郭秀英 張剛 田瑞蘭
摘要: 構(gòu)建雙邊對(duì)稱(chēng)剛性約束的非光滑雙擺模型,研究簡(jiǎn)諧激勵(lì)作用下該系統(tǒng)的碰撞周期解及其存在條件。應(yīng)用模態(tài)分析法,引入矩陣?yán)碚?,?gòu)造恰當(dāng)?shù)目赡孀儞Q矩陣,在理論上計(jì)算出物理參數(shù)和碰撞恢復(fù)系數(shù)的取值范圍,并給出雙碰周期解的解析表達(dá)式。在理論結(jié)果的基礎(chǔ)上,利用碰撞恢復(fù)矩陣作為銜接條件,采用理論分析和數(shù)值模擬相結(jié)合的方法,分析系統(tǒng)小角度運(yùn)動(dòng)的碰撞周期解。
關(guān)鍵詞: 非線(xiàn)性振動(dòng); 非光滑雙擺; 碰撞周期解; 對(duì)稱(chēng)剛性約束; 恢復(fù)系數(shù)
中圖分類(lèi)號(hào): O322; O29??? 文獻(xiàn)標(biāo)志碼: A??? 文章編號(hào): 1004-4523(2021)01-0185-09
DOI:10.16385/j.cnki.issn.1004-4523.2021.01.021
引? 言
近幾年,隨著機(jī)器人技術(shù)的發(fā)展,機(jī)械臂設(shè)計(jì)和動(dòng)力學(xué)行為研究成為機(jī)器人技術(shù)的重要研究課題。如何構(gòu)建合理的數(shù)學(xué)模型模擬機(jī)械臂的運(yùn)動(dòng)是理論研究的重點(diǎn)[1?2]。物理雙擺是傳統(tǒng)的高維非線(xiàn)性系統(tǒng),具有豐富的非線(xiàn)性動(dòng)力學(xué)行為[3?4]。大量的研究結(jié)果表明,雙擺可以模擬機(jī)械臂的運(yùn)動(dòng)模式。實(shí)際上,隨著機(jī)械臂的動(dòng)作細(xì)化和外置驅(qū)動(dòng)的安裝要求,需要考慮機(jī)械臂鏈接處的縫隙和阻尼,還需要考慮外置驅(qū)動(dòng)的類(lèi)型和安裝方式。因此,可以將機(jī)械臂簡(jiǎn)化為有外置簡(jiǎn)諧激勵(lì)的碰撞雙擺。研究這類(lèi)碰撞雙擺的周期運(yùn)動(dòng),可從理論上為機(jī)械臂的設(shè)計(jì)提供合適的物理參數(shù)和幾何參數(shù),提高機(jī)械臂的應(yīng)用舒適度、使用安全性,延長(zhǎng)其使用壽命。
目前,關(guān)于碰撞擺類(lèi)系統(tǒng)的研究集中在數(shù)值模擬和低維系統(tǒng)的解析法研究[5?9]。文[5?6]開(kāi)展了碰撞單擺系統(tǒng)的次諧分叉和混沌判據(jù)的解析方法推廣研究。文[7]研究了單自由度非線(xiàn)性振子的諧波、亞諧波和混沌運(yùn)動(dòng)。文[8?9]研究了一類(lèi)具有對(duì)稱(chēng)約束或?qū)ΨQ(chēng)碰撞的非光滑系統(tǒng)的周期運(yùn)動(dòng)和動(dòng)力學(xué)行為。而針對(duì)高維非光滑、不連續(xù)系統(tǒng),解析法的研究結(jié)果迄今為止仍鮮為人知。主要通過(guò)數(shù)值模擬和實(shí)驗(yàn)觀察物理參數(shù)和碰撞對(duì)系統(tǒng)的影響,研究高維非光滑系統(tǒng)的分叉和混沌現(xiàn)象[10?14]。文[14]建立了一類(lèi)具有對(duì)稱(chēng)剛性約束的三自由度碰撞振動(dòng)系統(tǒng)的Poincaré映射,研究了一類(lèi)三自由度含間隙雙面碰撞振動(dòng)系統(tǒng)Poincaré 映射的叉式分岔的反控制問(wèn)題。盡管針對(duì)非光滑擺研究周期解有了一定的研究,但是周期解的解析表達(dá)式十分繁雜,很難應(yīng)用于工程實(shí)際,且周期解存在的條件表達(dá)式也很難推廣到高維非光滑雙擺系統(tǒng)。進(jìn)一步地,在非光滑雙擺周期解的研究中均未涉及兩個(gè)自由度都發(fā)生碰撞的工況。
本文以基座受簡(jiǎn)諧激勵(lì)的鉸鏈鏈接雙擺為基礎(chǔ),構(gòu)建雙邊對(duì)稱(chēng)約束的非光滑雙擺模型,研究?jī)蓚€(gè)自由度多點(diǎn)碰撞周期解的類(lèi)型,利用矩陣?yán)碚?sup>[15?16],引進(jìn)可逆變換,討論碰撞周期解存在的理論條件和碰撞周期解的解析表達(dá)式,并利用Matlab進(jìn)行數(shù)值模擬和驗(yàn)證。
1 碰撞雙擺模型和運(yùn)動(dòng)方程
4 結(jié)? 論
碰撞雙擺有復(fù)雜的動(dòng)力學(xué)行為,因其碰撞產(chǎn)生的非線(xiàn)性,多點(diǎn)碰撞情形的多樣性,一般很難得到其碰撞周期解的解析表達(dá)式。 本文針對(duì)水平激勵(lì)下的雙邊碰撞雙擺進(jìn)行建模和理論分析,利用模態(tài)疊加法和矩陣?yán)碚?,討論并推?dǎo)了系統(tǒng)小角度振動(dòng)時(shí)雙邊雙碰周期解的存在條件和周期解析解表達(dá)式。 數(shù)值模擬表明,該方法可以較好的預(yù)測(cè)碰撞周期解的存在性。引進(jìn)矩陣工具,可以方便地計(jì)算出碰撞周期解的積分常數(shù)和存在條件,為求解高維系統(tǒng)的碰撞周期解提供了計(jì)算工具。針對(duì)其他類(lèi)別的碰撞周期解只要找到合適的碰撞恢復(fù)矩陣,計(jì)算過(guò)程是類(lèi)似的,為機(jī)械臂的研究和設(shè)計(jì)奠定了理論基礎(chǔ)。為工程人員研究高維系統(tǒng)周期解提供理論指導(dǎo)。
參考文獻(xiàn):
[1]??????? 王一全, 王? 敏, 楊? 聞, 等. 空間機(jī)械臂系統(tǒng)軌跡規(guī)劃仿真分析[J]. 航天器環(huán)境工程, 2019, 36(1): 40-46.
Wang Y Q, Wang M, Yang W, et al. Numerical simulation of trajectory planning for space manipulator[J]. Spacecraft Environment Engineering, 2019, 36(1): 40-46.
[2]??????? Sun L F, Liang F Y, Fang L J. Design and performance analysis of an industrial robot arm for robotic drilling process[J]. Industrial Robot: The International Journal of Robotics Research and Application, 2019, 46(1):7-16.
[3]??????? Mateusz Wojna, Adam Wijata, Grzegorz Wasilewski, et al. Numerical and experimental study of a double physical pendulum with magnetic interaction[J]. Journal of Sound and Vibration, 2018, 430: 214-230.
[4]??????? Kumar Rahul, Gupta Sayan, Shaikh Faruque Ali. Energy harvesting from chaos in base excited double pendulum[J]. Mechanical Systems and Signal Processing, 2019, 124: 49-64.
[5]??????? Tian R L, Zhao Z J, Yang X W, et al. Subharmonic bifurcation for non-smooth oscillator[J]. International Journal of Bifurcation and Chaos, 2017, 27(10): 17501631.
[6]??????? Tian R L, Zhou Y F, Wang Y Z, et al. Chaotic threshold for non-smooth system with multiple impulse effect[J]. Nonlinear Dynamics, 2016, 85(3): 1849-1863.
[7]??????? Shaw S W, Holmes P J. A periodically forced piecewise linear oscillator[J]. Journal Sound and Vibration, 1983, 90(1): 129-155.
[8]??????? 羅冠煒, 張艷龍, 謝建華. 含對(duì)稱(chēng)剛性約束振動(dòng)系統(tǒng)的周期運(yùn)動(dòng)和分岔[J]. 工程力學(xué), 2007, 24(7): 44-52.
Luo G W, Zhang Y L, Xie J H. Periodic-impact motions and bifurcations of vibratory systems with symmetrical right constraints[J]. Engineering Mechanics, 2007, 24(7): 44-52.
[9]??????? 丁旺才, 張有強(qiáng), 謝建華. 含對(duì)稱(chēng)間隙的摩擦振子非線(xiàn)性動(dòng)力學(xué)分析[J]. 摩擦學(xué)報(bào), 2008, 28(2):155-160.
Ding W C, Zhang Y Q, Xie J H. Analysis of nonlinear dynamics of dry friction oscillators with symmetrical clearance[J]. Tribology, 2008, 28(2):155-160.
[10]????? 張艷龍, 王? 麗. 三自由度雙側(cè)剛性約束振動(dòng)系統(tǒng)的概周期運(yùn)動(dòng)[J].工程力學(xué), 2009, 26(2):71-77.
Zhang Y L, Wang L. Quasi-periodic motions of a three-degree-of-freedom vibrating system with two right constrains[J]. Engineering Mechanics, 2009, 26(2): 71-77.
[11]????? 伍? 新, 徐慧東, 文桂林, 等. 三自由度碰撞振動(dòng)系統(tǒng)Poincaré映射叉式分岔的反控制[J]. 振動(dòng)與沖擊, 2016, 35(20): 24-29.
Wu X, Xu H D, Wen G L, et al. Anti-controlling pitchfork bifurcation on Poincaré map of a three-degree-of-freedom vibro-impact system[J]. Journal of Vibration and Shock, 2016, 35(20): 24-29.
[12]????? 羅冠煒, 褚衍東, 謝建華. 多自由度含間隙振動(dòng)系統(tǒng)周期運(yùn)動(dòng)的Hopf-pitchfork余維二分岔[J]. 工程力學(xué), 2006, 23(1): 99-107.
Luo G W, Chu Y D, Xie J H. Codimension two Hopf-pitchfork bifurcation of periodic motion of the multi-degree-of-freedom vibratory system with a clearance[J]. Engineering Mechanics, 2006, 23(1): 99-107.
[13]????? Wen G L. Codimension-2 Hopf bifurcation of a two-degree-of-freedom vibro-impact system[J]. Journal of Sound and Vibration, 2001, 242(3): 475-485.
[14]????? 樂(lè)? 源, 謝建華. 兩自由度碰撞振動(dòng)系統(tǒng)的Poincaré映射的對(duì)稱(chēng)性及分岔[J]. 振動(dòng)工程學(xué)報(bào), 2008, 21(4): 376-380.
Yue Y, Xie J H. Symmetry of the Poincaré map and bifurcations of a two-degree-of-freedom vibro-impact system[J]. Journal of Vibration Engineering, 2008, 21(4): 376-380.
[15]????? 曹登慶, 舒仲周. 存在間隙的多自由度系統(tǒng)的周期運(yùn)動(dòng)及Robust穩(wěn)定性[J]. 力學(xué)學(xué)報(bào), 1997, 29(l):74-83.
Cao D Q, Shu Z Z. Periodic motions and robust stability of the multi-degree-of-freedom systems with clearances[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(l): 74-83.
[16]????? 曹登慶, 舒仲周. 存在間隙的多自由度系統(tǒng)的周期運(yùn)動(dòng)與穩(wěn)定性[J]. 力學(xué)學(xué)報(bào), 1992, 24(4):480-487.
Cao D Q, Shu Z Z. Periodic motions and stability of the multi-degree-of-freedom systems with clearances[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24 (4):480-487.
Abstract: A double pendulum model with bi-lateral rigid constraint is constructed under harmonic excitation. The impact periodic solution of a nonlinear dynamic system under harmonic excitation and its existence conditions are studied. Adopting the modal analysis and matrix theory, an invertible transformation is introduced to obtain the parameter conditions for the existence of the impact periodic solution of the system. On the basis of the theoretical calculation results, applying Matlab software, numerical simulation is carried out to obtain the impact periodic solution of the system with small angle motion, which verifies that the theoretical research results have certain theoretical guidance in engineering practice.
Key words: nonlinear vibration; non-smooth double pendulum; impact periodic solution; symmetric bilateral rigid constraint; coefficient of restitution
作者簡(jiǎn)介: 郭秀英(1976?),女,講師。電話(huà):(0311)87935502,18132660586;E-mail:guoxiuying4086@sina.com
通訊作者: 田瑞蘭(1977?),女,教授,博士生導(dǎo)師。電話(huà):(0311)87936096,15511336389;E-mail:tianrl@stdu.edu.cn