国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

比例時滯脈沖細(xì)胞神經(jīng)網(wǎng)絡(luò)的指數(shù)穩(wěn)定性

2021-05-13 03:15:40龔愛愛許友軍劉柏林
關(guān)鍵詞:平衡點時滯脈沖

龔愛愛,許友軍,劉柏林

(南華大學(xué) 數(shù)理學(xué)院,湖南 衡陽 421001)

0 引 言

近些年來,脈沖微分方程的研究受到了許多學(xué)者和專家的關(guān)注[1-3],同時,在許多領(lǐng)域中,如控制技術(shù)、藥物管理和生物學(xué)等的閥值中出現(xiàn)了具有時滯脈沖細(xì)胞神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性[4-6]。文獻[7]研究了比例時滯混沌神經(jīng)網(wǎng)絡(luò)的脈沖控制全局功率率同步問題。文獻[8]應(yīng)用了Lyapunov法和線性矩陣不等式(LMI)方法得時滯脈沖細(xì)胞神經(jīng)網(wǎng)絡(luò)平衡點漸進穩(wěn)定的條件。文獻[9]通過非線性變換和非線性測度方法分析比例時滯CNNs。文獻[10]利用Lyapunov 函數(shù)和Razumikhin 技巧分析了泛函微分方程解的指數(shù)穩(wěn)定性。

本文通過構(gòu)造合適的Lyapunov 函數(shù)和Razumikhin 技巧研究了系統(tǒng)的全局指數(shù)穩(wěn)定性,并獲得了該系統(tǒng)平衡點全局指數(shù)穩(wěn)定性的一個時滯依賴的充分條件。

1 模型描述和預(yù)備知識

研究如下比例時滯脈沖神經(jīng)網(wǎng)絡(luò):

(1)

在系統(tǒng)(1)中,假設(shè)滿足下列條件:

A1:存在常數(shù)Li>0,使得|Fi(u)-Fi(v)|≤Li|u-v|,其中u,v∈R,i=1,2,…,n。

A2:系統(tǒng)(1)存在唯一的平衡點y*。

(2)

定義2 設(shè)函數(shù)V:[t0,∞)×Rn→R+,若V(t,x)滿足:

(ii)在x∈Rn上,V(t,x)是局部Lipschitz的,對于任意的t≥t0滿足V(t,0)≡0;則函數(shù)V∈v0。

定義3 設(shè)函數(shù)V∈v0,V的Dini導(dǎo)數(shù)定義為:

定義4 對于任意初始值xt0=ψ,存在常數(shù)λ≥0,M≥1,使得:

‖x(t,t0,ψ)‖≤M‖ψ‖e-λ(t-t0),t≥t0,

則稱系統(tǒng)(2)的平凡解是指數(shù)穩(wěn)定的。

2 穩(wěn)定性分析

定理1 假設(shè)存在函數(shù)V∈v0,p、c1、c2、λ為大于0的常數(shù),c2>c1,k=1,2,…,n。滿足下列條件:

(i)c1‖x(t)‖≤V(t,x(t))≤c2‖x(t)‖;

則系統(tǒng)(2)的平凡解是指數(shù)穩(wěn)定的。

證明:設(shè)x(t)=x(t,t0,ψ)為系統(tǒng)(2)的解,V(t)=V(t,x),下面要證明:

V(t)≤c2‖ψ‖e-λ(t-t0),t∈[tk-1,tk)其中k=1,2,…,n。

當(dāng)t∈[qt0,t0]時,由條件(i)得,

V(t)-c2‖ψ‖e-λ(t-t0)≤V(t)-c2‖ψ‖≤0。

建立Q(t)=V(t)-c2‖ψ‖e-λ(t-t0),t∈[tk-1,tk)其中k=1,2,…,n,只需要證明當(dāng)t≥t0時,Q(t)≤0。

當(dāng)t∈[t0,t1)時,假設(shè)Q(t)≤0不成立,則存在t∈[t0,t1)使得Q(t)>0,又因為當(dāng)t=t0時Q(t0)≤0,Q(t)連續(xù),所以存在t*=inf{t∈[t0,t1]:Q(t)>0}使得Q(t*)=0,D+Q(t*)>0,故有Q(t)≤0,t∈[qt0,t*],

當(dāng)t=t*時,V(t)滿足下列等式:

V(t*)=Q(t*)+c2‖ψ‖e-λ(t*-t0);

所以當(dāng)t=qt*時可得出:

由條件(ii)得,D+V(t*)≤-h(t*)V(t*) ,可得Q(t)在t=t*處的倒數(shù):

與D+Q(t*)>0相矛盾,因此Q(t)≤0,t∈[t0,t1)。假設(shè)當(dāng)t∈[t0,tm),m≥1時,Q(t)≤0,接下來證明當(dāng)t∈[t0,tm+1),m≥1時,Q(t)≤0。

由條件(iii)可得出:

接下來證明當(dāng)t∈(tm,tm+1)時,Q(t)≤0;假設(shè)該不等式不成立,由Q(tm)≤0和Q(t)的連續(xù)性可知存在t*=inf{t∈[tm,tm+1]:Q(t)>0}使得Q(t*)=0和Q(t)≤0,t∈[t0,t*]。

因為V(t*)=Q(t*)+c2‖ψ‖e-λ(t*-t0),

即可得出:

由條件(ii)得,D+V(t*)≤-h(t*)V(t*),則有:

與假設(shè)矛盾,因此Q(t)≤0,t∈(tm,tm+1)。由歸納法可知Q(t)≤0,t≥t0。

即得出:

V(t)≤c2‖ψ‖e-λ(t-t0),t∈[tk-1,tk)其中k=1,2,…,n。

由條件(i),得c1‖x‖≤V(t)≤c2‖ψ‖e-λ(t-t0),所以有‖x‖≤M‖ψ‖e-λ(t-t0),t≥t0,其中M=(c1/c2)≥1,因此系統(tǒng)(2)的平凡解是指數(shù)穩(wěn)定的,也就是說,系統(tǒng)(1)中的平衡點也是指數(shù)穩(wěn)定的,收斂指數(shù)為λ。

猜你喜歡
平衡點時滯脈沖
他們使阿秒光脈沖成為可能
脈沖離散Ginzburg-Landau方程組的統(tǒng)計解及其極限行為
帶有時滯項的復(fù)Ginzburg-Landau方程的拉回吸引子
探尋中國蘋果產(chǎn)業(yè)的產(chǎn)銷平衡點
煙臺果樹(2019年1期)2019-01-28 09:34:58
電視庭審報道,如何找到媒體監(jiān)督與司法公正的平衡點
傳媒評論(2018年7期)2018-09-18 03:45:52
黃芩苷脈沖片的制備
中成藥(2017年12期)2018-01-19 02:06:54
在給專車服務(wù)正名之前最好找到Uber和出租車的平衡點
IT時代周刊(2015年7期)2015-11-11 05:49:56
一階非線性時滯微分方程正周期解的存在性
一類時滯Duffing微分方程同宿解的存在性
行走在預(yù)設(shè)與生成的平衡點上共同演繹精彩政治課堂
散文百家(2014年11期)2014-08-21 07:16:58
清涧县| 龙井市| 民丰县| 广西| 邯郸县| 峨眉山市| 长寿区| 汝阳县| 通辽市| 宣威市| 阿尔山市| 大新县| 龙泉市| 瓮安县| 额济纳旗| 临澧县| 兴义市| 正宁县| 台南市| 专栏| 抚远县| 正定县| 张北县| 文化| 平定县| 铜山县| 定襄县| 和田县| 台山市| 平顶山市| 黄冈市| 迭部县| 聊城市| 康马县| 鄂伦春自治旗| 凌源市| 黎平县| 玛沁县| 周至县| 广元市| 信宜市|