戴嘉璐,李瑞平※,李聰聰,魯耀澤,華智敏
鹽漬化灌區(qū)玉米施氮量閾值DNDC模型模擬
戴嘉璐1,李瑞平1※,李聰聰1,魯耀澤2,華智敏3
(1. 內(nèi)蒙古農(nóng)業(yè)大學(xué)水利與土木建筑工程學(xué)院,呼和浩特 010018;2. 巴彥淖爾市水利科學(xué)研究所,巴彥淖爾 015000;3. 內(nèi)蒙古自治區(qū)水利水電勘測設(shè)計(jì)院,呼和浩特 010020)
為了尋求保障農(nóng)業(yè)生產(chǎn)和環(huán)境友好的適宜施氮量,該研究利用內(nèi)蒙古河套灌區(qū)2 a田間試驗(yàn)數(shù)據(jù)對脫氮-分解作用模型(Denitrification-Decomposition Model,DNDC)進(jìn)行了率定與驗(yàn)證,模擬并研究了影響硝態(tài)氮淋失量和植株吸氮量的關(guān)鍵因素,以及玉米施氮量閾值。結(jié)果表明:1)DNDC模型可以較好地模擬玉米產(chǎn)量及氮素吸收利用情況,率定和驗(yàn)證過程中玉米產(chǎn)量、葉面積指數(shù)和收獲時(shí)土壤0~20 cm土層土壤硝態(tài)氮累積量納什效率系數(shù)與2均不小于0.75,標(biāo)準(zhǔn)均方根誤差為9.26%~21.48%。2)施氮量和追肥次數(shù)對硝態(tài)氮淋失量和植株吸氮量的影響較大,而耕作深度和灌水量對硝態(tài)氮淋失量和植株吸氮量的影響較小。且過多施用氮肥不會(huì)促進(jìn)植株吸氮量和產(chǎn)量的增加,反而會(huì)增加硝態(tài)氮淋失量造成環(huán)境污染。3)植株吸氮量和玉米產(chǎn)量均隨施氮量增加呈先增長后逐漸趨于穩(wěn)定的趨勢。此外,當(dāng)追肥次數(shù)為3次時(shí),生育期植株吸氮量較追肥1次和2次時(shí)的植株吸氮量平均高167.18%和31.27%。4)當(dāng)追肥次數(shù)相同時(shí),硝態(tài)氮淋失量隨施氮量增加而增加;當(dāng)施氮量相同時(shí),隨追肥次數(shù)增加,硝態(tài)氮淋失量逐漸降低。當(dāng)追肥次數(shù)為2次和3次時(shí),生長季硝態(tài)氮淋失量較追肥1次時(shí)平均減少41.96%、59.75%。綜合考慮玉米產(chǎn)量、硝態(tài)氮淋失量和植株吸氮量,當(dāng)施氮量為165.50~200 kg/hm2,且分別在拔節(jié)期、抽雄期和灌漿期進(jìn)行追肥為較優(yōu)的施肥方案。研究成果可為減少河套灌區(qū)地下水環(huán)境污染及資源浪費(fèi)提供技術(shù)支撐。
氮;淋失;灌溉;玉米;產(chǎn)量;植株吸氮量;DNDC模型
作為一個(gè)發(fā)展中國家,越來越大的糧食需求、人口增長和經(jīng)濟(jì)發(fā)展的壓力使中國成為世界上氮肥消耗量最多的國家[1]。例如,在2015年,中國的氮肥施用量高達(dá)2 362萬t[2],而作物僅利用了土壤中30%~40%的氮素[3],氮肥利用效率處于較低水平。此外,由于施入土壤中的氮素易揮發(fā)、淋失,當(dāng)?shù)适┯昧窟^多時(shí)不僅會(huì)使未被作物吸收利用的氮素運(yùn)移到深層土壤污染地下水,還會(huì)使多余氮素?fù)]發(fā)到大氣中造成環(huán)境污染[4]。內(nèi)蒙古河套灌區(qū)地處中國干旱的西北地區(qū),以往農(nóng)業(yè)生產(chǎn)中常以投入大量氮肥來獲得高產(chǎn)[5]。因此,過量施氮成為地下水污染的主要來源[6]。而土壤氮素的淋失以NO3—-N為主要形態(tài),土壤中NO3—-N運(yùn)移是造成氮素淋失的關(guān)鍵前提條件[7]。而控制硝態(tài)氮淋失的關(guān)鍵之一是制定合理的方案使氮素供應(yīng)在空間和時(shí)間上與植物需求更好的同步[8],從而達(dá)到減少氮素?fù)p失的風(fēng)險(xiǎn)。
長期以來,田間試驗(yàn)成為評價(jià)不同管理措施效果的依據(jù)[9]。谷少委等[10-11]研究表明,恰當(dāng)?shù)氖┓史绞胶褪┓蕰r(shí)機(jī)可以有效提高作物產(chǎn)量。張璐等[12-13]研究發(fā)現(xiàn),適當(dāng)減少氮肥施用量不僅可以獲得較高的氮肥利用效率還能保障作物高產(chǎn)穩(wěn)產(chǎn)。參考文獻(xiàn)[14],將施氮量閾值描述為:當(dāng)施氮量達(dá)某一值后,繼續(xù)增加施氮量時(shí)產(chǎn)量變化微小或有所降低,且硝態(tài)氮淋失量在可接受范圍時(shí)對應(yīng)的施氮量值。
盡管大量田間試驗(yàn)已揭示了施肥量對作物氮周轉(zhuǎn)過程及作物產(chǎn)量的影響,但田間試驗(yàn)由于費(fèi)時(shí)費(fèi)力,易受時(shí)間、資金和條件的限制?;诖?,模型模擬已成為農(nóng)田水肥管理對作物生長、水肥資源利用及環(huán)境響應(yīng)研究的重要手段。脫氮-分解作用模型(Denitrification-Decomp- osition Model,DNDC)的主要功能是對農(nóng)業(yè)生態(tài)系統(tǒng)中碳氮?jiǎng)討B(tài)轉(zhuǎn)化進(jìn)行模擬[15-17],該模型可以模擬出不同作物及不同灌水和施肥方式與制度下的作物生長狀況、土壤環(huán)境變化及水氮遷移等指標(biāo)[18]。由于模型輸入?yún)?shù)簡單、模擬結(jié)果精確等特點(diǎn),經(jīng)過幾十年的發(fā)展,DNDC已經(jīng)被全球廣泛使用,多用于評價(jià)管理措施對產(chǎn)量或環(huán)境風(fēng)險(xiǎn)的影響。朱波等[19]基于DNDC模型模擬氮素淋失量,結(jié)果發(fā)現(xiàn)模擬值與實(shí)測值的吻合程度較好,相關(guān)系數(shù)達(dá)0.972。Li等[20]利用校驗(yàn)后的DNDC模型很好地模擬了農(nóng)田土壤氮淋失量。Zhang等[14]基于DNDC模型模擬不同施氮量對玉米產(chǎn)量和硝態(tài)氮淋失量的影響,指出玉米產(chǎn)量和硝態(tài)氮淋失量均隨施氮量增加而增加,得出保障作物一定產(chǎn)量及硝態(tài)氮淋失量較低時(shí)所對應(yīng)的最佳施氮量。李仙岳等[21]利用DNDC模型不同情景模擬及線性+平臺(tái)模型尋優(yōu),發(fā)現(xiàn)降解地膜覆蓋農(nóng)田施氮肥252.94 kg/hm2為北方干旱區(qū)降解地膜覆蓋下較優(yōu)的施肥模式。周慧等[22]通過田間試驗(yàn)和DNDC模型模擬,研究了有機(jī)氮替代不同比例無機(jī)氮對玉米產(chǎn)量和硝態(tài)氮淋失的影響,得出有機(jī)無機(jī)氮配施比例3∶2為研究區(qū)較優(yōu)有機(jī)無機(jī)氮配施模式。大量基于DNDC模型的研究已經(jīng)廣泛評估了不同種植系統(tǒng)的氮素?fù)p失[23-25],但是從農(nóng)業(yè)生產(chǎn)(產(chǎn)量)及環(huán)境角度(氮素淋失量)確定最佳施氮量和施肥方案的研究較少。
為了評價(jià)不同施肥方案對內(nèi)蒙古河套灌區(qū)玉米產(chǎn)量、硝態(tài)氮淋失量及植株吸氮量的影響,本研究利用河套灌區(qū)2 a田間試驗(yàn)數(shù)據(jù)對DNDC模型進(jìn)行了率定與驗(yàn)證,評價(jià)DNDC模型在內(nèi)蒙古河套灌區(qū)的適用性,并基于DNDC模型模擬不同施肥方案下氮素吸收利用情況,在此基礎(chǔ)上,確定在保障玉米一定產(chǎn)量及可接受硝態(tài)氮淋失量時(shí)的臨界施氮量和施肥方案,以期為提高氮肥利用效率以及降低地下水污染提供理論依據(jù)。
試驗(yàn)于2019—2020年4—9月在內(nèi)蒙古自治區(qū)巴彥淖爾市臨河區(qū)的曙光試驗(yàn)站(40°43′26″N,107°13′23″E)進(jìn)行,試驗(yàn)區(qū)屬于干旱半干旱氣候,平均年降雨量為144.2 mm,年蒸發(fā)量為2 434.7 mm,年日照時(shí)間為3 180 h。土壤質(zhì)地為沙壤土,耕層平均容重為1.45 g/cm3,鹽分1.2 g/kg,有機(jī)質(zhì)10.80 g/kg,全氮量0.244 g/kg,全磷量0.338 g/kg,地下水埋深在 2.5 m左右。玉米是該地區(qū)的主要糧食作物。試驗(yàn)區(qū)土壤及氣象條件見表1和圖1。
表1 試驗(yàn)區(qū)土壤條件
試驗(yàn)設(shè)置灌水量和施肥量2個(gè)因素,每個(gè)因素3個(gè)水平。灌水水平分別為低水(180 mm)、中水(225 mm)、高水(270 mm),施肥水平(底肥+追肥)分別為低肥(300 kg/hm2+300 kg/hm2)、中肥(300 kg/hm2+ 375 kg/hm2)、高肥(300 kg/hm2+450 kg/hm2),試驗(yàn)采用完全隨機(jī)區(qū)組設(shè)計(jì),將當(dāng)?shù)匾话愎嗨浚?39 mm)和施肥量(300 kg/hm2+ 600 kg/hm2)設(shè)為對照CK。每個(gè)處理3次重復(fù)。各處理底肥均施用300 kg/hm2磷酸二銨,含氮18%,播種時(shí)由播種機(jī)帶入,與當(dāng)?shù)厥┓史绞较嗤怀樾燮谧贩?,追肥施用尿素,含?6.8%。各處理總施氮量及具體試驗(yàn)設(shè)計(jì)見表2。
表2 灌溉與施肥處理
玉米供試品種為“金蘋628”,種植密度為行距40 cm,株距30 cm。2 a田間試驗(yàn)具體播種日期分別為2019年4月29日和2020年4月23日,收獲日期分別為9月25日和9月12日。灌水方式為地面灌溉,采用水泵、水表定量控制,2019年灌水日期分別為6月17日、7月12日、8月5日,2020年灌水日期分別為6月14日、7月6日、8月3日。各處理均采用相同的田間管理方法進(jìn)行除草及病蟲害防治。
1)葉面積指數(shù):在各生育期定株測量每個(gè)小區(qū)的葉片長度及寬度。葉面積指數(shù)(Leaf Area Index,LAI)采用下式計(jì)算[26]:
式中為種植密度,株/hm2;為第株玉米的總?cè)~片數(shù);為測定株數(shù);L為葉片葉領(lǐng)到葉尖的長度,m;B為葉片最寬處寬度,m;0.75為與葉形有關(guān)的葉面積回歸系數(shù)。
2)產(chǎn)量:玉米成熟后在每個(gè)小區(qū)選取能夠代表平均長勢的3株成熟玉米,果穗風(fēng)干后經(jīng)人工脫粒,75 ℃烘干至恒質(zhì)量后計(jì)算產(chǎn)量。
3)硝態(tài)氮含量:用土鉆在試驗(yàn)區(qū)進(jìn)行取樣,取樣深度分別為0~20,>20~40,>40~60,>60~80,>80~100 cm,共5層;每14 d測定1次,每次取土后的土樣采用紫外分光光度法測定土壤的硝態(tài)氮含量,并計(jì)算累積量[27]:
硝態(tài)氮累積量(kg/hm2)
=土層厚度(cm)×土壤容重(g/cm3)
×土壤硝態(tài)氮含量(mg/kg)/10(2)
1.4.1 DNDC模型基本原理
DNDC是一個(gè)模擬碳、氮在主要生態(tài)驅(qū)動(dòng)力作用下生物地球化學(xué)循環(huán)的模型,該模型主要由兩部分構(gòu)成:1)土壤有機(jī)質(zhì)分解模型、土壤氣候模型和作物生長模型,這一部分的主要功能是模擬土壤的環(huán)境條件;2)硝化作用模型、脫氮作用模型及發(fā)酵作用模型,此部分的主要功能為模擬土壤環(huán)境變化對微生物活動(dòng)的影響。輸入該模型的主要參數(shù)為氣象數(shù)據(jù)、土壤環(huán)境數(shù)據(jù)和作物管理數(shù)據(jù),并以日為時(shí)間步長,模擬不同環(huán)境條件—作物生長—土壤環(huán)境變化間的相互作用。輸出數(shù)據(jù)包括土壤碳氮變化情況、作物生長指標(biāo)及產(chǎn)量、溫室氣體揮發(fā)量等[28]。DNDC模型用于模擬土壤氮素運(yùn)移的主要方程見式 (3)~式 (14)。
1.4.2 模型評價(jià)指標(biāo)
對模型校驗(yàn)過程中的模擬值和實(shí)測值之間的吻合程度采用決定系數(shù)(2),標(biāo)準(zhǔn)均方根誤差(Norm Root Mean Squared Error,NRMSE)、納什效率系數(shù)(E)來評價(jià)。其中,2越接近于1表明模型模擬越準(zhǔn)確;若2小于0.5,則可認(rèn)為模擬效果較差;E取值為?∞<E<1.0,E接近1,表示模擬效果好;E接近0,表示模擬結(jié)果較差;E遠(yuǎn)小于0,則模擬結(jié)果不可信。NRMSE≤10%,表明模擬效果極好;10%
1.4.3 模型參數(shù)敏感性分析
在不同管理措施下,對校驗(yàn)過的DNDC模型進(jìn)行敏感性分析,從而找出影響玉米產(chǎn)量、硝態(tài)氮淋失量及植株吸氮量的主要因素。該模型在保持所有其他參數(shù)不變的情況下,通過在一個(gè)適當(dāng)?shù)姆秶鷥?nèi)改變單個(gè)管理參數(shù)的值進(jìn)行模擬。基準(zhǔn)情景(情景1)選為Y8處理:耕作深度為20 cm、施氮量為229.50 kg/hm2(底肥施氮量為54 kg/hm2,追肥施氮量為175.50 kg/hm2)、逗肥1次灌水量為270 mm。氣象數(shù)據(jù)、土壤數(shù)據(jù)和作物數(shù)據(jù)與2019年試驗(yàn)觀測數(shù)據(jù)一致??偣灿?種不同管理方案,并以此計(jì)算敏感性指數(shù)[30],以評估不同管理措施(耕作、肥料和灌溉)對作物產(chǎn)量、硝態(tài)氮淋失量和植株吸氮量的影響。9種管理方案(耕作深度(cm)、施氮量(kg/hm2)、追肥次數(shù)、灌水量(mm))如下:
1)情景1:20、229.5、1、270
2)情景2:10、229.5、1、270
3)情景3:30、229.5、1、270
4)情景4:20、179.5、1、270
5)情景5:20、279.5、1、270
6)情景6:20、229.5、2、270
7)情景7:20、229.5、3、270
8)情景8:20、229.5、1、90
9)情景9:20、229.5、1、450
敏感性指數(shù)計(jì)算公式如下:
式中為敏感性指數(shù);1為與參數(shù)1對應(yīng)的模型輸出值;2為與參數(shù)2對應(yīng)的模型輸出值;O為1與2的平均值;1為各參數(shù)的最小輸入值;2為各參數(shù)的最大輸入值;avg為1與2的平均值。
敏感性指數(shù)的絕對值越大,相對應(yīng)的參數(shù)對玉米產(chǎn)量、硝態(tài)氮淋失量和植株吸氮量的影響越大。若敏感性指數(shù)為負(fù)值,表明該參數(shù)與玉米產(chǎn)量、硝態(tài)氮淋失量或植株吸氮量成負(fù)相關(guān)。
1.4.4 模型應(yīng)用
將率定和驗(yàn)證后的模型用于評估不同施氮情況下玉米產(chǎn)量及氮素利用變化情況。為探尋當(dāng)?shù)剡m宜的玉米施氮量閾值,設(shè)定了8種施氮量,設(shè)定依據(jù)參考文獻(xiàn)[14,21],分別為純N 100、150、200、250、300、350、400和450 kg/hm2,并考慮了追肥次數(shù)的影響[14],設(shè)定了3種追肥次數(shù),分別為1次(苗期、拔節(jié)期、抽雄期、灌漿期和成熟期)、2次(拔節(jié)期和抽雄期、拔節(jié)期和灌漿期、抽雄期和灌漿期)、3次(拔節(jié)期、抽雄期和灌漿期),共72種模擬情景。多次追肥時(shí)的單次肥料用量見表3。
表3 多次追肥時(shí)的肥料用量
利用2019年試驗(yàn)數(shù)據(jù)進(jìn)行率定,以玉米葉面積指數(shù)、產(chǎn)量和收獲時(shí)0~20 cm土層土壤硝態(tài)氮累積量為目標(biāo),利用模擬值和實(shí)測值的吻合程度來確定模型輸入?yún)?shù),最后通過2020年獲得的田間數(shù)據(jù)進(jìn)行驗(yàn)證。結(jié)果表明(圖 2),在不同施氮處理下,DNDC模型的模擬效果較好,模型校驗(yàn)過程中玉米葉面積指數(shù)、產(chǎn)量和收獲時(shí)土壤0~20 cm土層土壤硝態(tài)氮累積量的模擬值與實(shí)測值均分布在1∶1線附近,且三者E與2均不小于0.75,NRMSE分別為13.49%~17.51%、9.26%~9.57%和19.84%~21.48%。率定和驗(yàn)證過程中模型評價(jià)指標(biāo)表明,DNDC模型能較好地模擬不同施氮量對玉米產(chǎn)量及氮素吸收利用的影響,可利用校驗(yàn)后的模型模擬不同施氮情況下玉米產(chǎn)量及氮素利用變化情況。
利用驗(yàn)證過的DNDC模型進(jìn)行敏感性分析以評估不同輸入?yún)?shù)對模擬結(jié)果的影響,進(jìn)而確定影響硝態(tài)氮淋失量和植株吸氮量的關(guān)鍵因素。敏感性分析表明(表4),施氮量(敏感性指數(shù)1.92、?0.89)和追肥次數(shù)(敏感性指數(shù)0.11、?0.85)對硝態(tài)氮淋失量和植株吸氮量的影響較大,而耕作深度(敏感性指數(shù)0.03、0.09)和灌水量(敏感性指數(shù)?0.02、?0.01)對硝態(tài)氮淋失量和植株吸氮量的影響較小。另外,玉米產(chǎn)量僅對施氮量(敏感性指數(shù)?0.48)敏感,且由敏感性指數(shù)可知,過多施用氮肥將會(huì)對玉米產(chǎn)量產(chǎn)生不利影響。由敏感性分析可知,硝態(tài)氮淋失量和植株吸氮量對施氮量和追肥次數(shù)最為敏感,因此,施氮量與追肥次數(shù)的最佳組合是調(diào)節(jié)氮流失和玉米生產(chǎn)的有效方法。
表4 不同參數(shù)對玉米產(chǎn)量、硝態(tài)氮淋失量及植株吸氮量的影響
由圖3可知,追肥1次時(shí)生育期植株吸氮量隨施氮量增加呈先增長后逐漸趨于穩(wěn)定趨勢。苗期和成熟期進(jìn)行追肥時(shí),各施氮處理下的植株吸氮量較其他生育期追肥時(shí)平均降低50.98%和55.37%。原因是苗期植株矮小,生長速度慢,對養(yǎng)分的需求量較少,而成熟期玉米停止生長,各器官也基本不再發(fā)生變化,很少吸收養(yǎng)分。
追肥次數(shù)為2次和3次時(shí),生育期植株吸氮量隨施氮量同樣呈先增長后趨于穩(wěn)定的趨勢。圖3表明,追肥3次時(shí),各施氮處理下生育期植株吸氮量較追肥1次和2次時(shí)的植株吸氮量平均高167.18%、31.27%。
對不同追肥次數(shù)下生育期植株吸氮量隨施氮量變化采用Logistic方程進(jìn)行回歸分析,由擬合結(jié)果可知(表 5),各方程的2在0.974~0.999之間,擬合效果較好。通過對回歸方程進(jìn)行二次求導(dǎo),得到不同施氮處理和追肥次數(shù)下植株吸氮量達(dá)最大值時(shí)所對應(yīng)的施氮量。其中追肥3次植株吸氮量達(dá)最大值時(shí)所對應(yīng)的施氮量為165.50 kg/hm2。
不同管理方案下生長季硝態(tài)氮淋失量均隨施氮量增加呈逐漸增長的趨勢(圖4)而隨著追肥次數(shù)增加,硝態(tài)氮淋失量呈逐漸降低趨勢(表6)。當(dāng)追肥次數(shù)為2次和3次時(shí),生長季硝態(tài)氮淋失量較追肥1次時(shí)平均減少41.96%、59.75%。這主要是由于適當(dāng)?shù)淖贩蚀螖?shù)與玉米對氮的需求吻合較好,從而間接降低了玉米生長過程中氮的淋失[31]。
本研究基于產(chǎn)量及環(huán)境角度利用DNDC模型來確定最佳施氮量和追肥次數(shù),目的是尋求一種既能使玉米獲得穩(wěn)產(chǎn),又能使硝態(tài)氮淋失量控制在可接受水平的臨界施氮量和追肥次數(shù)。
表5 不同施氮處理和追肥次數(shù)下玉米生育期植株吸氮量的Logistic擬合方程
注:為施氮量,kg·hm-2;為植株吸氮量,kg·hm-2。
Note:is the nitrogen application rate, kg·hm-2;is the amount of plant nitrogen uptake, kg·hm-2.
模擬結(jié)果表明(圖5),玉米產(chǎn)量隨施氮量增加呈先快速增長后趨于穩(wěn)定的趨勢。當(dāng)施氮量小于200 kg/hm2時(shí),玉米產(chǎn)量隨施氮量和追肥次數(shù)增加而增加;當(dāng)施氮量增加到200 kg/hm2時(shí),繼續(xù)增加氮肥對玉米的增產(chǎn)作用逐漸減小,甚至出現(xiàn)減產(chǎn)效果。追肥1次時(shí),當(dāng)施氮量從100 kg/hm2增加到200 kg/hm2時(shí),產(chǎn)量平均增加52.36%;當(dāng)施氮量從200 kg/hm2增加到450 kg/hm2時(shí),產(chǎn)量僅增加了1.84%。追肥2次時(shí),當(dāng)施氮量從100 kg/hm2增加到200 kg/hm2時(shí),產(chǎn)量平均增加111.52%;當(dāng)施氮量從200 kg/hm2增加到450 kg/hm2時(shí),產(chǎn)量反而降低了1.98%。追肥3次時(shí),當(dāng)施氮量從100 kg/hm2增加到200 kg/hm2時(shí),產(chǎn)量平均增加131.09%;當(dāng)施氮量從200 kg/hm2增加到450 kg/hm2時(shí),產(chǎn)量反而降低了1.66%。
為達(dá)到GB/T14848—1993《地下水質(zhì)量標(biāo)準(zhǔn)》中規(guī)定的20 mg/L的人類健康標(biāo)準(zhǔn),玉米生長季硝態(tài)氮淋溶量應(yīng)低于18.4 kg/hm2[14]。由表6可知,追肥1次且施氮量為100 kg/hm2、追肥2次且施氮量在100~150 kg/hm2與追肥3次且施氮量在100~200 kg/hm2時(shí),硝態(tài)氮淋失量均在可接受范圍。由圖5可知,追肥1次且施氮量為100 kg/hm2與追肥2次施氮量在100~150 kg/hm2時(shí),玉米產(chǎn)量較低,平均產(chǎn)量僅有5 414.93 kg/hm2。由前文分析可知(表5),追肥3次植株吸氮量達(dá)最大值時(shí)所對應(yīng)的施氮量為165.50 kg/hm2,因此,綜合玉米產(chǎn)量及氮素吸收利用情況,最佳施氮量范圍為165.50~200 kg/hm2。
表6 不同施氮量及追肥次數(shù)下生長季硝態(tài)氮淋失量
注:表中追肥1次時(shí)硝態(tài)氮淋失量取5次不同追肥時(shí)期的平均值;追肥2次時(shí)硝態(tài)氮淋失量取3次不同追肥組合的平均值。
Note: In the table, the leaching of nitrate nitrogen during one topdressing was the average value of five different topdressing periods. The leaching of nitrate nitrogen during two topdressing was the average value of three different topdressing periods.
氮肥對作物生長至關(guān)重要,適當(dāng)?shù)牡适┯昧靠梢源龠M(jìn)作物根系的生長發(fā)育。然而,當(dāng)?shù)适┯昧窟^多或過少時(shí)均不利于作物的生長[21]。當(dāng)土壤氮濃度處于較高水平時(shí)不僅會(huì)抑制作物的生長,而且會(huì)加快作物根系衰老,不利于玉米產(chǎn)量的形成[32]。謝英荷等[33]研究發(fā)現(xiàn),當(dāng)施氮量超過150 kg/hm2時(shí),繼續(xù)增加施氮量玉米生長指標(biāo)已無明顯上升趨勢;而當(dāng)施氮量小于210 kg/hm2時(shí),玉米產(chǎn)量隨施氮量的增加呈上升趨勢,當(dāng)施氮量大于210 kg/hm2時(shí)玉米產(chǎn)量又有所下降。Zhang等[14]指出當(dāng)施氮量小于180 kg/hm2時(shí),隨施氮量增加作物產(chǎn)量也逐漸增長,但當(dāng)施氮量大于180 kg/hm2時(shí),籽粒產(chǎn)量隨施氮量增加逐漸下降,這與本研究結(jié)果類似。本研究發(fā)現(xiàn),當(dāng)施氮量在100~200 kg/hm2時(shí),玉米產(chǎn)量隨施氮量增加而增加,當(dāng)施氮量超過200 kg/hm2時(shí),玉米產(chǎn)量上漲幅度較小,甚至出現(xiàn)降低現(xiàn)象。此外,李仙岳等[21]研究發(fā)現(xiàn),由于作物吸氮能力有限,在作物生長前期增加施氮量對作物吸氮量沒有促進(jìn)作用,相反,在作物生長后期增加施氮量時(shí),作物吸氮量才有所增加。而當(dāng)施氮量達(dá)某一值時(shí),繼續(xù)增加施氮量,對作物吸氮量無明顯促進(jìn)作用。本研究得到與之類似的結(jié)果。不同施氮量和追肥次數(shù)下,生育期植株吸氮量均隨施氮量增加呈先增長后逐漸趨于穩(wěn)定的趨勢。當(dāng)追肥1次且在苗期或成熟期追肥時(shí),植株吸氮量較少,較其他生育期追肥時(shí)的植株吸氮量平均降低50.98%和55.37%。采用Logistic方程對不同管理方案下植株吸氮量和施氮量進(jìn)行回歸分析,再通過對方程進(jìn)行二次求導(dǎo),求得不同管理措施下植株吸氮量達(dá)最大值時(shí)所對應(yīng)的施氮量(表5)。
在增加作物產(chǎn)量的同時(shí),施用肥料也會(huì)引發(fā)一系列負(fù)面環(huán)境問題。目前農(nóng)業(yè)面源污染已經(jīng)成為世界許多農(nóng)業(yè)領(lǐng)域的嚴(yán)重問題[34],而硝酸鹽淋失是最普遍的面源污染之一,已在全球范圍內(nèi)被廣泛證實(shí)[35]。此外,大量氮素流失不僅導(dǎo)致生態(tài)系統(tǒng)富營養(yǎng)化和水質(zhì)退化[36-37],還會(huì)增加人類癌癥、水體缺氧和生物多樣性喪失的風(fēng)險(xiǎn)[38]。已有研究發(fā)現(xiàn)中國玉米的化學(xué)氮肥施用量平均為260 kg/hm2,幾乎是大多數(shù)作物需氮量的2倍[39]。在中國北方14個(gè)縣進(jìn)行的一項(xiàng)調(diào)查顯示,大約一半地區(qū)(28 萬hm2)地下水中硝酸鹽濃度超過11.3 mg/L(即世界衛(wèi)生組織和歐洲飲用水中硝酸鹽的限量)[9]。趙同科等[40]研究發(fā)現(xiàn),通過對華北地區(qū)1139個(gè)地下水井硝酸鹽濃度進(jìn)行測定,約34.1%都超過了WHO標(biāo)準(zhǔn)。Ju等[41]在中國北方600個(gè)地下水實(shí)地調(diào)查發(fā)現(xiàn),一些地區(qū)的淺層地下水硝酸鹽濃度已經(jīng)超過了274 mg/L,且隨時(shí)間推移,地下水硝酸鹽污染深度也在逐漸增加[42]。
本研究結(jié)果表明,硝態(tài)氮淋失量隨施氮量增加不斷增加[43],而隨追肥次數(shù)增加,硝態(tài)氮淋失量呈逐漸降低趨勢[14]。當(dāng)追肥次數(shù)為2次和3次時(shí),生長季硝態(tài)氮淋失量較追肥1次時(shí)平均減少41.96%、59.75%。此結(jié)果與周慧等[22]研究結(jié)果(硝態(tài)氮淋失量隨施肥次數(shù)增加而增加)略有差異。原因可能是試驗(yàn)區(qū)土壤質(zhì)地、降雨分布、灌水量、施肥方式以及施肥時(shí)間等不同有關(guān)。
為達(dá)到GB/T14848—1993《地下水質(zhì)量標(biāo)準(zhǔn)》中規(guī)定的20 mg/L的人類健康標(biāo)準(zhǔn),玉米生長季硝態(tài)氮淋失量應(yīng)低于18.4 kg/hm2[14]。本研究中,生長季硝態(tài)氮淋失量滿足標(biāo)準(zhǔn)的管理方案分別為追肥1次且施氮量為100 kg/hm2、追肥2次且施氮量在100~150 kg/hm2與追肥3次且施氮量在100~200 kg/hm2。而追肥1次且施氮量為100 kg/hm2與追肥2次施氮量在100~150 kg/hm2時(shí),玉米產(chǎn)量較低,平均產(chǎn)量僅有5 414.93 kg/hm2,遠(yuǎn)遠(yuǎn)低于當(dāng)?shù)仄骄絒44]。綜合玉米產(chǎn)量、硝態(tài)氮淋失量和植株吸氮量,施氮量在165.50~200 kg/hm2之間且分別在拔節(jié)期、抽雄期和灌漿期追肥時(shí),可以同時(shí)保證玉米一定產(chǎn)量和硝態(tài)氮淋失量在可接受范圍。
本研究以玉米產(chǎn)量和硝態(tài)氮淋失量為目標(biāo)來確定最佳施氮量范圍,下一步研究應(yīng)在此基礎(chǔ)上考慮如何提高玉米的氮肥利用效率。
脫氮-分解作用模型(Denitrification-Decomposition Model,DNDC)可以較好地模擬內(nèi)蒙古河套灌區(qū)不同施氮量對玉米產(chǎn)量及氮素吸收利用的影響,并通過不同情景模擬,確定臨界施氮量及較優(yōu)追肥方案。
1)DNDC模型對玉米產(chǎn)量、葉面積指數(shù)和硝態(tài)氮累積量的模擬結(jié)果較好,玉米產(chǎn)量、葉面積指數(shù)和收獲時(shí)土壤0~20 cm土層土壤硝態(tài)氮累積量納什效率系數(shù)與2均不小于0.75,標(biāo)準(zhǔn)均方根誤差為9.26%~9.57%、13.49%~17.51%和19.84%~21.48%。
2)模型參數(shù)敏感性分析表明,施氮量(敏感性指數(shù)1.92、?0.89)和追肥次數(shù)(敏感性指數(shù)0.11、?0.85)對硝態(tài)氮淋失量和植株吸氮量的影響較大,玉米產(chǎn)量僅對施氮量(敏感性指數(shù)?0.48)敏感。過多施用氮肥不會(huì)促進(jìn)植株吸氮量和產(chǎn)量的增加,反而會(huì)增加硝態(tài)氮淋失量造成環(huán)境污染。
3)通過對不同情景的模擬分析可知,為了實(shí)現(xiàn)玉米產(chǎn)量和可接受硝態(tài)氮淋失量,最佳施氮量范圍應(yīng)為165.50~200 kg/hm2且分別在玉米生長的拔節(jié)、抽雄、灌漿期進(jìn)行追肥。
[1] Heffer P. Assessment of fertilizer use by crop at the global level 2006/07—2007/088[R]. Paris, France: International Fertilizer Industry Association, 2009: 8-11.
[2] 中華人民共和國國家統(tǒng)計(jì)局. 中國統(tǒng)計(jì)年鑒[M]. 北京:中國農(nóng)業(yè)出版社,2016.
[3] 串麗敏,趙同科,安志裝,等. 土壤硝態(tài)氮淋溶及氮素利用研究進(jìn)展[J]. 中國農(nóng)學(xué)通報(bào),2010,26(11):200-205.
Chuan Limin, Zhao Tongke, An Zhizhuang, et al. Research advancement in nitrate leaching and nitrogen use in soils[J]. Chinese Agricultural Science Bulletin, 2010, 26(11): 200-205. (in Chinese with English Abstract)
[4] 章明清,陳防,林瓊,等. 施肥對菜園土壤養(yǎng)分淋溶流失濃度的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2008,14(2):291-299.
Zhang Mingqing, Chen Fang, Lin Qiong, et al. Effect of fertilization on the concentration of soil nutrient leaching loss in vegetable garden[J]. Plant Nutrition and Fertilizer Science, 2008, 14(2): 291-299. (in Chinese with English Abstract)
[5] Li C S, Farahbakhshazad N, Jaynes D B, et al. Modeling nitrate leaching with a biogeochemical model modified based on observations in a row-crop field in Iowa[J]. Ecological Modelling, 2006, 196(1): 116-130.
[6] Zhu A N, Zhang J B, Zhao B Z, et al. Water balance and nitrate leaching losses under intensive crop production with Ochric Aquic Cambosols in North China Plain[J]. Environment International, 2005, 31(6): 904-912.
[7] 秦雪超,潘君廷,郭樹芳,等. 化肥減量替代對華北平原小麥-玉米輪作產(chǎn)量及氮流失影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2020,39(7):1558-1567.
Qin Xuechao, Pan Junting, Guo Shufang, et al. Effects of chemical fertilizer reduction combined with biogas fertilizer on crop yield of wheat-maize rotation and soil nitrogen loss in North China Plain[J]. Journal of Agro-Environment Science, 2020, 39(7): 1558-1567. (in Chinese with English Abstract)
[8] 周慧,史海濱,張文聰,等. 有機(jī)無機(jī)肥配施對鹽漬化土壤微生物量和呼吸的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(15):86-95.
Zhou Hui, Shi Haibin, Zhang Wencong, et al. Effects of the combined application of organic and inorganic fertilizers on soil microbial biomass and soil respiration in saline soil[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 37(15): 86-95. (in Chinese with English Abstract)
[9] Zhang W L, Tian Z X, Zhang N, et al. Nitrate pollution of groundwater in northern China[J]. Agriculture, Ecosystems and Environment, 1996, 59(3): 223-231.
[10] 谷少委,高劍民,鄧忠,等. 畦灌與施肥時(shí)機(jī)對土壤硝態(tài)氮分布和冬小麥產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(9):134-142.
Gu Shaowei, Gao Jianmin, Deng Zhong, et al. Effects of border irrigation and fertilization timing on soil nitrate nitrogen distribution and winter wheat yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(9): 134-142. (in Chinese with English abstract)
[11] 張萬鋒,楊樹青,劉鵬,等. 秸稈覆蓋方式和施氮量對河套灌區(qū)夏玉米氮利用及產(chǎn)量影響[J].農(nóng)業(yè)工程學(xué)報(bào),2020,36(21):71-79.
Zhang Wanfeng, Yang Shuqing, Liu Peng, et al. Effects of stover mulching combined with N application on N use efficiency and yield of summer maize in Hetao Irrigated District[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(21): 71-79. (in Chinese with English abstract)
[12] 張璐,黃晶,高菊生,等. 長期綠肥與氮肥減量配施對水稻產(chǎn)量和土壤養(yǎng)分含量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(5):106-112.
Zhang Lu, Huang Jing, Gao Jusheng, et al. Effects of long-term green manure and reducing nitrogen applications on rice yield and soil nutrient content[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(5): 106-112. (in Chinese with English abstract)
[13] 任靜,劉小勇,韓富軍,等. 施氮水平對旱塬覆沙蘋果園土壤酶活性及果實(shí)品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(8):206-213.
Ren Jing, Liu Xiaoyong, Han Fujun, et al. Effects of nitrogen fertilizer levels on soil enzyme activity and fruit quality of sand-covered apple orchard in Loess Plateau of Eastern Gansu[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(8): 206-213. (in Chinese with English abstract)
[14] Zhang Y T, Wang H Y, Liu S, et al. Identifying critical nitrogen application rate for maize yield and nitrate leaching in a Haplic Luvisol soil using the DNDC model[J]. Science of the Total Environment, 2015, 514: 388-398.
[15] Li C S, Frolking S, Frolking T A. A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity[J]. Journal of Geophysical Research: Atmospheres, 1992, 97(D9): 9759-9776.
[16] Li C S, Frolking S, Frolking T A. A model of nitrous oxide evolution from soil driven by rainfall events: 2. Model applications[J]. Journal of Geophysical Research: Atmospheres, 1992, 97(D9): 9777-9783.
[17] Li C S. Modeling trace gas emissions from agricultural ecosystems[J]. Nutrient Cycling in Agroecosystems, 2000, 58(1): 259-276.
[18] 劉寧,韓娟,劉璐璐,等. 應(yīng)用DNDC模型模擬溝壟集雨種植對陜西省玉米產(chǎn)量的影響[J]. 西北農(nóng)業(yè)學(xué)報(bào),2016,25(5):691-701.
Liu Ning, Han Juan, Liu Lulu, et al. Effects of simulation of rainfall harvesting with ridge and furrow system on maize yield in Shaanxi Province by use of DNDC model[J]. Acta Agriculturae Boreali-occidentalis Sinic, 2016, 25(5): 691-701. (in Chinese with English Abstract)
[19] 朱波,周明華,況福虹,等. 紫色土坡耕地氮素淋失通量的實(shí)測與模擬[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào),2013,21(1):102-109.
Zhu Bo, Zhou Minghua, Kuang Fuhong, et al. Measurement and simulation of nitrogen leaching loss in hillslope cropland of purple soil[J]. Chinese Journal of Eco-Agriculture, 2013, 21(1): 102-109. (in Chinese with English Abstract)
[20] Li H, Wang L G, Qiu J J, et al. Calibration of DNDC model for nitrate leaching from an intensively cultivated region of Northern China[J]. Geoderma, 2014, 223: 108-118.
[21] 李仙岳,冷旭,張景俊,等. 北方干旱區(qū)降解膜覆蓋農(nóng)田玉米生長和氮素利用模擬及優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(5):113-121.
Li Xianyue, Leng Xu, Zhang Jingjun, et al. Simulation and optimization of maize growth and nitrogen utilization under degradation film mulching in arid areas of North China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(5): 113-121. (in Chinese with English abstract)
[22] 周慧,史海濱,張文聰,等. 有機(jī)無機(jī)氮配施對玉米產(chǎn)量和硝態(tài)氮淋失的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(9):291-301,249.
Zhou Hui, Shi Haibin, Zhang Wencong, et al. Evaluation of organic-inorganic nitrogen application on maize yield and nitrogen leaching by DNDC Model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(9): 291-301, 249. (in Chinese with English Abstract)
[23] Giltrap D L, Li C S, Saggar S. DNDC: A process-based model of greenhouse gas fluxes from agricultural soils[J]. Agriculture, Ecosystems and Environment, 2010, 136: 292-300.
[24] Dutta B, Smith W N, Grant B B, et al. Model development in DNDC for the prediction of evapotranspiration and water use in temperate field cropping systems[J]. Environmental Modelling and Software, 2016, 80: 9-25.
[25] Lv F L, Song J S, Giltrap D, et al. Crop yield and N2O emission affected by long-term organic manure substitution fertilizer under winter wheat-summer maize cropping system[J]. Science of the Total Environment, 2020, 732: 9684-9697.
[26] 張富倉,嚴(yán)富來,范興科,等. 滴灌施肥水平對寧夏春玉米產(chǎn)量和水肥利用效率的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(22):111-120.
Zhang Fucang, Yan Fulai, Fan Xingke, et al. Effects of irrigation and fertilization levels on grain yield and water fertilizer use efficiency of drip fertigation spring maize in Ningxia[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 111-120. (in Chinese with English abstract)
[27] 孫占祥,鄒曉錦,張鑫,等. 施氮量對玉米產(chǎn)量和氮素利用效率及土壤硝態(tài)氮累積的影響[J]. 玉米科學(xué),2011,19(5):119-123.
Sun Zhanxiang, Zou Xiaojin, Zhang Xin, et al. Effects of maize yield and N application on N utilization and content of soil nitrate[J]. Journal of Maize Sciences, 2011, 19(5): 119-123. (in Chinese with English Abstract)
[28] Deng Q, Hui D F, Wang J M, et al. Assessing the impacts of tillage and fertilization management on nitrous oxide emissions in a cornfield using the DNDC model[J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(2): 337-349.
[29] 陳超飛,柳雙環(huán),郭大辛,等. 基于AquaCrop模型的夏玉米生長模擬及灌溉制度優(yōu)化[J]. 干旱地區(qū)農(nóng)業(yè)研究,2019,37(3):72-82.
Chen Chaofei, Liu Shuanghuan, Guo Daxin, et al. Growth simulation and optimization of irrigation scheme for summer maize using AquaCrop model[J]. Agricultural Research in the Arid Areas, 2019, 37(3): 72-82. (in Chinese with English abstract)
[30] Deng J, Zhu B, Zhou Z X, et al. Modeling nitrogen loadings from agricultural soils in southwest China with modified DNDC[J]. Journal of Geophysical Research, 2011, 116: G02020.
[31] He J Q, Dukes M D, Hochmuth G J, et al. Identifying irrigation and nitrogen best management practices for sweet corn production on sandy soils using CERES-Maize model[J]. Agricultural Water Management, 2012, 109: 61-70.
[32] 楊華,祁生林,彭云峰. 玉米優(yōu)化施氮高產(chǎn)高效生理機(jī)制[J]. 農(nóng)業(yè)工程,2016,6(2):127-129, 109.
Yang Hua, Qi Shenglin, Peng Yunfeng. Mechanisms of high maize yield and nitrogen use efficiency under optimized nitrogen management[J]. Agricultural Engineering, 2016(2): 127-129, 109. (in Chinese with English Abstract)
[33] 謝英荷,栗麗,洪堅(jiān)平,等. 施氮與灌水對夏玉米產(chǎn)量和水氮利用的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2012,18(6):1354-1361.
Xie Yinghe, Li Li, Hong Jianping, et al. Effects of nitrogen application and irrigation on grain yield, water and nitrogen utilizations of summer maize[J]. Plant Nutrition and Fertilizer Science, 2012, 18(6): 1354-1361. (in Chinese with English Abstract)
[34] He S J, Lu J. Contribution of baseflow nitrate export to non-point source pollution[J]. Science China Earth Sciences, 2016, 59(10): 1912-1929.
[35] Wang Z H, Li S X. Nitrate N loss by leaching and surface runoff in agricultural land: A global issue (a review)[J]. Advances in Agronomy, 2019, 156: 159-217.
[36] Zhou M H, Zhu B, Butterbach-Bahl K, et al. Nitrate leaching, direct and indirect nitrous oxide fluxes from sloping cropland in the purple soil area, southwestern China[J]. Environmental Pollution, 2012, 162(5): 361-368.
[37] Sebilo M, Mayer B, Nicolardot B, et al. Long-term fate of nitrate fertilizer in agricultural soils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(45): 18185-18189.
[38] Sybil S. Nitrogen cycle: Out of reach[J]. Nature, 2008, 452(7184): 162-163.
[39] Chen X P, Cui Z L, Vitousek P M, et al. Integrated soil-crop system management for food security[J]. Proceedings of the National Academy of Sciences of the United States America, 2011, 108: 6399-6404.
[40] 趙同科,張成軍,杜連鳳,等. 環(huán)渤海七省(市)地下水硝酸鹽含量調(diào)查[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2007,26(2):779-783.
Zhao Tongke, Zhang Chengjun, Du Lianfeng, et al. Investigation on nitrate concentration in groundwater in seven provinces (city) surrounding the Bo-Hai Sea[J]. Journal of Agro-Environment Science, 2007, 26(2): 779-783. (in Chinese with English Abstract)
[41] Ju X T, Kou C L, Zhang F S, et al. Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain[J]. Environmental Pollution, 2005, 143(1): 117-125.
[42] Liu G D, Wu W L, Zhang J. Regional differentiation of non-point source pollution of agriculture-derived nitrate nitrogen in groundwater in northern China[J]. Agriculture, Ecosystems and Environment, 2005, 107: 211-220.
[43] 張春霞,文宏達(dá),劉宏斌,等. 優(yōu)化施肥對大棚番茄氮素利用和氮素淋溶的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2013,19(5):1139-1145.
Zhang Chunxia, Wen Hongda, Liu Hongbin, et al. Effect of optimum fertilization on nitrogen use efficiency and nitrate leaching in the greenhouses[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(5): 1139-1145. (in Chinese with English Abstract)
[44] 李聰聰. 鹽漬化灌區(qū)維持作物穩(wěn)定生長水氮耦合及其閾值研究[D]. 呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2020.
Li Congcong. Study on the Coupling of Water and Nitrogen and Its Threshold for Maintaining Stable Crop Growth in Salinized Irrigated Area[D]. Hohhot: Inner Mongolia Agricultural University, 2020. (in Chinese with English Abstract)
Simulation of the threshold of maize nitrogen application using a DNDC model in salinized irrigation areas
Dai Jialu1, Li Ruiping1※, Li Congcong1, Lu Yaoze2, Hua Zhimin3
(1.010018,; 2.015000,; 3.010020,)
This study aims to determine the suitable nitrogen application rate for agricultural production and environmental protection in salinized irrigation areas. A two-year field experiment was carried out in the Hetao Irrigation District of Inner Mongolia in Western China. A Denitrification-Decomposition (DNDC) model was selected to simulate the key factors, including the amount of nitrate leaching loss, the amount of plant nitrogen uptake, and the threshold of maize nitrogen application rate. The results showed that: 1) The DNDC model accurately simulated the maize yield and nitrogen utilization. A better agreement between the measured and simulated data was achieved on the maize yield, leaf area index (LAI) and soil nitrate-nitrogen accumulation in the 0-20 cm soil layer, where the model Nash-Sutcliffe efficiency (E) and the coefficient of determination (2) were all greater than 0.75, the normalized root mean square error (NRMSE) was 9.26%-9.57%, 13.49%-17.51%, and 19.84%-21.48%, respectively. 2) A sensitivity analysis of the model parameters showed that the nitrogen application rate (the sensitivity index of 1.92 and -0.89) and topdressing times (the sensitivity index of 0.11, and -0.85) presented significant effects on the amount of nitrate leaching loss and plant nitrogen uptake. However, the tillage depth (the sensitivity index of 0.03, and 0.09) and irrigation amount (the sensitivity index of -0.02, and -0.01) behaved little effect on the amount of nitrate leaching loss and plant nitrogen uptake. Whereas, the excessive application of nitrogen rate cannot promote the amount of plant nitrogen uptake and yield, but lead to the amount of nitrate leaching and even environmental pollution. 3) The amount of plant nitrogen uptake and maize yield increased firstly and then gradually stabilized, with the increase of nitrogen application rate. In addition, the amount of plant nitrogen uptake during the growth period increased by 167.18% and 31.27%, when the number of topdressing was three times, compared with one and two times. 4) Once the number of topdressing was the same, the nitrate leaching loss increased with the increase of nitrogen application rate. However, the leaching loss of nitrate decreased gradually with the increase of topdressing times, when the amount of nitrogen rate was constant. The nitrate leaching loss in the growing season decreased by 41.96% and 59.75%, when the number of topdressing was two or three times, compared with the single. As such, the optimal fertilization was 165.50-200 kg/hm2nitrogen application rate, and top fertilization at the jointing, tasseling, and filling stages, considering the yield, the nitrate leaching loss, and the nitrogen rate applied with the maximum amount of plant nitrogen uptake. The finding can provide technical support to reduce the groundwater pollution and resource wastes in Hetao Irrigation District.
nitrogen; leaching; irrigation; maize; yield; amount of plant nitrogen uptake; DNDC model
2021-07-26
2021-10-10
國家自然科學(xué)基金(51839006,52069021)
戴嘉璐,研究方向?yàn)楣喔扰潘碚撆c新技術(shù)。Email:1529231858@qq.com
李瑞平,博士,教授,博士生導(dǎo)師,研究方向?yàn)楣?jié)水灌溉與農(nóng)業(yè)水利遙感信息技術(shù)。Email:nmglrp@163.com
10.11975/j.issn.1002-6819.2021.24.015
S158.5
A
1002-6819(2021)-24-0131-10
戴嘉璐,李瑞平,李聰聰,等. 鹽漬化灌區(qū)玉米施氮量閾值DNDC模型模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(24):131-140. doi:10.11975/j.issn.1002-6819.2021.24.015 http://www.tcsae.org
Dai Jialu, Li Ruiping, Li Congcong, et al. Simulation of the threshold of maize nitrogen application using a DNDC model in salinized irrigation areas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(24): 131-140. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.24.015 http://www.tcsae.org