潘陽陽 陳宜波 王重榮 李宏 黃道強(qiáng) 周德貴 王志東 趙雷 龔蓉 周少川
γ-氨基丁酸和2-乙酰-1-吡咯啉代謝通路在水稻籽粒發(fā)育過程中的變化分析
潘陽陽 陳宜波 王重榮 李宏 黃道強(qiáng) 周德貴 王志東 趙雷 龔蓉 周少川*
(廣東省農(nóng)業(yè)科學(xué)院 水稻研究所/廣東省水稻育種新技術(shù)重點(diǎn)實(shí)驗(yàn)室, 廣州 510640;*通信聯(lián)系人, E-mail: xxs123@163.com)
結(jié)合代謝組和轉(zhuǎn)錄組技術(shù),分析香稻和非香稻不同發(fā)育時(shí)期籽粒中γ-氨基丁酸(GABA)和2-乙酰-1-吡咯啉(2AP)代謝通路主要化合物和基因的動(dòng)態(tài)變化,為高含量GABA和2AP的水稻育種提供理論依據(jù)。本研究收集優(yōu)質(zhì)香秈稻美香占2號(hào)和優(yōu)質(zhì)秈稻黃華占花后8 d(乳熟期)、花后15 d(蠟熟期)、30 d(完熟期)的脫殼籽粒和花后40 d收獲的籽粒的精米,對(duì)各樣本采用LC-MS/MS和RNA-seq技術(shù)進(jìn)行代謝產(chǎn)物檢測和轉(zhuǎn)錄表達(dá)分析,分析兩個(gè)水稻品種GABA和2AP代謝通路相關(guān)化合物的空間分布以及含量變化特征。代謝組數(shù)據(jù)PCA分析表明兩個(gè)水稻品種乳熟期籽粒和花后40 d收獲的籽粒的精米明顯分離,蠟熟期和完熟期籽粒分離不明顯。代謝組共鑒定出623種代謝物,四個(gè)時(shí)期差異代謝物合計(jì)161個(gè)。GABA和2AP通路中9個(gè)代謝物被檢出,兩個(gè)水稻品種的相關(guān)代謝物變化趨勢相似,其中腐胺主要定位于籽粒的糊粉層,而亞精胺在內(nèi)胚乳特異累積。轉(zhuǎn)錄組共檢出3.3萬個(gè)左右基因,其中檢出GABA通路18個(gè)酶中的14個(gè)酶對(duì)應(yīng)的基因有較高的表達(dá)水平,除外其他基因均不是差異表達(dá)基因,同一基因在兩份水稻材料中的表達(dá)水平和變化趨勢相似,、、和在相應(yīng)同源基因中表達(dá)水平較高。黃華占籽粒中-精氨酸和腐胺的代謝在蠟熟期已基本結(jié)束,美香占2號(hào)在籽粒整個(gè)發(fā)育期具有持續(xù)較強(qiáng)的多胺降解水平。美香占2號(hào)籽粒具有合成2AP的物質(zhì)基礎(chǔ),多胺降解途徑和谷氨酸-脯氨酸轉(zhuǎn)化通路同時(shí)有助于2AP的積累。水稻籽粒GABA代謝以降解為主,和共同調(diào)控GABA的降解。GABA相關(guān)代謝物主要集中在糊粉層,黃華占籽粒中代謝物分布和基因表達(dá)特征與美香占2號(hào)相似,美香占2號(hào)籽粒成熟過程中具有持續(xù)較高的線粒體活性。
γ-氨基丁酸;2-乙酰-1-吡咯啉;籽粒發(fā)育;香稻;代謝組學(xué)
水稻是我國重要的糧食作物,隨著農(nóng)業(yè)供給側(cè)結(jié)構(gòu)性改革的推進(jìn),在確??诩Z安全的前提下,“重點(diǎn)發(fā)展優(yōu)質(zhì)稻米產(chǎn)業(yè)”已成為水稻產(chǎn)業(yè)長期發(fā)展的必然選擇,培育功能性水稻、優(yōu)質(zhì)香稻等特色水稻將成為重要的育種方向。
γ-氨基丁酸(GABA)是一種重要的非蛋白氨基酸,參與植物體的逆境脅迫、信號(hào)傳遞和碳氮平衡等多種生理生化反應(yīng)[1-3]。哺乳動(dòng)物GABA主要分布在中樞神經(jīng)細(xì)胞,作為重要的抑制性神經(jīng)遞質(zhì),具有抑制神經(jīng)傳遞、調(diào)節(jié)血壓、提高免疫力和預(yù)防癌癥等功效[4-6]。稻米GABA開發(fā)重要材料之一,巨胚水稻、胚芽米已作為一種GABA富集功能食品被推入市場[7-8]。2-乙酰-1-吡咯啉(2AP)是香稻的特征香味物質(zhì)[9-10],香味已成為評(píng)價(jià)優(yōu)質(zhì)米的一項(xiàng)重要指標(biāo),而我國香米在國際高檔香米市場缺乏品牌競爭力。GABA和2AP主要在籽粒的糊粉層和胚中富集,而在人們通常食用的精米(內(nèi)胚乳)中兩種物質(zhì)的含量較糙米分別下降40%[11-12]和70%左右[13],研究開發(fā)內(nèi)胚乳GABA、2AP高含量水稻品種,對(duì)GABA功能水稻和香稻產(chǎn)業(yè)發(fā)展具有促進(jìn)作用。
深入研究GABA和2AP生物合成途徑,對(duì)水稻育種過程中實(shí)現(xiàn)兩者的定向改良具有重要意義。通過查閱兩個(gè)代謝通路相關(guān)文獻(xiàn)[2,14-17],以及對(duì)精氨酸、脯氨酸和谷氨酸的KEGG通路分析發(fā)現(xiàn),谷氨酸和4-氨基丁醛是GABA和2AP生物合成的共同前體物質(zhì),進(jìn)一步繪制兩個(gè)代謝通路關(guān)聯(lián)圖(圖1):GABA和2AP代謝通路共涉及15種代謝物和18種酶,其中,GABA代謝通路主要包括GABA支路和多胺降解途徑,前者由谷氨酸脫羧酶直接催化谷氨酸生成GABA,后者由多胺物質(zhì)經(jīng)多個(gè)酶促反應(yīng)生成4-氨基丁醛,在甜菜堿醛脫氫酶(BADH2)催化下合成GABA[18],而香稻通常由于BADH2功能失活,導(dǎo)致4-氨基丁醛能夠環(huán)化生成1-吡咯啉,再與乙酰基團(tuán)結(jié)合自發(fā)生成2AP[19-20],而非香稻不產(chǎn)生2AP;也有研究報(bào)道谷氨酸-脯氨酸相互轉(zhuǎn)化過程中的中間物1-吡咯啉-5-羧酸(P5C)能夠生成1-吡咯啉[21-22]。
GABA和2AP在水稻籽粒發(fā)育過程中動(dòng)態(tài)代謝和積累的機(jī)制尚不明確,由于代謝通路涉及的代謝物和同源基因較多,難以通過基因克隆等方式對(duì)通路進(jìn)行系統(tǒng)研究,多層組學(xué)為復(fù)雜通路的解析提供了行之有效的研究方法。本研究以優(yōu)質(zhì)稻黃華占和廣東省絲苗米代表性品種香稻美香占2號(hào)為研究對(duì)象,收集四個(gè)發(fā)育時(shí)期籽粒,利用代謝組和轉(zhuǎn)錄組聯(lián)合分析方法,分別評(píng)價(jià)非香稻和香稻籽粒發(fā)育過程中GABA和2AP代謝通路相關(guān)化合物的動(dòng)態(tài)變化,揭示關(guān)鍵化合物的空間分布和代謝特征;重點(diǎn)分析香稻中GABA和2AP在籽粒發(fā)育中的積累機(jī)制;進(jìn)一步提出利用基因編輯等生物技術(shù)提高籽粒中GABA和2AP含量的策略,為GABA功能性香稻育種提供理論依據(jù)。
ADC—精氨酸脫羧酶;AgmAH—鯡精胺酶;ARG—精氨酸酶;BADH2—甜菜堿醛脫氫酶2;DAO—二胺氧化酶;GABA-T—氨基丁酸轉(zhuǎn)氨酶;GAD—谷氨酸脫羧酶;GDH—谷氨酸脫氫酶;OAT—鳥氨酸轉(zhuǎn)氨酶;ODC—鳥氨酸脫羧酶;P5CDH—吡咯啉-5-羧酸脫氫酶;P5CR—吡咯啉-5-羧酸還原酶;P5CS—吡咯啉-5-羧酸合成酶;PAO—多胺氧化酶;ProDH—脯氨酸脫氫酶;SpdS—亞精胺合成酶;SpmS—精胺合成酶;SSADH—琥珀酸半醛脫氫酶。
以本研究室培育出的黃華占和美香占2號(hào)為材料(黃華占是我國南方稻區(qū)推廣面積最大的優(yōu)質(zhì)常規(guī)秈稻品種,美香占2號(hào)于2018?2020年連續(xù)三屆獲得全國優(yōu)質(zhì)秈稻品種食味品質(zhì)鑒評(píng)金獎(jiǎng)),于2018年晚季在廣東省農(nóng)業(yè)科學(xué)院水稻研究所育種基地(廣州)種植,采用常規(guī)種植和管理方式。分別在花后8 d(乳熟期)、15 d(蠟熟期)、30 d(完熟期,糙米)[23]收集9~12株水稻籽粒,在液氮條件下脫殼,同時(shí)對(duì)開花后40 d的籽粒用碾米機(jī)獲得精米,所有樣品于?80 ℃冰箱中保存。
收集的各組水稻籽粒樣品委托武漢邁特維爾生物科技有限公司進(jìn)行代謝組和轉(zhuǎn)錄組后續(xù)處理,每組樣品3個(gè)生物學(xué)重復(fù)。
1.2.1 代謝組分析方法
水稻籽粒樣品真空冷凍干燥,經(jīng)Retsch MM 400研磨儀研磨呈粉末狀,稱取100 mg粉末樣品,溶于1 mL提取液中(70%甲醇-水溶液);溶解后的樣品4 ℃下過夜,期間渦旋3次,提高提取率;10 000下離心10 min,吸取上清液,用0.22 μm微孔濾膜過濾樣品,保存于進(jìn)樣瓶中,用超高效液相色譜(UPLC,儀器型號(hào)Shim-pack UFLC SHIMADZU CBM30A)和串聯(lián)質(zhì)譜(MS/MS,儀器型號(hào)Applied Biosystems 6500 QTRAP)進(jìn)行分析。質(zhì)控樣本(QC)由樣本提取物混合制備而成,在儀器分析過程中,每10個(gè)檢測分析樣本中插入一個(gè)質(zhì)控樣品,用于監(jiān)測樣本在相同的處理方法下的重復(fù)性。
液相條件:色譜柱選用Waters ACQUITY UPLC HSS T3 C18 1.8 μm,2.1 mm×100 mm;流動(dòng)相水相為超純水(加0.04%乙酸),有機(jī)相為乙腈(加0.04%乙酸),流動(dòng)相A:乙腈∶甲醇=3∶1,加0.01%BHT;流動(dòng)相B:甲基叔丁基醚加0.01%BHT,洗針液為甲醇;洗脫梯度:0 min為95∶5(水相/有機(jī)相,/),11 min為5∶95(/),12 min為5∶95(/),12.1 min為95∶5(/),15 min為95∶5(/);流速0.4 mL/min,進(jìn)樣量2 μL,柱溫40 ℃。
質(zhì)譜條件:電噴霧離子源(ESI)溫度500 ℃,質(zhì)譜電壓5500 V,簾氣(CUR)25 psi,碰撞誘導(dǎo)電離(CAD)參數(shù)設(shè)置為高。在三重四級(jí)桿(QQQ)中,每個(gè)離子對(duì)根據(jù)優(yōu)化的去簇電壓(DP)和碰撞能(CE)進(jìn)行掃描檢測。
1.2.2 轉(zhuǎn)錄組分析方法
用Trizol 法提取樣本總RNA(40D樣本不進(jìn)行轉(zhuǎn)錄組分析),完成cDNA文庫構(gòu)建后,使用Illumina Hiseq4000 高通量測序平臺(tái)對(duì)cDNA 文庫進(jìn)行測序,得到原始數(shù)據(jù)。
1.3.1 代謝組數(shù)據(jù)分析
利用軟件Analyst 1.6.3處理質(zhì)譜數(shù)據(jù),檢測器中獲得特征離子的信號(hào)強(qiáng)度(CPS),用MultiaQuant軟件打開樣本質(zhì)譜文件,進(jìn)行色譜峰的積分和校正。每個(gè)色譜峰的峰面積(Area)代表對(duì)應(yīng)物質(zhì)相對(duì)含量。根據(jù)不同樣本中對(duì)應(yīng)代謝物的保留時(shí)間和峰型信息,校正相應(yīng)代謝物。
利用SIMCA-P 13.0軟件包,進(jìn)行無監(jiān)督的主成分分析(PCA)、偏最小二乘法判別分析(PLS-DA)以及正交偏最小二乘法判別分析(OPLS-DA),差異代謝物篩選標(biāo)準(zhǔn)為變量權(quán)重值(VIP)>1且(corr)絕對(duì)值≥0.6。
1.3.2 轉(zhuǎn)錄組數(shù)據(jù)分析
利用FPKM(每百萬Reads中來自比對(duì)到某一基因每千堿基長度的Reads數(shù)目)值表示表達(dá)豐度,差異表達(dá)基因篩選通過DEseq2軟件包完成,將FDR≤0.05且兩樣品間log2的絕對(duì)值≥1的基因定義為差異表達(dá)基因,其中,表示兩樣品表達(dá)量的比值。
1.3.3 常規(guī)數(shù)據(jù)處理
常規(guī)數(shù)據(jù)利用Excel 2013和SPSS 24進(jìn)行數(shù)據(jù)分析。
對(duì)代謝組數(shù)據(jù)進(jìn)行無監(jiān)督的PCA分析(圖2),結(jié)果顯示每組樣品的三個(gè)生物學(xué)樣品具有較好重復(fù)性,其中黃華占和美香占2號(hào)花后8 d籽粒沿主成分1明顯分離,表明該時(shí)期代謝物組成較其他時(shí)期差異明顯;兩個(gè)品種花后15 d和花后30 d樣品未明顯分離;花后40 d籽粒的精米樣品高度重疊且與其他三個(gè)時(shí)期樣品分離明顯,表明兩個(gè)水稻品種精米具有相似的代謝物。
PC1:主成分1解釋總變異的42.9%;PC2:主成分2解釋總變異的21.9%。8D, 15D,30D和40D分別代表花后8 d(乳熟期)、15 d(蠟熟期)、30 d(完熟期,糙米)脫殼籽粒,花后40 d籽粒碾成的精米。
代謝組共定性出623種代謝物,相同時(shí)期籽粒鑒定出的代謝物數(shù)量相近(圖3):花后15 d和花后30 d籽粒鑒定出的代謝物最多(600個(gè)左右);花后8 d籽粒的代謝物數(shù)量次之,美香占2號(hào)較黃華占多56個(gè);花后40 d籽粒的精米樣品檢出代謝物數(shù)量最少。差異代謝物分析表明四個(gè)時(shí)期差異代謝物合計(jì)161個(gè),占總代謝物的25.8%,差異代謝物類別排名前三位的是氨基酸類(32種)、脂類(27種)和有機(jī)酸類(21種),占總差異代謝物的49.7%。兩個(gè)水稻品種在花后8 d籽粒差異代謝物最多為101個(gè),而花后40 d籽粒的精米樣品差異代謝物最少為49個(gè)。
代謝組鑒定出GABA代謝通路中的9個(gè)代謝物,分別為γ-氨基丁酸、-谷氨酸、α-酮戊二酸、琥珀酸、-脯氨酸、-精氨酸、腐胺、精胺和亞精胺(圖4),其中美香占2號(hào)花后15 d籽粒中GABA含量顯著高于同時(shí)期黃華占,同時(shí),該時(shí)期GABA支路中的琥珀酸、多胺降解途徑中的脯氨酸和精胺含量均顯著高于同時(shí)期的黃華占。
圖3 黃華占(HHZ)和美香占2號(hào)(MXZ)四個(gè)時(shí)期籽粒代謝物數(shù)量分布
兩個(gè)水稻品種的GABA相關(guān)代謝物變化趨勢相似,隨籽粒成熟9個(gè)代謝物含量均降低,表明籽粒發(fā)育過程中GABA代謝活動(dòng)旺盛。從代謝物的空間分布來看,除亞精胺外的其他8個(gè)代謝物在花后30 d籽粒中含量均明顯高于精米,說明GABA代謝過程主要集中在糊粉層和胚等組織,其中腐胺在兩個(gè)品種的精米中均未檢出,表明籽粒中的腐胺定位于糊粉層,而亞精胺特異分布在內(nèi)胚乳。
轉(zhuǎn)錄組約檢出3.3萬個(gè)基因具有一定的表達(dá)水平,GABA通路相關(guān)18種酶對(duì)應(yīng)基因的表達(dá)水平如表1所示,其中有14個(gè)酶對(duì)應(yīng)的基因均有較高水平的表達(dá),進(jìn)一步表明籽粒在完全成熟之前具有活躍的GABA代謝進(jìn)程。
從表達(dá)水平分析,同一基因在兩份水稻材料中的表達(dá)水平和變化趨勢相近,除為差異表達(dá)基因外,其他基因均不是差異表達(dá)基因,表明這些基因在籽粒發(fā)育中具有較強(qiáng)的保守性。同源基因之間僅個(gè)別基因高表達(dá),如、、和在相應(yīng)同源基因中表達(dá)水平較高,說明同源基因具有明顯的組織表達(dá)特異性。
兩個(gè)水稻品種在多胺降解途徑的速率表現(xiàn)出明顯差異(圖4):黃華占花后15 d籽粒的-精氨酸和腐胺被迅速降解至最低值,表明在花后15 d籽粒中兩個(gè)化合物的代謝已基本結(jié)束,而亞精胺含量在各個(gè)時(shí)期均高于美香占2號(hào),這與黃華占的、、和活性持續(xù)較高密切相關(guān);美香占2號(hào)籽粒在花后15 d至30 d發(fā)育過程中精氨酸、精胺和腐胺含量均明顯降低,表明美香占2號(hào)在籽粒形成期多胺代謝水平低于黃華占,但在成熟過程中具有持續(xù)較強(qiáng)的多胺降解水平。
*表示差異代謝物。
美香占2號(hào)籽粒在發(fā)育成熟前具備多胺降解的物質(zhì)基礎(chǔ),且能夠持續(xù)實(shí)現(xiàn)多胺降解,有利于籽粒2AP的積累。同時(shí),谷氨酸-脯氨酸相互轉(zhuǎn)化通路中,在美香占2號(hào)花后15 d和成熟期籽粒中、和均具有較高表達(dá)水平,而基因幾乎不表達(dá)(表1),這種表達(dá)特性有利于1-吡咯啉-5-羧酸的積累。
多組學(xué)技術(shù)能夠得到生物體的代謝物、蛋白組和基因表達(dá)等信息,在挖掘關(guān)鍵基因[24]、逆境生理代謝[25-26]和分析水稻品種間營養(yǎng)差異物質(zhì)[27]等領(lǐng)域已得到廣泛應(yīng)用;同時(shí),多組學(xué)聯(lián)合分析方法能夠針對(duì)特定代謝物獲得相對(duì)完整的遺傳信息,加速對(duì)感興趣通路的整體認(rèn)識(shí)。GABA代謝過程復(fù)雜,其GABA支路中和分別有5個(gè)和4個(gè)同源基因[28-30],對(duì)各個(gè)基因的定位研究較少;而多胺代謝物能夠廣泛地參與植物發(fā)育過程[14,31],但在水稻籽粒發(fā)育過程中的動(dòng)態(tài)變化未見深入研究,主要受制于代謝通路復(fù)雜和同源基因表達(dá)的差異性。本研究運(yùn)用代謝組和轉(zhuǎn)錄組分析技術(shù),對(duì)籽粒的四個(gè)發(fā)育時(shí)期進(jìn)行研究,能夠在宏觀上把握GABA相關(guān)代謝物和基因的分布和變化特性。
表1 黃華占和美香占2號(hào)籽粒三個(gè)發(fā)育時(shí)期GABA通路相關(guān)基因表達(dá)量
*表示差異表達(dá)基因,N/A表示該基因轉(zhuǎn)錄本未檢出,加粗基因表示重點(diǎn)關(guān)注的基因。
* Represents differentially expressed gene; N/A represents the gene transcript was not detected; The bold sections represent the genes of interest.
*表示差異表達(dá)基因,* Represents differentially expressed gene
研究表明,GABA降解在線粒體進(jìn)行[3,30],谷氨酸脫羧反應(yīng)是GABA合成的主要通路[1,32],一定脅迫條件下多胺代謝通路能夠進(jìn)行GABA的生物合成[2,16]。本研究發(fā)現(xiàn)籽粒發(fā)育過程中GABA代謝活躍,其中和具有較高表達(dá)水平,且GABA含量在籽粒發(fā)育中呈下降趨勢,提示GABA降解水平高于其合成水平。GABA降解產(chǎn)物琥珀酸和α-酮戊二酸進(jìn)入三羧酸循環(huán),而美香占2號(hào)花后15 d—30 d籽粒中兩個(gè)代謝物含量降幅明顯高于黃華占,進(jìn)一步發(fā)現(xiàn)美香占2號(hào)籽粒中6個(gè)線粒體標(biāo)志酶的表達(dá)水平均高于黃華占(圖5),推斷美香占2號(hào)籽粒糊粉層線粒體具有持續(xù)較高的生理活性。
2AP是一種極易揮發(fā)、脂溶性的化合物[33],Yoshihashi 等[34]研究推斷精米中2AP與淀粉顆粒復(fù)合體緊密結(jié)合;Hinge等[17]對(duì)Basmati-370和Ambemohar-157兩個(gè)香稻品種四個(gè)發(fā)育時(shí)期的籽粒進(jìn)行2AP含量檢測,推測籽粒2AP由葉片轉(zhuǎn)運(yùn)而來,但籽粒能否自身合成2AP尚不確定。另外,Christophersen和Struve[35]研究證實(shí)4-氨基丁醛在堿性條件下能夠自身環(huán)化為1-吡咯啉,但尚未發(fā)現(xiàn)1-吡咯啉-5羧酸轉(zhuǎn)變?yōu)?-吡咯啉的直接證據(jù)[36]。本研究發(fā)現(xiàn)2AP代謝所需的前體物質(zhì)(如脯氨酸、谷氨酸、精氨酸和腐胺)在各個(gè)發(fā)育時(shí)期的籽粒中含量較高,同時(shí)相關(guān)基因、和等具有較高表達(dá)水平,證實(shí)籽粒存在合成2AP的物質(zhì)基礎(chǔ)。
周露等[37]通過RNA干擾對(duì)進(jìn)行基因敲低發(fā)現(xiàn)籽粒中GABA含量提高;Akama等[38]在水稻中過表達(dá)截短C末端的,使葉片GABA含量提高43倍,但導(dǎo)致植株不育;Akama等[39]對(duì)基因的鈣調(diào)域進(jìn)行基因編輯,籽粒GABA含量提高7倍;利用基因編輯敲除創(chuàng)制香稻應(yīng)用較多[40-42],但如何精確調(diào)控胚乳GABA和2AP積累需深入研究。
本研究發(fā)現(xiàn)籽粒GABA以降解為主,利用基因編輯技術(shù)對(duì)籽粒中特異表達(dá)的進(jìn)行編輯能夠提高籽粒GABA含量;同時(shí),對(duì)和的C末端進(jìn)行靶向編輯,提高相應(yīng)GAD活性,有利于提高籽粒GABA的生物合成;在非香稻中過表達(dá)將特異提高胚乳GABA含量。另外,對(duì)香稻進(jìn)行基因編輯,有利于揭示脯氨酸代謝影響2AP積累的分子機(jī)制;在香稻中過表達(dá)基能夠提高糊粉層中2AP含量;籽粒中特異提高表達(dá)水平,將有利于胚乳2AP的積累。
[1] Narayan V S, Nair P M. Metabolism, enzymology and possible roles of 4-aminobutyrate in higher plants[J]., 1990, 29: 367-375.
[2] Fait A, Fromm H, Walther D. Highway or byway: The metabolic role of GABA shunt in plants[J]., 2007, 13: 1380-1385.
[3] Shelp B J, Bown A W, Zarei A. 4-aminobutyrate (GABA): A metabolite and signal with practical significance[J]., 2017, 95: 1015-1032.
[4] Zhang S J, Jckson M B. GABA-activated chloride channels in secretory nerve endings[J]., 1993, 259: 531-534.
[5] Inoue K, Shirai T, Ochiai H, Kasao M, Hayakawa K, Kimura M. Blood-pressure-lowering effect of a novel fermented milk containing gamma-aminobutyric acid (GABA) in mild hypertensives[J]., 2003, 57: 490-495.
[6] Hayakawa K, Kimura M, Kasaha K, Matsumoto K, Sansawa h, Yamori Y. Effect of a gamma-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar- Kyoto rats[J]., 2004, 92: 411-417.
[7] 張光恒, 曾大力, 郭龍彪, 劉慧娟, 胡江, 高振宇, 華志華, 錢前. 葡萄糖焦磷酸酶基因與巨胚基因聚合創(chuàng)建營養(yǎng)功能稻[J]. 中國水稻科學(xué), 2007, 21(6): 567-572.
Zhang G H, Zeng D L, Guo L B, Liu H J, Hu J, Gao Z Y, Hua Z H, Qian Q. Nutrition-functional rice created by polymerizing ADP-glucorse pyrophosphorylase and giant embryo genes[J]., 2007, 21(6): 567-572. (in Chinese with English abstract)
[8] 馬文領(lǐng), 景軍, 耿文葉. 胚芽大米的營養(yǎng)特性及營養(yǎng)支持作用[J]. 中國食物與營養(yǎng), 2018, 24(1): 55-58.
Ma W L, Jing J, Geng W Y. Nutritional characteristics and nutritional support of germ rice[J]., 2018, 24(1): 55-58. (in Chinese with English abstract)
[9] Buttery R G, Ling L C, Juliano B O. 2-acetyl-1-pyrroline: An important aroma component of cooked rice[J]., 1982, 12: 958-959.
[10] Chen S H, Yang Y, Shi W W, Ji Q, He F, Zhang Z D, Cheng Z K, Liu X N, Xu M L., encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance[J]., 2008, 20: 1850-1861.
[11] 羅曦, 曾亞文, 楊樹明, 杜娟, 普曉英, 吳殿星. 不同發(fā)芽時(shí)間下發(fā)芽稻谷和糙米不同部位γ-氨基丁酸含量差異[J]. 食品科學(xué), 2009, 30(13): 124-128.
Luo X, Zeng Y W, Yang S M, Du J, Pu X Y, Wu D X. Changes in gamma-aminobutyric acid content in different parts of rice and brown rice during germination[J]., 2009, 30(13): 124–128. (in Chinese with English abstract)
[12] 姚森, 楊特武, 趙莉君, 熊善柏. 發(fā)芽糙米中γ-氨基丁酸含量的品種基因型差異分析[J]. 中國農(nóng)業(yè)科學(xué), 2008, 41(12): 3974-3982.
Yao S, Yang T W, Zhao L J, Xiong S B. The variation of γ-aminobutyric acid content in germinated brown rice among different cultivars[J]., 2008, 41(12): 3974-3982. (in Chinese with English abstract)
[13] Wei X, Handoko D D, Pather L, Methven L, Elmore J S. Evaluation of 2-acetyl-1-pyrroline in foods, with an emphasis on rice flavour[J]., 2017, 232: 531-544.
[14] Kakkar R K, Sawhney V K. Polyamine research in plants: A changing perspective[J]., 2002, 116: 281-292.
[15] Shelp B J, Bozzo G G, Trobacher C P, Zarei A, Deyman K L, Brikis C J. Hypothesis/review: contribution of putrescine to γ-aminobutyrate (GABA) production in response to abiotic stress[J]., 2012, 193: 130-135.
[16] Shelp B J, Bozzo G G, Trobacher C P, Chiu G, Bajwa V S. Strategies and tools for studying the metabolism and function of γ-aminobutyrate in plants: I. Pathway structure[J]., 2012, 90(9): 651-668.
[17] Hinge V R, Patil H B, Nadaf A B. Aroma volatile analyses and 2AP characterization at various developmental stages in Basmati and non-Basmati scented rice cultivars[J]., 2016, 9: 38.
[18] 蘇國興,劉友良. 高等植物體內(nèi)的多胺分解代謝及其主要產(chǎn)物的生理作用[J]. 植物學(xué)通報(bào), 2005, 22(4): 408-418.
Su G X, Liu Y L. Function of polyamine catabolism and its main catabolic products in higher plants[J]., 2005, 22(4): 408-418. (in Chinese with English abstract)
[19] Bradbury L M T, Fitzgerald T L, Henry R J, Jin Q, Waters D L E. The gene for fragrance in rice[J]., 2005, 3: 363-370.
[20] Bradbury L M T, Gillies S A, Brushett D J, Waters D L E, Henry R J. Inactivation of an aminoaldehyde dehydrogenase is responsible for fragrance in rice[J]., 2008, 68: 439-449.
[21] Huang T C, Huang Y W, Hung H J, Ho C T, Wu M L. Delta (1)-Pyrroline-5-carboxylic acid formed by proline dehydrogenase from thessp.expressed inas a precursor for 2-acetyl-1-pyrroline[J]., 2007, 55(13): 5097-5102.
[22] Huang T C, Teng C S, Chang J L, Chuang H S, Ho C T , Wu M L. Biosynthetic mechanism of 2-acetyl-1-pyrroline and its relationship with delta (1)-pyrroline-5-carboxylic acid and methylglyoxal in aromatic rice (L.) callus[J]., 2008, 56(16): 7399-7404.
[23] 王忠. 水稻的開花與結(jié)實(shí): 水稻生殖器官發(fā)育圖譜[M]. 北京: 科學(xué)出版社, 2015: 124-143.
Wang Z. Rice Flowering and Fruiting: Atlas of Rice Reproductive Organ Development[M]. Beijing: Science Press, 2015: 124-143. (in Chinese)
[24] Urbanczyk-Wochniak E, Luedemann A, Kopka J, Selbig J, Roessner-Tunali U, Willmitzer L, Fernie A R. Parallel analysis of transcript and metabolic profiles: A new approach in systems biology[J]., 2003, 4(10): 989-993.
[25] Sana T R, Fischer S, Wohlgemuth G, Katrekar A, Jung K, Ronald P C, Fiehn O. Metabolomic and transcriptomic analysis of the rice response to the bacterial blight pathogenpv.[J]., 2010, 6: 451-465.
[26] Hoefgen R, Nikiforova V J. Metabolomics integrated with transcriptomics: Assessing systems response to sulfur-deficiency stress[J]., 2008, 132(2): 190-198.
[27] 沈楓, 蔣洪波, 劉博, 張秀茹, 劉軍, 解文孝, 姚繼攀, 馬亮. 優(yōu)質(zhì)食味粳稻遼粳433 和越光糙米代謝產(chǎn)物差異分析[J]. 中國水稻科學(xué), 2020, 34(4): 359-367.
Shen F, Jiang H B, Liu B, Zhang X R, Liu J, Xie W X, Yao J P, Ma L. Difference of metabolites in brown rice between Liaojing 433 and Koshihikari with good eating quality[J]., 2020, 34(4): 359-367. (in Chinese with English abstract)
[28] Shelp B J, Bown A W, McLean M D. Metabolism and functions of gamma-aminobutyric acid[J]., 1999, 4(11): 446-452.
[29] Akama K, Akihiro T, Kitagawa M, Takaiwa F. Rice() contains a novel isoform of glutamate decarboxylase that lacks an authentic calmodulin-binding domain at the C-terminus[J]., 2001, 1522: 143-150.
[30] Bouché N, Fromm H. GABA in plants: Just a metabolite?[J], 2004, 9(3): 110-115.
[31] Pal B H, Ravishankar G A. Role of polyamines in the ontogeny of plants and their biotechnological applications[J]., 2002, 69: 1-34.
[32] Shelp B J, Bozzo G G, Zarei A, Simpson J P, Trobacher C P, Allan W L. Strategies and tools for studying the metabolism and function of γ-aminobutyrate in plants: Ⅱ. Integrated analysis[J]., 2012, 90(9): 781-793.
[33] Buttery R G, Ling L C, Juliano B O, Turnbaugh J G. Cooked rice aroma and 2-acetyl-1-pyrroline[J]., 1983, 31(4): 823-826.
[34] Yoshihashi T, Huong N T T, Surojanametakul V, Tungtrakul P, Varanyanond W. Effect of storage conditions on 2-acetyl-1-pyrroline content in aromatic rice variety, Khao Dawk Mali 105[J]., 2005, 70(1): S34-S37.
[35] Christophersen C, Struve C. Structural equilibrium and ring-chain tautomerism of aqueous solutions of 4-aminobutyraldehyde[J]., 2003, 60: 1907-1914.
[36] Keyghobad K, Kad T D, Zanan R L, Nadaf A B. 2-Acetyl-1-pyrroline augmentation in scented indica rice (L.) varieties through 1-pyrroline- 5-carboxylate synthetase () gene transformation[J]., 2015, 177: 1466-1479.
[37] 周露, 沈貝貝, 白蘇陽, 劉喜, 江玲, 翟虎渠, 萬建民. 以RNA干擾γ-氨基丁酸轉(zhuǎn)氨酶1基因()表達(dá)提高稻米γ-氨基丁酸(GABA)含量[J]. 作物學(xué)報(bào), 2015, 41(9): 1305-1312.
Zhou L, Shen B B, Bai S Y, Liu X, Jiang L, Zhai H Q, Wan J M. RNA interference ofgene expression induced GABA accumulation in rice grain[J]., 2015, 41(9): 1305-1312. (in Chinese with English abstract)
[38] Akama K, Takaiwa F. C-terminal extension of rice glutamate decarboxylase (OsGAD2) functions as an autoinhibitory domain and overexpression of a truncated mutant results in the accumulation of extremely high levels of GABA in plant cells[J]., 2007, 58: 2699-2707.
[39] Akama K, Akter N, Endo H, Kanesaki M, Endo M, Toki S. Antargeted deletion of the calmodulin-binding domain from rice glutamate decarboxylase 3 () increases γ-aminobutyric acid content in grains[J]., 2020, 13: 20.
[40] Shan Q W, Zhang Y, Chen K L, Zhang K, Gao C X. Creation of fragrant rice by targeted knockout of thegene using TALEN technology[J]., 2015, 13: 791-800.
[41] 邵高能, 謝黎虹, 焦桂愛, 魏祥進(jìn), 圣忠華, 唐紹清, 胡培松. 利用CRISPR/CAS9 技術(shù)編輯水稻香味基因[J]. 中國水稻科學(xué), 2017, 31(2): 216-222.
Shao G N, Xie L H, Jiao G A, Wei X J, Sheng Z H, Tang S Q, Hu P S. CRISPR/CAS9-mediated editing of the fragrant genein rice[J]., 2017, 31(2): 216-222. (in Chinese with English abstract)
[42] 祁永斌, 張禮霞, 王林友, 宋建, 王建軍. 利用CRISPR/Cas9 技術(shù)編輯水稻香味基因[J]. 中國農(nóng)業(yè)科學(xué), 2020, 53(8): 1501-1509.
Qi Y B, Zhang L X, Wang L Y, Song J, Wang J J. CRISPR/CAS9 targeted editing for the fragrant genein rice[J]., 2020, 53(8): 1501-1509. (in Chinese with English abstract)
Metabolism of γ-aminobutyrate and 2-acetyl-1-pyrroline Analyses at Various Grain Developmental Stages in Rice (L.)
PAN Yangyang, CHEN Yibo, WANG Chongrong, LI Hong, HUANG Daoqiang, ZHOU Degui, WANG Zhidong, ZHAO Lei, GONG Rong, ZHOU Shaochuan*
(Rice Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China;*Corresponding author, E-mail: xxs123@163.com)
It is important to reveal the dynamic changes of metabolites and genes involved in γ-aminobutyric acid (GABA) and 2-acetyl-1-pyrroline (2AP) metabolic pathways at various grain developmental stages in scented and non-scented rice cultivars by metabolomes and transcriptomes. The purpose of this study is to lay a theoretical basis for high GABA and 2AP rice breeding.The metabolomics and transcriptomics of grains including milky grains (8D, 8 days after flowering), dough grains (15D), mature grains (30D) and milled rice (40D) of scented rice cultivar Meixiangzhan 2(MXZ) along with non-scented rice cultivar Huanghuazhan (HHZ) were performed by LC-MS/MS and RNA-seq, respectively. Finally, the metabolites and transcript profiles of GABA and 2AP metabolic pathways were analyzed.The LC-MS/MS-based metabolic PCA analysis illustrated that the 8D and 40D grains of both varieties were dispersedly distributed, while 15D and 30D grains were concentrated in a relatively narrow area. In a total of 623 metabolites were detected in all samples, among which 161 were different metabolites. The contents of nine metabolites, detected in the GABA and 2AP pathways, followed a similar changing trend in all samples. We found that putrescine was located in embryo and aleurone layer, while spermidine was specifically accumulated in the endosperm. About 33 000 genes were identified through thegene expression analysis, among which 14 genes involved in GABA pathway showed high transcriptional levels. These related genes had similar abundance patterns between two varieties, while thewas the only differentially expressed gene.andshowed higher expression levels as compared with respective homologous genes. The-arginine and putrescine profiles minimized in HHZ 5D grains, while the polyamine degradation had strong activity in whole MXZ grain development. There were all metabolites required for the 2AP synthesis in the grains, and both polyamine degradation pathway and the glutamate-proline pathway contributed to the accumulation of 2AP in grains.The GABA metabolite was mainly degraded, andandwere responsible for GABA degradation. The metabolites involved in GABA pathway were mainly concentrated in the aleurone layer, and the metabolites and gene expression profiles had similar patterns in both rice varieties. A higher mitochondria activity was found in MXZ grains than HHZ.
γ-aminobutyric acid; 2-acetyl-1-pyrroline; grain development; fragrant rice; metabolomics
10.16819/j.1001-7216.2021.0805
2020-08-05;
2020-09-16。
廣東省應(yīng)用型科技研發(fā)專項(xiàng)重點(diǎn)項(xiàng)目(2015B020231001);廣東省農(nóng)業(yè)科學(xué)院“十三五”學(xué)科團(tuán)隊(duì)建設(shè)項(xiàng)目(201621TD)。