何廣 鄧小玲 戚傳勇 湯春蓮 張莉 魏青 阮祥春
摘要 莫西菌素是一種半合成的單一成分的大環(huán)內(nèi)酯類抗寄生蟲藥,其藥代動力學(xué)特征與藥效密切相關(guān)。通常莫西菌素藥代動力學(xué)會因制劑、動物品種、機(jī)體狀態(tài)以及與其他藥物的相互作用而發(fā)生改變。綜述了莫西菌素藥效學(xué)和藥代動力學(xué),為莫西菌素的臨床應(yīng)用提供參考。
關(guān)鍵詞 莫西菌素;藥效學(xué);藥動學(xué);抗寄生蟲藥
中圖分類號 S859.7文獻(xiàn)標(biāo)識碼 A文章編號 0517-6611(2021)05-0005-05
doi:10.3969/j.issn.0517-6611.2021.05.002
開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID):
Advances in Pharmacodynamics and Pharmacokinetics of Moxidectin
HE Guang1, DENG Xiao-ling2, QI Chuan-yong3 et al
(1.Hefei Agricultural Administrative Law Enforcement Detachment, Hefei, Anhui 231135;2.College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036; 3.Hefei Agricultural Product Quality Test Center, Hefei, Anhui 230092)
Abstract Moxidectin is a semi-synthetic mono-component macrolide antiparasitic drug. The pharmacokinetic characteristics of moxidectin are closely related to its efficacy.In general, the pharmacokinetics of moxidectin are changed by the formulations, breeds, body status and interaction with other drugs.This article reviewed the pharmacodynamics and pharmacokinetic of moxidectin. It was refered to the clinical application of moxidectin.
Key words Moxidectin;Pharmacodynamics;Pharmacokinetics;Antiparasitic drug
莫西菌素(moxidectin,MXD),又稱為莫昔克丁或莫西克汀,是由鏈霉素發(fā)酵產(chǎn)生的半合成單一成分的大環(huán)內(nèi)酯類抗生素。MXD屬于米爾貝霉素(milbemyeins)家族,是奈馬菌素(nemadectin)的衍生物,屬于第三代阿維菌素類(AVMs)藥物。MXD與其他AVMs相比,MXD成分單一,具有驅(qū)蟲譜廣,驅(qū)蟲活性強(qiáng)、長效、安全[1]等特點(diǎn)。與伊維菌素(ivermectin,IVM)相比,MXD能與多種賦型劑組合制成各類制劑,可供開發(fā)選擇劑型的范圍更廣。目前,臨床上常用的MXD劑型有澆潑劑、注射劑、片劑、透皮劑、口服凝膠等,其被用于牛、羊、馬、豬、犬、貓等動物寄生蟲病的防治,甚至用于人的盤尾絲蟲病的治療[2-3]。MXD是理想的體內(nèi)外抗寄生蟲藥物。該研究擬綜述莫西菌素藥效學(xué)和藥代動力學(xué),以期為莫西菌素的臨床應(yīng)用提供參考。
1 MXD理化性質(zhì)
MXD分子式為C 37H 53NO 8,分子量為639.8 g/mol。它的結(jié)構(gòu)類似于IVM的B1,不同處是在C 13上沒有雙糖,在C 25上有一個含烯烴的鏈,在C 23上有一個甲氧基(圖1)。MXD元素組成C為69.48%、H為8.37%、N為2.15%、O為20%(試驗(yàn)數(shù)據(jù))。其性狀為白色或淡黃色無定型粉末,熔點(diǎn)為145~154 ℃,酸離解常數(shù)(pKa)為12.8±1.0,蒸汽壓< 10-7(檢測極限)。差示掃描量熱法(DSC)測定MXD的最大電熱融化溫度為274.6 ℃,能量為492.1 J/g。MXD不溶于水,微溶于正己烷,易溶于乙醇(> 96%)、乙腈、乙酸乙酯等有機(jī)溶劑。MXD的正辛醇/水分配系數(shù)(58 300)顯示為親脂性化合物,其親脂性為IVM的100倍以上。MXD紫外可見吸收波長在243.8 nm出現(xiàn)最大吸收峰。MXD在酸、堿、光照及氧氣存在的條件下均不穩(wěn)定,在制備過程中需要考慮這些因素對制劑穩(wěn)定性的影響[4]。MXD在水中溶解度低,無揮發(fā)性,不會通過空氣遷移,故排出到環(huán)境中的MXD與土壤結(jié)合較緊密。莫西菌素在環(huán)境中發(fā)生代謝、吸收以及光降解作用,對環(huán)境造成污染的可能性非常小。
2 MXD藥效學(xué)
2.1 MXD抗蟲譜
MXD對多種動物的體內(nèi)消化道線蟲與體表寄生蟲均有較強(qiáng)的驅(qū)蟲作用。對牛羊體內(nèi)的捻轉(zhuǎn)血矛線蟲、古柏線蟲、毛圓線蟲、仰口線蟲、細(xì)頸線蟲、食道口線蟲、網(wǎng)尾線蟲等[5-6];對豬體內(nèi)的蛔蟲、毛首線蟲、食道口線蟲、后圓線蟲等;對犬的心絲蟲、結(jié)膜吸吮線蟲、血管圓線蟲、毛細(xì)線蟲等[7];對多種動物體表的蠕形螨、疥螨、虱、蚤、蠅蛆等節(jié)肢動物均具有很強(qiáng)的殺滅作用[8]。
2.2 MXD驅(qū)蟲作用
Fazzio等[9]用MXD治療自然發(fā)病感染捻轉(zhuǎn)血矛線蟲(Haemonchus spp.)和古柏線蟲(Cooperia spp.)的育肥犢牛,平均糞便卵計數(shù)(FECs)降低85%。Rizk等[10]發(fā)現(xiàn)MXD對水牛犢牛感染弓形蟲的驅(qū)蟲活性強(qiáng)且持久。用1%的MXD注射液(CYDECTIN-Ford Dodge)治療患有嚴(yán)重疥螨疾病的山羊,首次給藥后皮膚瘙癢癥已迅速減輕,治療8周后,所有羊均治愈[11]。Demeulenaere等[12]報道了MXD對寄生于馬的大多數(shù)寄生蟲表現(xiàn)出比IVM更長的保護(hù)時間。
MXD不僅應(yīng)用于大動物的寄生蟲病防治,而且在防治小動物寄生蟲病方面也應(yīng)用廣泛。用含MXD成分的愛沃克[Advocate,10%吡蟲啉(Imidacloprid)+2.5%MXD]治療由毛細(xì)線蟲引起的犬鼻毛細(xì)血管病,在給藥第(28±2)天的糞便中卵囊數(shù)減少了99.14%[13]。用MXD緩釋制劑和口服制劑預(yù)防臨床分離耐IVM的心絲蟲人工感染犬,防治效果分別達(dá)99.5%和100%[14-15]。愛沃克在連續(xù)給藥8周后,治療腎上腺皮質(zhì)功能亢進(jìn)繼發(fā)性全身蠕蟲?。ㄈ湫悟┑娜闹斡蕿?0.1%,并有效維持1年的時間[16]。AdvantageMultifor Cats(10% Imidacloprid+1% MXD)對貓自然感染嗜氣毛細(xì)線蟲(Capillaria aerophila)的治療效果達(dá)100%[17],對貓耳螨(Otodectes cynotis)的治療效果為100%,并且持續(xù)到第50天[18]。
MXD的驅(qū)蟲作用與其本身具有良好的抗寄生蟲活性,臨床的合理使用能提高其驅(qū)蟲效果。MXD的藥代動力學(xué)受到禁食、動物脂肪沉積厚度等生理狀態(tài)以及P-gp調(diào)節(jié)劑的影響(在藥代動力學(xué)部分具體闡述),使用時依據(jù)動物生理狀態(tài)以及藥物的配伍提高其臨床療效。另外,可以結(jié)合地域與動物的養(yǎng)殖特點(diǎn),在特定的周期內(nèi)使用,提高M(jìn)XD的抗寄生蟲效果。如對高海拔區(qū)域放牧的羊群,母羊圍產(chǎn)期暫時對腸道線蟲感染的抵抗力下降,導(dǎo)致糞便中卵囊數(shù)增加[19]。母羊排出的蟲卵不僅污染牧草,而且孵出的感染性幼蟲感染羔羊[20-21],給羊群寄生蟲病防治帶來一定困難。圍產(chǎn)期使用MXD可以有效防治羊群的寄生蟲疾病,也可以減少蟲卵對牧場的污染[22]。在臨床應(yīng)用中,MXD的給藥方案以及適當(dāng)時期使用對于寄生蟲控制有著非常重要的意義。
3 MXD藥代動力學(xué)
3.1 MXD藥代動力學(xué)特征
3.1.1 吸收。
達(dá)峰時間(T max)可以反映藥物在體內(nèi)吸收的快慢。MXD在體內(nèi)的吸收比其他AVMs藥物快。Lanusse等[23]報道了MXD、IVM和多拉菌素(doramectin,DRM)在牛體內(nèi)的T max差異,MXD的T max(8.0 h)要早于IVM(4 d)和DRM(6 d)的T max。MXD皮下給藥后在不同動物體內(nèi)T max先后順序?yàn)榘哺袼古?荷斯坦牛>羊駝>駱駝>綿羊>袋熊>馬鹿>雜交小牛>山羊(表1)。從表中可以看出MXD在山羊體內(nèi)T max最快。
3.1.2 分布和代謝。
MXD在體內(nèi)分布廣泛,在脂肪、黏膜、膽汁、血漿、毛皮等組織中均有分布[31]。由于MXD具有高脂溶性和對脂肪組織高親和力,MXD主要分布在脂肪組織[32]。MXD給藥后,在脂肪組織中的濃度最高,依次為肝臟、腎臟和肌肉[33]。
MXD代謝的主要器官為肝臟,肝臟中細(xì)胞色素P450主要參與MXD的代謝[34]。MXD的代謝物包含1種羥基化代謝物和至少6種其他的代謝物[35]。MXD在牛體內(nèi)的主要代謝產(chǎn)物為C 29-30和C 14-羥甲基衍生物[36]。由于動物品種的差異,MXD在肝臟中生物轉(zhuǎn)化的快慢存在一定差異,從而影響MXD在體內(nèi)的滯留時間。Dupuy等[37]報道使用幾種動物的肝微粒體,在體外研究對14C標(biāo)記的MXD的生物轉(zhuǎn)化率,結(jié)果顯示,綿羊的生物轉(zhuǎn)化率最高(32.7%),而豬的生物轉(zhuǎn)化率最低(0.8%),其他動物的生物轉(zhuǎn)化率依次為牛(206%)、鹿(15.4%)、山羊(12.7%)、兔子(7.0%)和大鼠(3.0%)。
3.1.3 排泄。
MXD主要是通過糞便排出體外(>95%),僅有少量通過尿液排泄(<1%)。通過檢測公牛糞便,在第7、14、28天排出MXD的量分別相當(dāng)于給藥劑量的32.2%、413%和58.1%[35]。但是在哺乳期時,MXD也能通過乳汁排出[38],吮吸乳汁的幼畜體內(nèi)能檢測到MXD[39]。駱駝乳汁中的MXD藥代動力學(xué)參數(shù)C max和AUC是血漿中C max和AUC的3~4倍[40]。MXD通過乳汁排泄,與MXD的高脂溶性特征有關(guān)。
3.2 影響MXD藥代動力學(xué)參數(shù)的因素
MXD的藥代動力學(xué)因機(jī)體狀態(tài)、給藥途徑、藥物劑型的不同而有明顯差異,給藥前是否禁食和額外補(bǔ)充油脂以及藥物的相互作用也能對動力學(xué)參數(shù)產(chǎn)生明顯影響。
3.2.1 機(jī)體狀態(tài)。
動物不同年齡、性別、生理、病理因素等均會影響MXD的藥代動力學(xué)特征(表2)。Craven等[41]研究表明肥豬(背膘厚)MXD的C max比瘦豬低,但全身循環(huán)的藥物總量顯著升高;肥豬MXD的體清除率(CL/F)低,平均滯留時間(MRT)長,說明MXD在肥豬體內(nèi)更長效。雌性比格犬的MXD吸收較雄性比格犬慢,C max低,分布較廣,全身循環(huán)的藥物總量多,清除緩慢[42]。羔羊的MXD吸收更快,C max更高,但到達(dá)全身循環(huán)的藥物總量顯著降低[43]。懷孕動物體內(nèi)MXD的消除速度加快,縮短MXD在體內(nèi)的MRT[44]。感染寄生蟲的羔羊組皮下注射MXD的AUC比健康組降低了2倍,MRT顯著縮短。羊患寄生蟲病后引起了MXD的CL/F增加,伴隨著消除半衰期(T 1/2β)縮短,導(dǎo)致體內(nèi)MRT縮短,縮短了藥物正常的維持時間[45]。
MXD的藥代動力學(xué)參數(shù)除受到上述因素影響外,還受到給藥前是否禁食以及額外補(bǔ)充油脂的影響。禁食減少膽汁分泌和腸蠕動[46],增加了MXD在腸道停留時間,延長了MXD的吸收,提高了MXD的AUC。額外飼喂油脂,給藥后MXD的AUC會增加。Bassissi等[47]研究了試驗(yàn)前飼喂10 g葵花籽油的新西蘭兔體內(nèi)MXD的藥代動力學(xué),對照組MXD的AUC[8.62 (ng·d)/mL]低于飼喂葵花籽油飼組[1707 (ng·d)/mL]。因此,給藥前額外補(bǔ)充飼喂油脂可以改善MXD的口服生物利用度,這與Cotreau等[48]的報道相一致。MXD的生物利用度增加可能與MXD在小腸中的吸收增加有關(guān)[49-50]。
3.2.2 給藥途徑。
給藥方式不同會造成MXD在體內(nèi)的藥代動力學(xué)差異。對牛單次皮下注射MXD時,在給藥后的4~6 h達(dá)到C max;單次口服給藥后C max出現(xiàn)在給藥后24 h。與口服組相比,MXD皮下給藥的半衰期更長,體內(nèi)藥物循環(huán)總量更大,MRT更長,相對生物利用度更高[51]。MXD液體制劑口服后的C max和AUC分別比片劑的高28.6%和28.8%,T max縮短了0.9 h[50],這可能與液體制劑提高M(jìn)XD的溶解度有關(guān)。
3.2.3 劑型。
除了給藥途徑對MXD藥代動力學(xué)影響外,MXD的制劑類型也對其藥代動力學(xué)產(chǎn)生較大的影響。Dupuy等[53]報道了莫西菌素長效制劑(LA)在牛中的藥代動力學(xué)(1 mg/kg的LA莫西菌素生物利用度相當(dāng)于皮下給予0.2 mg/kg常規(guī)莫西菌素制劑的生物利用度),LA莫西菌素的C max增加了40%,T max延遲了1 062%,MRT增加了198%,AUC增加了450%以上[23]。由于MXD具有較高的脂溶性,適合開發(fā)長效制劑,提高其驅(qū)蟲作用和生物利用度。
3.2.4 藥物相互作用。
P-糖蛋白(P-glycoprotein,P-gp)是跨膜蛋白,能夠?qū)⒍喾N結(jié)構(gòu)化合物泵出細(xì)胞外[54]。目前,已有MXD與不同的P-gp調(diào)節(jié)劑在動物體內(nèi)相互作用的研究報道[55]。牛皮下注射MXD并聯(lián)合使用洛哌丁胺(loperamide,LPM),聯(lián)合用藥組牛血漿中MXD的濃度明顯高于單獨(dú)MXD皮下注射組。MXD和LPM合用還導(dǎo)致AUC升高和CL/F降低[56]。LPM提高了MXD在牛體內(nèi)的生物利用度。與LPM不同的是,MXD和酮康唑聯(lián)合給藥,MXD的血漿濃度與羔羊中單獨(dú)使用MXD的濃度沒有差異[57]。因維拉帕米的半衰期短,發(fā)揮的作用時間較短暫,故維拉帕米對綿羊MXD藥代動力學(xué)沒有產(chǎn)生明顯的影響[58]。體外研究表明,MXD與AVMs化合物相比,對哺乳動物P-gp親和力較低[59],這可能是MXD在動物體內(nèi)維持較長時間的原因之一[60]。
4 展望
由于IVM和阿維菌素(avermectin,AVM)廣泛使用,已有寄生蟲對IVM和AVM產(chǎn)生耐藥性的報道[60-62]。盡管MXD對P-gp的親和力較低,相對于IVM不容易產(chǎn)生耐藥性[55],但是MXD與IVM和AVM有交叉耐藥性,近幾年也出現(xiàn)了MXD耐藥性的報道[63]。MXD緩釋制劑是提高防治動物寄生蟲病、減少耐藥性產(chǎn)生的策略之一。常規(guī)制劑由于維持作用的時間較短,需要頻繁給藥,且體內(nèi)的血藥濃度變化較大。這種頻繁給藥頻率與耐藥性線蟲的出現(xiàn)之間存在一定的關(guān)系[64]。緩釋制劑維持的有效時間覆蓋在動物整個胃腸道線蟲發(fā)育的各個階段,可以減少耐藥性的產(chǎn)生。目前,關(guān)于緩釋制劑的開發(fā)有大量的文獻(xiàn)報道,如長效注射液、注射用凝膠制劑、微球凝膠(MS-Gel)制劑[65]等。納米化技術(shù)是提高水不溶性MXD生物利用度的一種有前景的制備策略,因?yàn)樗梢蕴岣進(jìn)XD的溶解度和吸收。脂質(zhì)體納米顆粒載體也可用于透皮制劑,以改善藥物的生物利用度[66-68]。MXD的療效與寄生蟲是否產(chǎn)生耐藥性直接相關(guān),大多數(shù)認(rèn)為MXD劑量不足可能是導(dǎo)致耐藥性的重要因素。如何提高M(jìn)XD的療效并延緩耐藥性的發(fā)展是新制劑設(shè)計中要考慮的重要因素。
MXD作為新一代驅(qū)蟲抗生素,能高效殺滅體內(nèi)外寄生蟲。MXD在用藥劑量、劑型開發(fā)、耐藥性和體內(nèi)藥物分布等方面優(yōu)于IVM,是一種應(yīng)用前景廣闊的抗寄生蟲藥。盡管MXD具有很好的驅(qū)蟲活性及驅(qū)蟲譜,但也難免存在耐藥性。長效緩釋制劑的開發(fā)、臨床合理用藥是減少M(fèi)XD耐藥性的有效手段。MXD的藥代動力學(xué)受多種因素的影響,例如品種、身體狀況、給藥途徑等,臨床應(yīng)充分考慮這些因素,以提高M(jìn)XD的臨床治療效果。
參考文獻(xiàn)
[1] MNEZ CC,SUTRA J F,PRICHARD R,et al.Relative neurotoxicity of ivermectin and moxidectin in mdr1ab(-/-)mice and effects on mammalian GABA(A)channel activity[J].PLoS Negl Trop Dis,2012,6(11):1-10.
[2] TURNER H C,WALKER M,ATTAH S K,et al.The potential impact of moxidectin on onchocerciasis elimination in Africa:An economic evaluation based on the Phase II clinical trial data[J].Parasit Vectors,2015,8:1-12.
[3] AWADZI K,OPOKU N O,ATTAH S K,et al.A Randomized,single-ascending-dose,ivermectin-controlled,double-blind study of moxidectin in Onchocerca volvulus infection[J].PLoS Negl Trop Dis,2014,8(6):1-18.
[4] AWASTHI A,RAZZAK M,AL-KASSAS R,et al.Analytical profile of moxidectin[J].Profiles Drug Subst Excip,Relat Methodol,2013,38:315-366.
[5] FAZZIO L,MORENO L,GALVAN W,et al.Pharmacokinetic profile and anthelmintic efficacy of moxidectin administered by different doses and routes to feedlot calves[J].Vet Parasitol,2019,266:73-79.
[6] VADLEJCH J,MAKOVICKY P,CADKOVA Z,et al.Efficacy and persistent activity of moxidectin against natural Muellerius capillaris infection in goats and pathological consequences of muelleriosis[J].Vet Parasitol,2016,218:98-101.
[7] BERNIGAUD C,F(xiàn)ANG F,F(xiàn)ISCHER K,et al.Preclinical study of single-dose moxidectin,a new oral treatment for scabies:Efficacy,safety,and pharmacokinetics compared to two-dose Ivermectin in a porcine model[J].PLoS Negl Trop Dis,2016,10(10):1-18.
[8] BOWMAN D D,OHMES C M,HOSTETLER J A,et al.Efficacy of 10% imidacloprid + 2.5% moxidectin topical solution(Advantage Multifor Dogs)for the prevention of heartworm disease and infection all month long[J].Parasit Vectors,2017,10(S2):59-235.
[9] FAZZIO L E,STREITENBERGER N,GALVAN W R,et al.Efficacy and productive performance of moxidectin in feedlot calves infected with nematodes resistant to ivermectin[J].Vet Parasitol,2016,223:26-29.
[10] RIZK M A,OSMAN S A,AL-GAABARY M H,et al.Comparative clinical and parasitological efficacy of moxidectin pour-on,ivermectin,and piperazine citrate on Toxocara vitulorum infection in buffalo calves(Bubalus bubalis):A randomized clinical trial[J].Turk J Vet Anim Sci,2018,42:29-33.
[11] GIADINIS N D,F(xiàn)ARMAKI R,PAPAIOANNOU N,et al.Moxidectin efficacy in a goat herd with chronic and generalized sarcoptic mange[J].Vet Med Int,2011,2011:1-4.
[12] DEMEULENAERE D,VERCRUYSSE J,DORNY P,et al.Comparative studies of ivermectin and moxidectin in the control of naturally acquired cyathostome infections in horses[J].Vet Rec,1997,141(15):383-386.
[13] VERONESI F,MORGANTI G,DI CESARE A,et al.A pilot trial evaluating the efficacy of a 10% imidacloprid/2.5% moxidectin spot-on formulation in the treatment of natural nasal capillariosis in dogs[J].Vet Parasitol,2014,200(1/2):133-138.
[14] BOWMAN D D,MCTIER T L,ADAMS E L,et al.Evaluation of the efficacy of ProHeart 6(moxidectin)against a resistant isolate of Dirofilaria immitis(JYD-34)in dogs[J].Parasites Vectors,2017,10(Suppl 2):53-235.
[15] MCTIER T L,SIX R H,PULLINS A,et al.Efficacy of oral moxidectin against susceptible and resistant isolates of Dirofilaria immitis in dogs[J].Parasit Vectors,2017,20(S2):39-235.
[16] PATERSON T E,HALLIWELL R E,F(xiàn)IELDS P J,et al.Canine generalized demodicosis treated with varying doses of a 2.5% moxidectin + 10% imidacloprid spot-on and oral ivermectin:Parasiticidal effects and long-term treatment outcomes[J].Vet.Parasitol,2014,205(3/4):687-696.
[17] DI CESARE A,VERONESI F,CAPELLI G,et al.Evaluation of the efficacy and safety of an imidacloprid 10 % / moxidectin 1 % spot-on formulation(Advocate),Advantagemulti)in cats naturally infected with Capillaria aerophila[J].Parasitol Res,2017,116(S1):55-64.
[18] FOURIE L J,KOK D J,HEINE J.Evaluation of the efficacy of an imidacloprid 10%/moxidectin 1% spot-on against Otodectes cynotisin cats[J].Parasitol Res,2003,90(S3):S112-113.
[19] BEASLEY A M,KAHN L P,WINDON R G.The periparturient relaxation of immunity in Merino ewes infected with Trichostrongylus colubriformis:Endocrine and body compositional responses[J].Vet Parasitol,2010,168(1/2):51-59.
[20] WILLIAMS A R,GREEFF J C,VERCOE P E,et al.Merino ewes bred for parasite resistance reduce larval contamination onto pasture during the peri-parturient period[J].Animal,2010,4(1):122-127.
[21] SARGISON N D,BARTRAM D J,WILSON D J.Use of a long acting injectable formulation of moxidectin to control the periparturient rise in faecal Teladorsagia circumcincta egg output of ewes[J].Vet Parasitol,2012,189(2/3/4):274-283.
[22] VARGAS-DUARTE J J,LOZANO-MRQUEZ H,GRAJALES-LOMBANA H A,et al.Effect of moxidectin treatment at peripartum on gastrointestinal parasite infections in ewes raised under tropical andes high altitude conditions[J].Vet Med Int,2015,2015:1-18.
[23] LANUSSE C,LIFSCHITZ A,VIRKEL G,et al.Comparative plasma disposition kinetics of ivermectin,moxidectin and doramectin in cattle[J].J Vet Pharmacol Ther,1997,20(2):91-99.
[24] MACKINTOSH C G,COWIE C,F(xiàn)RASER K,et al.Reduced efficacy of moxidectin and abamectin in young red deer(Cervus elaphus)after 20 years of moxidectin pour-on use on a New Zealand deer farm[J].Vet Parasitol,2014,199(1-2):81-92.
[25] ALVINERIE M,ESCUDERO E,SUTRA J F,et al.The pharmacokinetics of moxidectin after oral and subcutaneous administration to sheep.[J].Vet Res,1998,29(2):113-118.
[26] ESCUDERO E,CARCELES C M,DIAZ M S,et al.Pharmacokinetics of moxidectin and doramectin in goats[J].Res Vet Sci,1999,67(2):177-181.
[27] SALLOVITZF J,LIFSCHITZ A,IMPERIALE F,et al.Breed differences on the plasma availability of moxidectin administered pour-on to calves[J].Vet J,2002,164(1):47-53.
[28] COCQUYT C M,VAN AMSTEL S,COX S,et al.Pharmacokinetics of moxidectin in alpacas following administration of an oral or subcutaneous formulation[J].Res Vet Sci,2016,105:160-164.
[29] OUKESSOU M,BERRAG B,ALVINERIE M.A comparative kinetic study of ivermectin and moxidectin in lactating camels(Camelus dromedarius)[J].Vet Parasitol,1999,83(2):151-159.
[30] DEATH C E,TAGGART D A,WILLIAMS D B,et al.Pharmacokinetics of moxidectin in the southern hairy-nosed wombat(Lasiorhinus latifrons).[J].J Wildl Dis,2011,47(3):643-649.
[31] LIFSCHITZ A,VIRKEL G,IMPERIALE F,et al.Moxidectin in cattle:Correlation between plasma and target tissues disposition.[J].J Vet Pharmacol Ther,1999,22(4):266-273.
[32] LIFSCHITZ A,IMPERIALE F,VIRKEL G,et al.Depletion of moxidectin tissue residues in sheep[J].J Agric Food Chem,2000,48(12):6011-6015.
[33] CRUZ M D B A,F(xiàn)ERNANDES MM,MONTEIRO A L G,et al.Tissue residue depletion of moxidectin in lambs(Ovis aries)following subcuianeous administration[J].Food Addit Contam:Part A,2018,35(7):1278-1285.
[34] ZENG Z,ANDREW N W,ARISON B H,et al.Identification of cytochrome P4503A4 as the major enzyme responsible for the metabolism of ivermectin by human liver microsomes[J].Xenobiotica,1998,28(3):313-321.
[35] AFZAL J,STOUT S J,DACUNHA A R,et al.Moxidectin:Absorption,tissue distribution,excretion,and biotransformation of14C-Labeled moxidectin in sheep[J].J Agric Food Chem,1994,42(8):1767-1773.
[36] ZULALIAN J,STOUT S J,DACUNHA A R,et al.Absorption,tissue distribution,metabolism,and excretion of moxidectin in cattle[J].J Agric Food Chem,1994,42(2):381-387.
[37] DUPUY J,ESCUDERO E,EECKHOUTTE C,et al.In vitro metabolism of 14C-moxidectin by hepatic microsomes from various species[J].Vet Res Commun,2001,25(5):345-354.
[38] KORTH-BRADLEY J M,PARKS V,CHALON S,et al.Excretion of moxidectin into breast milk and pharmacokinetics in healthy lactating women[J].Antimicrob Agents Chemother,2011,55(11):5200-5204.
[39] CAMPBELL B J,PAIRIS-GARCIA M D,CAMPLER M R,et al.An investigation of oral moxidectin carryover to nursing lambs via milk[J].Small Rumin Res,2017,154:9-12.
[40] OUKESSOU M,BERRAG B,ALVINERIE M.A comparative kinetic study of ivermectin and moxidectin in lactating camels(Camelus dromedarius)[J].Vet Parasitol,1999,83(2):151-159.
[41] CRAVEN J,BJRN H,HENNESSY D R,et al.The effects of body composition on the pharmacokinetics of subcutaneously injected ivermectin and moxidectin in pigs[J].J Vet Pharmacol Ther,2002,25(3):227-232.
[42] VANAPALLI S R,HUNG Y P,F(xiàn)LECKENSTEIN L,et al.Pharmacokinetics and dose proportionality of oral moxidectin in beagle dogs[J].Biopharm Drug Dispos,2002,23(7):263-272.
[43] LLOBERAS M,ALVAREZ L,ENTROCASSO C,et al.Comparative tissue pharmacokinetics and efficacy of moxidectin,abamectin and ivermectin in lambs infected with resistant nematodes:Impact of drug treatments on parasite P-glycoprotein expression[J].Int J Parasitol Drug Drug Resist,2013,3(12):20-27.
[44] PREZ R,NU'EZ M J,PALMA C,et al.Plasma disposition kinetics of moxidectin after subcutaneous administration to pregnant sheep[J].J Vet Pharmacol Ther,2014,37(6):550-555.
[45] Lespine A,Sutra JF,Dupuy J,et al.The influence of parasitism on the pharmacokinetics of moxidectin in lambs[J].Parasitol Res,2004,93(2):121-126.
[46] ALVINERIE M,SUTRA J F,CABEZAS I,et al.Enhanced plasma availability of moxidectin in fasted horses[J].J Equine Vet Sci,2000,20(9):575-578.
[47] BASSISSI M F,LESPINE A,ALVINERIE M.Enhancement of oral moxidectin bioavailability in rabbits by lipid co-administration[J].Parasitol Res,2004,94(3):188-192.
[48] COTREAU M M,WARREN S,RYAN J L,et al.The antiparasitic moxidectin:Safety,tolerability,and pharmacokinetics in humans[J].J.Clin Pharmacol,2003,43(10):1108-1115.
[49] KORTH-BRADLEY J M,PARKS V,CHALON S,et al.The effect of a high-fat breakfast on the pharmacokinetics of moxidectin in healthy male subjects:A randomized phase I trial[J].Am J Trop Med Hyg,2012,86(1):122-125.
[50] KORTH-BRADLEY J M,PARKS V,PATAT A,et al.Relative bioavailability of liquid and tablet formulations of the antiparasitic moxidectin[J].Clin Pharmacol Drug Dev,2012,1(1):32-37.
[51] BAPTISTA R C,F(xiàn)ERNANDES M A M,GILAVERTE S,et al.Determination of moxidectin in serum by liquid chromatography-tandem mass spectrometry and its application in pharmacokinetic study in lambs[J].J Braz Chem Soc,2017,28(2):250-256.
[52] CRAVEN J,HENNESSY D R,F(xiàn)RIIS C.Does the rate of fat deposition influence the pharmacokinetic disposition of subcutaneously administered moxidectin and ivermectin in pigs?[J].J Vet Pharmacol Ther,2002,25(5):351-357.
[53] DUPUY J,SUTRA J F,ALVINERIE M.Pharmacokinetics assessment of moxidectin long-acting formulation in cattle[J].Vet Parasitol,2007,147(3/4):252-257.
[54] HORITA Y,DOI N.Comparative study of the effects of antituberculosis drugs and antiretroviral drugs on cytochrome P450 3A4 and P-glycoprotein[J].Antimicrob Agents Chemother,2014,58(6):3168-3176.
[55] PRICHARD R K,ROULET A.ABC transporters and beta-tubulin in macrocyclic lactone resistance:prospects for marker development[J].Parasitology,2007,134(Pt8):1123-1132.
[56] LIFSCHITZ A,VIRKEL G,SALLOVITZ J,et al.Loperamide-induced enhancement of moxidectin availability in cattle[J].J Vet Pharmacol Ther,2002,25(2):111-120.
[57] DUPUY J,LARRIEU G,SUTRA J F,et al.Enhancement of moxidectin bioavailability in lamb by a natural flavonoid:Quercetin[J].Vet Parasitol,2003,112(4):337-347.
[58] BALLENT M,MAT L,VIRKEL G,et al.Intestinal drug transport:ex vivo evaluation of the interactions between ABC transporters and anthelmintic molecules[J].J Vet Pharmacol Ther,2014,37(4):332-337.
[59] LESPINE A,MARTIN S,DUPUY J,et al.Interaction of macrocyclic lactones with P-glycoprotein:Structure-affinity relationship[J].Eur J Pharm Sci,2007,30(1):84-94.
[60] PRICHARD R,MNEZ C,LESPINE A.Moxidectin and the avermectins:Consanguinity but not identity[J].Int J Parasitol Drugs Drug Resist,2012,2:134-153.
[61] DE SOUZA L P,LELIS R T,GRANJA I R,et al.Efficacy of albendazole and moxidectin and resistance to ivermectin against Libyostrongylus douglassii and Libyostrongylus dentatus in ostriches[J].Vet Parasitol,2012,189(2/3/4):387-389.
[62] ALMEIDA G D,F(xiàn)ELIZ D C,HECKLER R P A,et al.Ivermectin and moxidectin resistance characterization by larval migration inhibition test in field isolates of Cooperia spp.in beef cattle,Mato Grosso do Sul,Brazil[J].Vet Parasitol,2013,191(1/2):59-65.
[63] VAN DEN BROM R,MOLL L,BORGSTEEDE F H,et al.Multiple anthelmintic resistance of Haemonchus contortus,including a case of moxidectin resistance,in a Dutch sheep flock[J].Vet Rec,2013,173(22):1-2.
[64] WALLER P J,DASH K M,BARGER I,et al.Anthelmintic resistance in nematode parasites of sheep:Learning from the Australian experience[J].Vet Rec,1995,136(16):411-413.
[65] JIANG Y,ZHANG X M,MU H J,et al.Preparation and evaluation of injectable Rasagiline mesylate dual-controlled drug delivery system for the treatment of Parkinson's disease[J].Drug Deliv,2018,25(1):143-152.
[66] CAMPOS P P,F(xiàn)RACETO L F,F(xiàn)ERREIRA M.Layer-by-layer films containing emodin or emodin encapsulated in liposomes for transdermal applications[J].Colloids Surf B:Biointerface,2018,162(1):69-75.
[67] RAJ R,RAJ P M,RAM A.Nanosized ethanol based malleable liposomes of cytarabine to accentuate transdermal delivery:formulation optimization,in vitro skin permeation and in vivo bioavailability[J].Artif Cells Nanomed Biotchnol,2018,46(S2):951-963.
[68] TOSATO M G,MAYA GIRN JV,MARTIN A A,et al.Comparative study of transdermal drug delivery systems of resveratrol:High efficiency of deformable liposomes[J].Mater Sci Eng C,2018,90(9):356-364.