrous oxide emission of summer maize field in North China plain. Soil and Fertilizer Sciences in China, 2018(1): 9-15. (in Chinese)
[38] Cui Z L, Yue S C, Wang G L, Meng Q F, Wu L, Yang Z P, Zhang Q, Li S Q, Zhang F S, Chen X P. Closing the yield gap could reduce projected greenhouse gas emissions: a case study of maize production in China. Global Change Biology, 2013, 19(8):2467-2477.
[39] Cui Z L, Wang G L, Yue S C, Wu L, Zhang W F, Zhang F S, Chen X P. Closing the N-use efficiency gap to achieve food and environmental security. Environmental Science & Technology, 2014, 48(10): 5780-5787.
[40] Zhang M, Chen Z Z, Li Q L, FAN C H, XIONG Z Q. Quantitative relationship between nitrous oxide emissions and nitrogen application rate for a typical intensive vegetable cropping system in Southeastern China. Clean-soil, Air, Water, 2016, 44(12): 1725-1732.
[41] 吳震, 陳安楓, 朱爽閣, 熊正琴. 集約化菜地N2O排放及減排——基于文獻整合分析.農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2020, 39(4): 707-714.
WU Z, CHEN A F, ZHU S G, XIONG Z Q. Assessing nitrous oxide emissions and mitigation potentials from intensive vegetable ecosystems in China—Meta-analysis. Journal of Agro-Environment Science, 2020, 39(4): 707-714. (in Chinese)
[42] 巨曉棠, 谷保靜. 我國農(nóng)田氮肥施用現(xiàn)狀、問題及趨勢. 植物營養(yǎng)與肥料學(xué)報, 2014, 20(4): 783-795.
JU X T, GU B J. Status-quo, problem and trend of nitrogen fertilization in China. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 783-795. (in Chinese)
[43] 黃麗華, 沈根祥, 顧海蓉, 錢曉雍, 施興榮, Maria L G. 肥水管理方式對蔬菜田N2O釋放影響的模擬研究. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2009, 28(6): 1319-1324.
HUANG L H, SHEN G X, GU H R, QIAN X Y, SHI X R, Maria L G. Simulation of some impacts of fertilization and water management on nitrous oxide e-missions from vegetable field. Journal of Agro-Environment Science, 2009, 28(6): 1319-1324. (in Chinese)
[44] YAO Z S, YAN G X, ZHENG X H, WANG R, LIU C Y, KLAUS B B. Reducing N2O and NO emissions while sustaining crop productivity in a Chinese vegetable-cereal double cropping system. Environment Pollution, 2017, 231: 929-941.
[45] Kim D G, Hernandez-Ramirez G, Giltrap D. Linear and nonlinear dependency of direct nitrous oxide emissions on fertilizer nitrogen input: A meta-analysis. Agriculture, Ecosystems and Environment, 2013, 168: 53-65.
[46] 韓冰, 葉旭紅, 張西超, 李文, 范慶鋒, 鄒洪濤, 張玉龍. 不同灌溉方式設(shè)施土壤N2O 排放特征及其影響因素. 水土保持學(xué)報, 2016, 30(5): 310-315.
HAN B, YE X H, ZHANG X C, LI W, FAN Q F, ZOU H T, ZHANG Y L. Characteristics of soil nitrous oxide emissions and influence factors under different irrigation managements from greenhouse soil. Journal of Soil and Water Conservation, 2016, 30(5): 310-315. (in Chinese)
[47] KALLENBACH C M, ROLSTON D E, HORWATH W R. Cover cropping affects soil N2O and CO2emissions differently depending on type of irrigation. Agriculture, Ecosystems and Environment, 2010, 137(3/4): 251-260.
[48] Sanchez-Martin L, Arce A, Benito A, Garcia-Torres L, Vallejo A. Influence of drip and furrow irrigation systems on nitrogen oxide emissions from a horticultural crop. Soil Biology and Biochemistry, 2008, 40: 1698-1706.
[49] SCHEER C, WASSMANNN R, KIENZLER K, IBRAGIMOV N, ESCHANOV R. Nitrous oxide emissions from fertilized irrigated cotton (L.) in the Aral Sea Basin, Uzbekistan: influence of nitrogen applications and irrigation practices. Soil Biology and Biochemistry, 2008, 40(2): 290-301.
[50] DUAN P P, FAN C H, ZHANG Q Q, XIONG Z Q. Overdose fertilization induced ammonia-oxidizing archaea producing nitrous oxide in intensive vegetable fields. Science of the Total Environment, 2019, 650: 1787-1794.
[51] 曹子敏. 不同水肥管理對設(shè)施蔬菜土壤氮循環(huán)功能微生物的影響[D]. 北京: 中國地質(zhì)大學(xué), 2019.
CAO Z M. Effects of different irrigation and fertilization managements on nitrogen cycle functional microbes in greenhouse vegetable soils[D]. Beijing: China University of Geosciences, 2019. (in Chinese)
[52] 陳寧, 孫凱寧, 王克安, 楊寧, 宋計平, 呂曉惠. 不同灌溉方式對茄子栽培土壤微生物數(shù)量和土壤酶活性的影響. 土壤通報, 2016, 47(6): 1380-1385.
CHEN N, SUN K N, WANG K A, YANG N, SONG J P, Lü X H. Effects of different irrigation methods on soil microbial biomass and soil enzyme activities in eggplant cultivation. Chinese Journal of Soil Science, 2016, 47(6): 1380- 1385. (in Chinese)
[53] AGUILERA E, LASSALETTA L, SANZ-COBENA A, GARNIER J, VALLEJO A. The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems: A review. Agriculture, Ecosystems and Environment, 2013, 164: 32-52.
[54] 劉虎成, 徐坤, 張永征, 孫敬強. 滴灌施肥技術(shù)對生姜產(chǎn)量及水肥利用率的影響. 農(nóng)業(yè)工程學(xué)報, 2012, 28(S1): 106-111.
LIU H C, XU K, ZHANG Y Z, SUN J Q. Effect of drip fertigation on yield, water and fertilizer utilization in ginger. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(Suppl.1): 106-111. (in Chinese)
[55] 齊玉春, 郭樹芳, 董云社, 彭琴, 賈軍強, 曹叢叢, 孫良杰, 閆鐘清, 賀云龍. 灌溉對農(nóng)田溫室效應(yīng)貢獻及土壤碳儲量影響研究進展. 中國農(nóng)業(yè)科學(xué), 2014,47(9): 1764-1773.
QI Y C, GUO S F, DONG Y S, PENG Q, JIA J Q, CAO C C, SUN L J, YAN Z Q, HE Y L. Advances in research on the effects of irrigation on the greenhouse gases emission and soil carbon sequestration in agro-ecosystem. Scientia Agricultura Sinica, 2014, 47(9): 1764-1773. (in Chinese)
Analysis of Impacts and Regulation Differences on Soil N2O Emissions from Two Typical Crop Systems Under Drip Irrigation and Fertilization
LEI HaoJie1, LI GuiChun2, KE HuaDong1, WEI Lai1, DING WuHan1, XU Chi1, LI Hu1
1Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Research Center for Agricultural Green Development in China, Beijing 100081;2Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081
【】The aim of this study was to ascertain the impact differences and emission reduction contribution of drip irrigation and fertilization on N2O emissions from farmland of typical planting types in North China, and to clarify its comprehensive control mechanism, so as to provide scientific support and technical reserves for the optimization and control of regional agricultural production carbon and nitrogen and the promotion and application of drip fertilization technology in North China.【】Two typical crop planting modes (winter wheat-summer corn rotation and facility vegetable fields) were selected as the research objects, and four treatments were set, namely control (CK), conventional flood irrigation fertilization (FP), drip irrigation fertilization (FPD), and drip irrigation Optimized fertilization (OPTD). Continuous static observation and analysis of soil N2O emissions from these two systems were performed by using automatic static chamber-gas chromatography.【】The changes of N2O fluxes from the two crop systems were significantly positively correlated with the soil temperature of 5cm (<0.05), and both crop systems had the highest N2O emission peak during the basal fertilizer period. In the greenhouse vegetable and food crop systems, the total cumulative N2O emissions of FP treatment were the highest, reaching (5.47±0.23) and (1.70±0.02) kg N·hm-2, respectively. For the N2O emission intensity per unit yield, the FP treatment in the facility vegetable system was (159.72±2.47) g N·t-1, which was much lower than the grain crop system (258.41±6.35) g N·t-1. The focus of future N2O emission reduction was still food crop production. Drip irrigation and fertilization could significantly reduce the total N2O emissions of the two systems. Compared with FP treatment, drip irrigation and fertilization in facility vegetable systems could significantly reduce the total N2O emissions by 19.0% (<0.05), while in food crop systems could be reduced by 35.0% (<0.05). In addition, when the nitrogen application rates of the two systems were reduced by 50% and 30%, the emission reduction contribution was expanded to 30.2% and 45.8%, respectively, while ensuring crop yields.【】There were obvious differences in the characteristics of soil N2O emissions from facility vegetable and food crop systems. The N2O emission intensity of food crop production was significantly higher than that of facility vegetable production, and the further attention should be paid. At the same time, drip irrigation and fertilization technology could reduce N2O emissions in two typical crop systems in North China farmland, but it had a greater contribution to N2O emission reduction in the winter wheat-summer corn rotation system, and it had the potential for further application in the North China Plain.
drip irrigation and fertilization; facility vegetables; food crops; N2O; emission reduction contribution
10.3864/j.issn.0578-1752.2021.04.009
2020-05-19;
2020-09-11
國家自然科學(xué)基金(41671303)、國家重點研發(fā)計劃(2018YFD0800402)
雷豪杰,E-mail:haojielink@126.com。通信作者李虎,E-mail:lihu0728@sina.com
(責任編輯 李云霞)