楊瑜?李華?鄧麗?雷杰?王楠?謝貝?吳玲?劉志輝?孟繁榮
【摘要】目的建立一種以MPT64為指標(biāo)的結(jié)核分枝桿菌(MTB)耐藥性檢測的快速方法,探討MPT64在MTB利福平(RFP)和異煙肼(INH)耐藥性檢測中的應(yīng)用。方法 應(yīng)用膠體金免疫層析法(GICA)分別檢測MTB敏感株和耐多藥株在含(觀察組)與不含(對照組)RFP、INH的Middlebrook 7H9液體培養(yǎng)基上培養(yǎng)3、7、10 d的培養(yǎng)液中的MPT64,通過凝膠成像儀白光源拍照進(jìn)行條帶灰度分析(Image Jab Software 3.0),比較敏感株和耐多藥株間的灰度比值的差異,依據(jù)受試者工作特征(ROC)曲線下面積(AUC)分析確定RFP、INH耐藥的灰度比值界值;以比例法檢測結(jié)果為金標(biāo)準(zhǔn),評價(jià)新建方法的準(zhǔn)確度、靈敏度、特異度、陽性預(yù)測值和陰性預(yù)測值。結(jié)果 對照組中,隨著培養(yǎng)時(shí)間的延長,12株MTB敏感株和11株耐多藥株的灰度比值增大;觀察組中,敏感株在不同的培養(yǎng)時(shí)間的灰度比值沒有顯著變化,而耐多藥株則明顯增大。3、7、10 d敏感菌與耐多藥菌在藥物培養(yǎng)基中MPT64檢測灰度比值差異均有統(tǒng)計(jì)學(xué)意義(P均< 0.05)。依據(jù)觀察組灰度比值分別繪制以MPT64指示的RFP和INH耐藥性檢測的ROC曲線,兩者的3 d
AUC分別為0.84和0.77,灰度比值界值均為0.05;7、10 d AUC均為1.00,7 d的灰度比值界值分別為0.23與0.20;10 d的灰度比值界值分別為0.49和0.48。GICA檢測MPT64用于34株MTB的RFP、INH耐藥性鑒定的準(zhǔn)確度分別為97%和94%,靈敏度分別為93%和86%,特異度均為100%,陽性預(yù)測值均為100%,陰性預(yù)測值分別為95%和91%。結(jié)論 GICA檢測MPT64于MTB培養(yǎng)7 d時(shí)能準(zhǔn)確檢測抗結(jié)核藥物RFP、INH耐藥性,MPT64可作為MTB藥敏試驗(yàn)的有效檢測指標(biāo)。
【關(guān)鍵詞】結(jié)核分枝桿菌;MPT64;藥物耐藥性;膠體金免疫層析法
Application of MPT64 in detecting rifampicin and isoniazid resistance in Mycobacterium tuberculosis Yang Yu, Li Hua, Deng Li, Lei Jie, Wang Nan, Xie Bei, Wu Ling, Liu Zhihui, Meng Fanrong. Institute of Pulmonary Diseases, Guangzhou Chest Hospital, Guangzhou 510095, China
Correspongding author, Meng Fanrong, E-mail: rendong.mfr@ 163. com
【Abstract】Objective To establish a rapid method for detecting drug resistance of Mycobacterium tuberculosis (MTB) by using an indicator of MPT64 and to evaluate the application of MPT64 in detecting rifampicin (RFP) and isoniazid (INH) resistance of MTB. Methods The expression levels of MPT64 in the Middlebrook 7H9 liquid medium containing (observation group) and non-containing (control group) RFP and INH, separately cultured by MTB sensitive strains and multidrug-resistant strains for 3, 7, 10 days were detected by using gold immunotomographic assay (GICA). The grayscale of the experimental strip was analyzed by photographs with white light source of gel imaging instrument (Image Lab Software 3.0). The grayscale ratio was compared between the sensitive and multidrug-resistant strains. The cutoff value of the grayscale ratio for RFP and INH resistance was determined based on the analysis of the area under the receiver operating characteristic (ROC) curve (AUC). The accuracy, sensitivity, specificity, positive and negative prediction values of this new method were evaluated with the proportional test results as the gold standard. Results With the prolongation of culture time, the grayscale ratios of 12 MTB sensitive strains and 11 multidrug-resistant strains were increased in the control group. The grayscale ratios of sensitive strains at different culture times did not change significantly in the observation group, whereas those of the multidrug-resistant strains were significantly increased. The MPT64 grayscale ratios of sensitive and multidrug-resistant strains in the drug medium significantly differed at 3, 7 and 10 days (all P < 0.05). According to the grayscale ratio in the observation group, the ROC curves of the RFP and INH resistance detection were plotted with the indicator of MPT64. On day 3, the AUCs of RFP and INH were 0.84 and 0.77, and the grayscale ratios were both 0.05. On day 7 and day 10, the AUCs were both 1.00. On day 7, the grayscale ratios were 0.23 and 0.20. On day 10, the grayscale ratios were 0.49 and 0.48. The accuracy of GICA in detecting RFP and INH drug-resistance of 34 MTB was 97% and 94%, 93% and 86% for the sensitivity, 100% and 100% for the specificity, 100% and 100% for the positive prediction value, and 95% and 91% for the negative prediction value, respectively. Conclusions MPT64 detection by GICA can accurately and rapidly identify the RFP and INH resistance on day 7 of MTB culture. MPT64 can be used as an effective detection indicator for MTB drug sensitivity.
【Key words】Mycobacterium tuberculosis;MPT64;Drug resistance;Gold immunochromatographic assay
MPT64是結(jié)核分枝桿菌(MTB)早期生長繁殖過程中大量分泌的一種蛋白,在非MTB和卡介苗株中不存在,是能快速鑒別MTB的重要抗原[1-2]。我們前期研究表明MPT64與MTB生長高度相關(guān),可作為MTB生長指標(biāo),那么其是否可以作為抗結(jié)核藥物藥敏或耐藥的檢測指標(biāo)呢[3-4]?理論上,體外液體培養(yǎng)MTB進(jìn)行藥敏試驗(yàn)時(shí),若為敏感株,MTB生長抑制,MPT64分泌減少;相反,耐藥則MPT64分泌不受影響。為此,本研究應(yīng)用膠體金免疫層析法(GICA)對不同藥物作用下不同培養(yǎng)時(shí)期的MTB上清液中MPT64進(jìn)行檢測,初步建立一種準(zhǔn)確快捷、簡單易行的藥物耐藥性檢測方法,報(bào)道如下。
材料與方法
一、材 料
1.菌 株
實(shí)驗(yàn)所用的MTB菌株均源于我院的生物菌株庫。菌株均已通過生化和分子方法鑒定為MTB以及通過藥敏試驗(yàn)比例法鑒定為“敏感”或“耐多藥”。
2.試劑與儀器
MTB抗原檢測試劑盒(GICA)為杭州創(chuàng)新生物檢控技術(shù)有限公司生產(chǎn),Middlebrook 7H9/7H10培養(yǎng)基由美國BD公司生產(chǎn),利福平(RFP)與異煙肼(INH)藥物粉劑為美國SIGMA公司生產(chǎn)等;細(xì)菌超聲分散儀BACspreaderTM 1100(體必康)、凝膠成像系統(tǒng)儀(BioRad)、細(xì)菌培養(yǎng)箱等。
二、方 法
1.復(fù)蘇菌株
-80℃冰箱里取出凍存菌,置水浴箱快速解凍,吸取1 ml轉(zhuǎn)接于約7 ml新鮮配置的7H9液體培養(yǎng)基1周,而后取200 ?l菌液涂布于斜面7H10固體培養(yǎng)基,置于37℃培養(yǎng)箱2 ~ 3周。
2.調(diào)整菌液濃度
分別刮取新鮮培養(yǎng)于7H10固體培養(yǎng)基上的12株MTB敏感株和11株耐多藥株,置于生理鹽水中,超聲勻散為懸液,轉(zhuǎn)移至15 ml離心管,
12 000 轉(zhuǎn)/分離心10 min,棄上清;再加入7 ml生理鹽水振蕩混勻,離心棄上清,重復(fù)此步驟2 ~ 3次,充分去掉培養(yǎng)基斜面上分泌的蛋白。生理鹽水重懸菌體并調(diào)整菌濃度為0.1(麥?zhǔn)媳葷峁埽﹤溆谩?/p>
3. MTB接種
分裝對照培養(yǎng)基與藥物培養(yǎng)基7 ml/管,其中藥物培養(yǎng)基RFP與INH的終濃度分別為1.0 μg/ml和0.2 μg/ml。吸取上述各備用菌100 μl分別接種對照與藥物培養(yǎng)基,即菌接種量為0.01 mg,于37℃培養(yǎng)。
4. GICA檢測MPT64
于培養(yǎng)3、7、10 d收集培養(yǎng)上清,12 000轉(zhuǎn)/分離心5 min,移取上清用于MPT64檢測。取100 μl
上清加入檢測板的樣本孔內(nèi),室溫放置15 min后觀察結(jié)果。出現(xiàn)質(zhì)控帶表示結(jié)果有效,無質(zhì)控帶出現(xiàn)表示試劑失效,需重測。其中質(zhì)控帶和測試帶都出現(xiàn)表示MPT64檢測陽性,而只有質(zhì)控帶則表示檢測陰性。應(yīng)用凝膠成像儀白光源拍照進(jìn)行條帶灰度分析,設(shè)質(zhì)控條帶灰度值為“1”,計(jì)算灰度比值(樣本檢測帶灰度值/質(zhì)控帶灰度值)
(Image Lab Software 3.0)。
三、鑒定實(shí)驗(yàn)
選擇藥敏結(jié)果(比例法)明確的34株MTB,其中比例法操作方法參考文獻(xiàn)所述[5]。根據(jù)最佳檢測時(shí)間和確定的灰度比值界值,進(jìn)行GICA檢測MPT64鑒定MTB的RFP及INH敏感性,比較新建方法與比例法的藥敏結(jié)果,評估其準(zhǔn)確度、靈敏度、特異度、陽性預(yù)測值和陰性預(yù)測值。
四、統(tǒng)計(jì)學(xué)處理
采用SPSS 17.0進(jìn)行統(tǒng)計(jì)分析,非正態(tài)分布資料以中位數(shù)(下四分位數(shù),上四分位數(shù))表示,比較采用兩獨(dú)立樣本的秩和檢驗(yàn)。應(yīng)用受試者工作特征(ROC)曲線確定GICA檢測MPT64在MTB的RFP、INH耐藥性檢測中的界值。配對χ2檢驗(yàn)用于GICA檢測MPT64法與比例法檢測藥敏結(jié)果一致性的比較分析,P < 0.05為差異有統(tǒng)計(jì)學(xué)意義。
結(jié)果
一、MTB在不同培養(yǎng)基中MPT64的GICA檢測反應(yīng)變化
對照培養(yǎng)基中,隨著培養(yǎng)時(shí)間的增加,MTB敏感株和耐多藥株的樣本檢測帶逐漸明顯,培養(yǎng)7、10 d呈陽性反應(yīng);藥物培養(yǎng)基中,敏感株各時(shí)間點(diǎn)檢測帶無明顯變化,呈陰性反應(yīng),而耐多藥株檢測帶逐漸明顯,呈陽性反應(yīng),見圖1。相應(yīng)地,對照培養(yǎng)基中敏感株、耐多藥株各時(shí)間點(diǎn)MPT64檢測帶的灰度比值增大;而藥物培養(yǎng)基中敏感株各時(shí)間點(diǎn)MPT64檢測帶的灰度比值幾乎為0,耐多藥株則增大,見圖2。培養(yǎng)時(shí)間3、7和10 d敏感株與耐多藥株在RFP培養(yǎng)基中MPT64的檢測帶灰度比值均存在差異,Z值分別為2.892、4.304和4.387,P 均< 0.05。同樣,在含有INH的培養(yǎng)基中,培養(yǎng)時(shí)間3、7和10 d敏感株與耐多藥株MPT64的檢測帶灰度比值均存在差異,Z值分別為2.232、4.150和4.384,P 均< 0.05。
二、GICA檢測MPT64在RFP和INH耐藥性檢測試驗(yàn)中的界值
依據(jù)觀察組灰度比值分別繪制以MPT64指示的RFP和INH耐藥性檢測的ROC曲線,兩者的3 d ROC曲線下面積(AUC)分別為0.84和0.77,灰度比值界值均為0.05;7、10 d的AUC均為1.00,7 d的灰度比值界值分別為0.23與0.20,10 d的分別為0.49和0.48,見表1和圖3。本實(shí)驗(yàn)選擇MPT64檢測時(shí)間點(diǎn)為7 d,其RFP、INH的藥敏判定界值分別為0.23和0.20,表示2種藥物耐藥性檢測試驗(yàn)中,灰度比值大于0.23則為對RFP耐藥,大于0.20則為對INH耐藥。
三、應(yīng)用界值鑒定MTB的RFP/INH耐藥性
應(yīng)用上述界值對34株MTB進(jìn)行GICA檢測MPT64,結(jié)果為對RFP耐藥性檢測21株為敏感株,13株為耐藥株,與比例法的結(jié)果比較,差異無統(tǒng)計(jì)學(xué)意義(P = 1.000);對INH耐藥性檢測22株為敏感株,12株為耐藥株,與比例法的結(jié)果比較,差異無統(tǒng)計(jì)學(xué)意義(P = 0.500)。以比例法的結(jié)果為金標(biāo)準(zhǔn),GICA檢測MPT64用于RFP、INH耐藥性鑒定的準(zhǔn)確度分別為97%和94%,鑒定RFP、INH耐藥性的靈敏度分別為93%和86%,特異度均為100%,陽性預(yù)測值均為100%,陰性預(yù)測值分別為95%和91%,見表2。
討論
MPT64是MTB重要的分泌蛋白之一,于MTB培養(yǎng)上清中大量表達(dá),具有很強(qiáng)的抗原性,被廣泛用于結(jié)核診斷、潛伏篩查以及疫苗研制等[6-7]。目前已有基于MPT64免疫層析檢測的的商品化試劑盒得以開發(fā),然而多用于快速鑒定MTB感染,少見用于耐藥結(jié)核病的診斷[8-9]。GICA是一種快速的免疫反應(yīng)檢測法,其原理是將抗原或抗體固定在硝酸纖維素膜載體一端,待測菌液上清點(diǎn)在另一端,通過樣品液體橫向流動(dòng),與固定的抗原或抗體結(jié)合,陽性反應(yīng)則顏色條帶顯示。本研究結(jié)果顯示在對照培養(yǎng)基中,敏感株與耐多藥株GICA反應(yīng)均為陽性,說明在無藥物壓力下,2種菌株正常生長,隨著培養(yǎng)時(shí)間的增長,培養(yǎng)上清中有大量的MPT64。當(dāng)置于藥物培養(yǎng)基時(shí),盡管培養(yǎng)3 d時(shí)有些敏感株能檢測到微量的MPT64(顏色條帶顯示非常弱),而7、10 d完全無顏色條帶顯示,表明敏感株在藥物培養(yǎng)基中生長受到抑制,分泌MPT64顯著減少;耐藥株于3 d時(shí)為弱條帶,但7、10 d可見明顯的陽性反應(yīng)條帶,說明耐藥株在藥物培養(yǎng)基中生長未受到抑制,MPT64隨著時(shí)間分泌增多。這與我們先前的實(shí)驗(yàn)結(jié)果MPT64可能為較好的藥敏試驗(yàn)指示物相符[10]。
為了進(jìn)一步評估GICA檢測MPT64的RFP、INH藥物耐藥性檢測效能,將該檢測結(jié)果相對定量,即膠體金檢測板拍照并條帶灰度分析,獲得灰度比值。經(jīng)統(tǒng)計(jì)分析,我們發(fā)現(xiàn)培養(yǎng)3、7、10 d敏感株與耐多藥株在RFP與INH藥物培養(yǎng)基中MPT64檢測灰度比值差異有統(tǒng)計(jì)學(xué)意義。然而通過ROC曲線分析,3 d MPT64檢測判斷RFP、INH藥物耐藥性的特異度偏低,分別為75%和67%;7和10 d判斷該兩種藥物耐藥性的靈敏度和特異度均為100%,以快速為目的,7 d是較為理想的檢測點(diǎn)。34株MTB菌株GICA檢測MPT64鑒定RFP和INH的耐藥性,與比例法檢測結(jié)果比較,配對χ2檢驗(yàn)P值為1.000,說明2種檢測方法無顯著差異,結(jié)果有很好的一致性,且準(zhǔn)確度較高。GICA檢測MPT64判斷RFP、INH耐藥性均有較高的靈敏度和特異度。盡管已有研究表明MPT64可有效指示藥敏試驗(yàn)結(jié)果,但仍需要儀器輔助判讀,且只是針對RFP和INH兩種藥,是否能做到無需儀器,并適用于其他抗結(jié)核藥物呢[11]?這是我們后續(xù)將要進(jìn)行的實(shí)驗(yàn),與此同時(shí),擴(kuò)大檢測樣本量,優(yōu)化接種菌濃度和藥物濃度,探討更短檢測時(shí)間點(diǎn)。另外據(jù)相關(guān)文獻(xiàn)報(bào)道,部分MTB的MPT64表達(dá)基因存在突變,無法檢測到抗原,會(huì)導(dǎo)致檢測結(jié)果假陰性[12-13]。盡管MTB的MPT64基因突變概率低,但為了提高檢測準(zhǔn)確度,我們將同時(shí)檢測MTB其他分泌蛋白,篩選最佳的分泌蛋白組合用于MTB藥敏試驗(yàn)檢測[14]。
綜上所述,GICA檢測MPT64能在7 d時(shí)準(zhǔn)確快速鑒定MTB菌抗結(jié)核藥物耐藥性,并且不需要非常昂貴特殊的儀器。MPT64可作為MTB藥敏試驗(yàn)的有效檢測指標(biāo)。
參 考 文 獻(xiàn)
[1] Mannan A, Iram S, Ahmad A, Hussain S, Ahmad BM. Identification of TBc: using MTP 64 protein and cord formation. J Pak Med Assoc, 2017, 67(10):1600-1603.
[2] Purohit MR, Sviland L, Wiker H, Mustafa T. Rapid and specific diagnosis of extrapulmonary tuberculosis by immunostaining of tissues and aspirates with anti-MPT64. Appl Immunohistochem Mol Morphol, 2017, 25(4):282-288
[3] 許婉華,黃業(yè)倫,劉燕文,胡麗環(huán),羅少珍,孟繁榮,劉志輝.應(yīng)用MPT64分泌為結(jié)核桿菌生長指示的適宜檢測時(shí)點(diǎn)研究.實(shí)用醫(yī)學(xué)雜志,2012,28(13):2262-2264.
[4] 何霞,譚守勇,羅春明,蔡杏珊,劉志輝. 應(yīng)用MPT64為靶標(biāo)快速檢測結(jié)核分枝桿菌生長的研究. 廣東醫(yī)學(xué),2010,31(2):222-224.
[5] 綦迎成,李君連,陳美娟. 實(shí)用結(jié)核病實(shí)驗(yàn)室診斷.北京:人民軍醫(yī)出版社,2012.
[6] Bekmurzayeva A, Sypabekova M, Kanayeva D. Tuberculosis diagnosis using immunodominant, secreted antigens of Myco-bacterium tuberculosis. Tuberculosis (Edinb),2013,93(4):381-388.
[7] Sibley L, Reljic R, Radford DS, Huang JM, Hong HA, Cranenburgh RM, Cutting SM. Recombinant bacillus subtilis spores expressing MPT64 evaluated as a vaccine against tuberculosis in the murine model. FEMS Microbiol Lett, 2014, 358(2):170-179.
[8] Kumar N, Agarwal A, Dhole TN, Sharma YK. Rapid identification of Mycobacterium tuberculosis complex in clinical isolates by combining presumptive cord formation and MPT64 antigen immunochromatographic assay.Indian J Tuberc,2015,62(2):86-90
[9] Tadele A, Beyene D, Hussein J, Gemechu T, Birhanu A, Mustafa T, Tsegaye A, Aseffa A, Sviland L. Immunocy-tochemical detection of Mycobacterium tuberculosis complex specific antigen, MPT64, improves diagnosis of tuberculous lymphadenitis and tuberculous pleuritis. BMC Infect Dis, 2014, 14(1):585.
[10] 尹小毛,謝貝,羅春明,黃麗晶,蔡杏珊,李昕潔,劉志輝. 應(yīng)用MPT64檢測建立結(jié)核分枝桿菌藥敏新方法的初步探索.實(shí)驗(yàn)與檢驗(yàn)醫(yī)學(xué),2011,29(4):371-372.
[11] Chutichetpong P, Cheeveewattanagul N, Srilohasin P, Rijirava-nich P, Chaiprasert A, Surareungchai W. Rapid screening drug susceptibility test in tuberculosis using sandwich electrochemical immunosensor. Anal Chim Acta, 2018,1025:108-117.
[12] Singh K, Kumari R, Tripathi R, Gupta A, Anupurba S. Mutation in MPT64 gene influencing diagnostic accuracy of SD Bioline assay (capilia). BMC Infect Dis, 2019, 19(1):1-6.
[13] Qiu Y, Wan L, Liu H, Wan K, Guan C, Jiang Y. Impact of 63-bp deletion and single-base mutation in mpt64 gene on M.tb diagnosis. Int J Clin Exp Pathol, 2015, 8(3): 3210-3214.
[14] 毛欣茹,張?jiān)娒?,尹小? 結(jié)核分枝桿菌mpt64基因突變研究. 實(shí)驗(yàn)與檢驗(yàn)醫(yī)學(xué),2016,34(2):137-139.
(收稿日期:2020-11-10)
(本文編輯:楊江瑜)