于子淞
摘要:受電壓源逆變器非線性特性的影響,轉(zhuǎn)速控制通常不能精確抑制齒槽轉(zhuǎn)矩。為精確補(bǔ)償齒槽轉(zhuǎn)矩,提高永磁同步電機(jī)轉(zhuǎn)速控制精度,提出一種級(jí)聯(lián)自適應(yīng)擾動(dòng)觀測(cè)器控制策略。首先,采用參考電流指令建立了同步旋轉(zhuǎn)坐標(biāo)系下逆變器死區(qū)電壓模型,并通過自適應(yīng)擾動(dòng)觀測(cè)器對(duì)其進(jìn)行補(bǔ)償。然后,針對(duì)齒槽轉(zhuǎn)矩為轉(zhuǎn)子位置的周期函數(shù)的特點(diǎn),設(shè)計(jì)了速度環(huán)自適應(yīng)擾動(dòng)觀測(cè)器,實(shí)現(xiàn)了對(duì)齒槽轉(zhuǎn)矩的有效補(bǔ)償,所提控制策略只需已知電機(jī)參數(shù)的界。仿真結(jié)果表明,所提出的控制策略能夠有效抑制電機(jī)齒槽轉(zhuǎn)矩、提高轉(zhuǎn)速控制精度。
關(guān)鍵詞:永磁同步電機(jī);齒槽轉(zhuǎn)矩;逆變器非線性;自適應(yīng)擾動(dòng)觀測(cè)器;電機(jī)參數(shù)
中圖分類號(hào): TP273? ? ? ? 文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1009-3044(2021)07-0022-06
Abstract: The speed controller can not suppress the cogging torque accurately due to the nonlinearity of the voltage source inverter (VSI). In order to compensate the cogging torque effectively and to control the speed of permanent magnet synchronous motor accurately, a cascade adaptive disturbance observer control strategy is proposed. First, the reference current commands are used to model the VSI deadtime voltages in the synchronous rotating reference frame. An adaptive disturbance observer in the current loop is designed to compensate the deadtime voltages. The cogging torque is the periodic function of the rotor position. Then, considered this characteristic of the cogging torque, an adaptive disturbance observer is proposed to compensate it effectively. The presented control strategy need only know the boundaries of the motor parameters. The simulation results show that the proposed control strategy can suppress the cogging torque effectively, and the speed control accuracy is enhanced.
Key words: permanent magnet synchronous motor; cogging torque; nonlinearity of the voltage source inverter; adaptive disturbance observer; parameters of the motor;
永磁同步電機(jī)(permanent magnet synchronous motor, PMSM)具有效率高、功率密度高、高輸出轉(zhuǎn)矩電流比、低噪聲等優(yōu)點(diǎn),被廣泛應(yīng)用于現(xiàn)代工業(yè)場(chǎng)合 [1]。永磁同步電機(jī)驅(qū)動(dòng)系統(tǒng)擾動(dòng)豐富等特點(diǎn),常規(guī)PID控制較難滿足高精度調(diào)速應(yīng)用的要求。文獻(xiàn)[1-3]分別提出自適應(yīng)內(nèi)模電流控制[1]、具有新型最優(yōu)代價(jià)函數(shù)的并聯(lián)型魯棒非線性預(yù)測(cè)控制[2]、自適應(yīng)模糊控制[3],以抑制電機(jī)轉(zhuǎn)矩脈動(dòng)和運(yùn)行過程中的參數(shù)變化,提高電機(jī)的動(dòng)態(tài)、穩(wěn)態(tài)控制性能。齒槽轉(zhuǎn)矩由永磁體與開槽鐵芯相互作用產(chǎn)生,是引起永磁電機(jī)轉(zhuǎn)矩脈動(dòng)的主要因素,特別是小功率電機(jī)。通過結(jié)構(gòu)優(yōu)化設(shè)計(jì)可在一定程度上削弱永磁電機(jī)齒槽轉(zhuǎn)矩,但仍無法完全消除齒槽轉(zhuǎn)矩[4]。因此,國(guó)內(nèi)外學(xué)者們開始從控制算法的角度,將其視為電機(jī)轉(zhuǎn)矩?cái)_動(dòng),設(shè)計(jì)齒槽轉(zhuǎn)矩補(bǔ)償器對(duì)其進(jìn)行抑制[5-8]。文獻(xiàn)[5]提出一種迭代學(xué)習(xí)控制結(jié)合增益整形滑模擾動(dòng)的觀測(cè)器的轉(zhuǎn)速控制策略,有效抑制了電機(jī)轉(zhuǎn)矩脈動(dòng),但迭代學(xué)習(xí)控制需要存儲(chǔ)一個(gè)周期的被控信號(hào)數(shù)據(jù),當(dāng)電機(jī)運(yùn)行于低速時(shí),對(duì)系統(tǒng)內(nèi)存消耗較大。文獻(xiàn)[6]提出一種速度自適應(yīng)諧振控制器,有效改善了控制器對(duì)齒槽轉(zhuǎn)矩的動(dòng)態(tài)抑制效果。文獻(xiàn)[7]采用比例-積分-諧振轉(zhuǎn)速控制抑制電機(jī)齒槽轉(zhuǎn)矩,這實(shí)際上是內(nèi)??刂破鞑⒙?lián)表現(xiàn)形式。文獻(xiàn)[8]針對(duì)電機(jī)轉(zhuǎn)矩脈動(dòng)的周期特性,通過注入周期控制信號(hào),補(bǔ)償轉(zhuǎn)矩脈動(dòng)。通過自適應(yīng)融合技術(shù),確定所注入信號(hào)的幅值和相位,實(shí)現(xiàn)了對(duì)轉(zhuǎn)矩脈動(dòng)的有效抑制。
在級(jí)聯(lián)控制策略中,VSI非線性畸變電壓使電機(jī)相電流產(chǎn)生較嚴(yán)重的畸變[7],進(jìn)而降低轉(zhuǎn)速控制精度。為對(duì)其補(bǔ)償,文獻(xiàn)[7]采用比例-積分-諧振轉(zhuǎn)速控制抑制電機(jī)齒槽轉(zhuǎn)矩,這實(shí)際上是內(nèi)??刂破鞑⒙?lián)表現(xiàn)形式。文獻(xiàn)[9]采用最小均方的方法抑制VSI非線性畸變電壓,該方法具有較好的電機(jī)參數(shù)魯棒性。
為抑制永磁同步電機(jī)轉(zhuǎn)矩脈動(dòng),本文提出一種基于級(jí)聯(lián)型自適應(yīng)擾動(dòng)觀測(cè)器的控制結(jié)構(gòu)。該方法針對(duì)使電機(jī)產(chǎn)生轉(zhuǎn)矩脈動(dòng)的擾動(dòng)模型的特性,對(duì)電流環(huán)和速度環(huán)擾動(dòng)進(jìn)行分別觀測(cè)并補(bǔ)償,具有較好的參數(shù)魯棒性。仿真分析表明,所提方法能有效抑制電機(jī)轉(zhuǎn)矩脈動(dòng),提高電機(jī)轉(zhuǎn)速控制精度。
1 齒槽轉(zhuǎn)矩與同步旋轉(zhuǎn)坐標(biāo)系下VSI非線性畸變電壓模型
為抑制齒槽轉(zhuǎn)矩和逆變器死區(qū)電壓對(duì)電機(jī)轉(zhuǎn)矩和電流造成的控制控制誤差,需研究齒槽轉(zhuǎn)矩和逆變器死區(qū)電壓的數(shù)學(xué)模型,得出電磁轉(zhuǎn)矩與齒槽轉(zhuǎn)和輸出電流與逆變器死區(qū)電壓的對(duì)應(yīng)數(shù)值關(guān)系。
根據(jù)文獻(xiàn)[7]知,齒槽轉(zhuǎn)矩的傅里葉級(jí)數(shù)形式為:
由以上齒槽轉(zhuǎn)矩和同步旋轉(zhuǎn)坐標(biāo)系下逆變器死區(qū)電壓數(shù)學(xué)模型可設(shè)計(jì)控制器對(duì)其進(jìn)行抑制。
2 級(jí)聯(lián)自適應(yīng)擾動(dòng)觀測(cè)器設(shè)計(jì)
為抑制齒槽轉(zhuǎn)矩引起的電機(jī)轉(zhuǎn)矩脈動(dòng),這里將齒槽轉(zhuǎn)矩、VSI非線性畸變電壓分別視為速度環(huán)、電流環(huán)擾動(dòng),且只在電機(jī)機(jī)械參數(shù)和電氣參數(shù)的界已知的情況下設(shè)計(jì)擾動(dòng)觀測(cè)器,以實(shí)現(xiàn)對(duì)擾動(dòng)的有效補(bǔ)償。
2.1 基于自適應(yīng)擾動(dòng)觀測(cè)器的電流控制器設(shè)計(jì)
這里假設(shè):1)忽略電機(jī)鐵心飽和;2)不計(jì)電機(jī)鐵耗;3)定子三相電流產(chǎn)生的空間磁動(dòng)勢(shì)及永磁轉(zhuǎn)子的磁通分布為理想正弦波,得到同步旋轉(zhuǎn)坐標(biāo)系下的PMSM電氣數(shù)學(xué)模型[7]:
3 仿真研究
為了驗(yàn)證所提控制策略的有效性和可行性,在Matlab/Simulink環(huán)境下進(jìn)行了仿真平臺(tái)。其中,死區(qū)時(shí)間3μs、電流環(huán)、速度環(huán)采樣時(shí)間分別為100μs、200μs,SVPWM采樣頻率10kHz,所用電機(jī)電參數(shù)如表1所示。
為對(duì)比驗(yàn)證,首先采用級(jí)聯(lián)PI控制策略對(duì)電機(jī)調(diào)速,負(fù)載轉(zhuǎn)矩為0.1N.m,齒槽轉(zhuǎn)矩為零,由圖2可見,逆變器非線性畸變電壓使相電流在過零處出現(xiàn)了較嚴(yán)重的零電流鉗位現(xiàn)象。不改變速度控制器,采用本文所提電流控制器對(duì)電機(jī)進(jìn)行調(diào)速,由圖3可知,所提控制器有效消除了相電流的零電流鉗位現(xiàn)象,電流波形已接近理想的正弦波。
進(jìn)一步,為驗(yàn)證所提控制策略對(duì)齒槽轉(zhuǎn)矩與逆變器非線性畸變所造成的轉(zhuǎn)矩脈動(dòng)的抑制效果,在仿真中加入齒槽轉(zhuǎn)矩[Tcog=0.13sin6θe+π/6]N.m?,F(xiàn)保持電流PI控制器不變,采用本文所提速度控制方法,由圖4可見,轉(zhuǎn)速脈動(dòng)已經(jīng)由[±5]rpm將為[±3]rpm,但仍然存在較大的轉(zhuǎn)速脈動(dòng),這是因?yàn)殡m然轉(zhuǎn)速控制器可以有效補(bǔ)償齒槽轉(zhuǎn)矩,但逆變器非線性畸變電壓使得電流無法準(zhǔn)確跟蹤轉(zhuǎn)速控制器的給定電流指令,所造成的轉(zhuǎn)矩脈動(dòng),進(jìn)而導(dǎo)致了轉(zhuǎn)速脈動(dòng)。如圖5所示,A相電流在過零時(shí)出現(xiàn)了零電流鉗位現(xiàn)象,這造成了電磁轉(zhuǎn)矩畸變。
最后,采用本文提出的級(jí)聯(lián)自適應(yīng)擾動(dòng)觀測(cè)器控制策略對(duì)電機(jī)調(diào)速,控制器參數(shù)及待觀測(cè)參數(shù)的初始值與前文一致。由圖6、7可見,轉(zhuǎn)速脈動(dòng)已降為[±0.5]rpm,零電流鉗位現(xiàn)象被有效削弱,控制電壓指令如圖8所示。由圖可見,所提電流控制器能夠有效補(bǔ)償突變擾動(dòng)電壓,提高電壓的響應(yīng)速度與電流控制精度。
4 結(jié)語
將死區(qū)電壓和齒槽轉(zhuǎn)矩視為未知慢變乘子系數(shù)與核函數(shù)相乘形式擾動(dòng)設(shè)計(jì)自適應(yīng)擾動(dòng)觀測(cè)補(bǔ)償器。選用參考電流指令替代真實(shí)電流計(jì)算核函數(shù),并將所得核函數(shù)應(yīng)用于所提算法的自適應(yīng)律中,有效消除電流過零時(shí)的補(bǔ)償電壓矢量的誤判斷。同時(shí),將轉(zhuǎn)子電角速度作為齒槽轉(zhuǎn)矩補(bǔ)償核函數(shù)自變量,提高了動(dòng)態(tài)下齒槽轉(zhuǎn)矩補(bǔ)償精度。
參考文獻(xiàn):
[1] Mohamed Y A R I,El-Saadany E F.A current control scheme with an adaptive internal model for torque ripple minimization and robust current regulation in PMSM drive systems[J].IEEE Transactions on Energy Conversion,2008,23(1):92-100.
[2] Errouissi R,Ouhrouche M,Chen W H,et al.Robust nonlinear predictive controller for permanent-magnet synchronous motors with an optimized cost function[J].IEEE Transactions on Industrial Electronics,2012,59(7):2849-2858.
[3] M. N. Uddin. An adaptive-filter-based torque ripple? ?minimization of a fuzzy-logic controller for speed c ontrol of ipm motor dirves[J]. IEEE Transactions on? Industrial Applications, 2011, 47(1): 350-358. [5] K. C. Kim. A novel method for minimization of cogging torque and torque ripple for interior permanent ma gnet synchronous motor[J]. IEEE Transactions on Ma gnetics, 2014, 50(2): 601-604.
[4] Kim K C.A novel method for minimization of cogging torque and torque ripple for interior permanent magnet synchronous motor[J].IEEE Transactions on Magnetics,2014,50(2):793-796.
[5] Xu J X,Panda S K,Pan Y J,et al.A modular control scheme for PMSM speed control with pulsating torque minimization[J].IEEE Transactions on Industrial Electronics,2004,51(3):526-536.
[6] Uddin M N.An adaptive-filter-based torque-ripple minimization of a fuzzy-logic controller for speed control of IPM motor drives[J].IEEE Transactions on Industry Applications,2011,47(1):350-358.
[7] Xia C L,Ji B N,Yan Y.Smooth speed control for low-speed high-torque permanent-magnet synchronous motor using proportional–integral–resonant controller[J].IEEE Transactions on Industrial Electronics,2015,62(4):2123-2134.
[8] Erken F,?ksüztepe E,Kürüm H.Online adaptive decision fusion based torque ripple reduction in permanent magnet synchronous motor[J].IET Electric Power Applications,2016,10(3):189-196.
[9] Tang Z Y,Akin B.A new LMS algorithm based deadtime compensation method for PMSM FOC drives[J].IEEE Transactions on Industry Applications,2018,54(6):6472-6484.
【通聯(lián)編輯:唐一東】