程毛林,韓 云
(1.蘇州科技大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,江蘇 蘇州 215009;2.蘇州科技大學(xué) 商學(xué)院,江蘇 蘇州 215009)
產(chǎn)業(yè)集聚區(qū)是指政府統(tǒng)一規(guī)劃、企業(yè)相對(duì)比較集中、實(shí)現(xiàn)資源集約利用、提高整體效益的區(qū)域。蘇州市從2007 年開(kāi)始打造和培育現(xiàn)代服務(wù)業(yè)集聚區(qū),經(jīng)過(guò)10 年的發(fā)展,服務(wù)業(yè)集聚區(qū)對(duì)全市服務(wù)業(yè)集聚、集約發(fā)展起到了很好的促進(jìn)和推動(dòng)作用。近年來(lái),現(xiàn)代服務(wù)業(yè)的跨越發(fā)展,服務(wù)業(yè)集聚區(qū)的形態(tài)、產(chǎn)業(yè)發(fā)展重點(diǎn)、規(guī)模體量、運(yùn)作模式等有了較大變化,形成了一批形態(tài)新、成長(zhǎng)性好、發(fā)展進(jìn)度快、示范引領(lǐng)強(qiáng)的新的服務(wù)業(yè)集聚區(qū),同時(shí),也有部分市級(jí)現(xiàn)代服務(wù)業(yè)集聚區(qū)發(fā)展緩慢,已不能適應(yīng)服務(wù)業(yè)集聚區(qū)提檔升級(jí)發(fā)展要求。分析和掌握影響蘇州現(xiàn)代服務(wù)業(yè)集聚區(qū)發(fā)展的主要因素,對(duì)制定區(qū)域發(fā)展計(jì)劃和決策非常重要[1-4]。影響蘇州現(xiàn)代服務(wù)業(yè)集聚區(qū)發(fā)展的因素很多[5-7],主要包括四大方面,即集聚區(qū)之間的關(guān)系、發(fā)展?jié)摿?、發(fā)展風(fēng)險(xiǎn)、集聚區(qū)的服務(wù)產(chǎn)業(yè)鏈。每個(gè)方面均包含相關(guān)指標(biāo)[8]。
因子分析法是分析此類問(wèn)題的重要方法[9-12]。一般而言,在有多個(gè)指標(biāo)的許多問(wèn)題中,用因子分析法可以尋找出支配多個(gè)指標(biāo)的少數(shù)幾個(gè)公因子或共性因子。這些公因子是彼此獨(dú)立或不相關(guān)的,在所研究的問(wèn)題中,可以不損失或很少損失原指標(biāo)所包含的信息,以公因子(新變量)代替原指標(biāo)(原變量)作為研究對(duì)象。用得到的少數(shù)幾個(gè)公因子進(jìn)行因素分析。
有許多研究者利用因子分析法做了各種研究。李燕華和路立敏[13]采用因子分析法對(duì)23 家滬深A(yù) 股的水泥行業(yè)上市公司進(jìn)行2019 年財(cái)務(wù)績(jī)效綜合評(píng)分,結(jié)果顯示,水泥上市公司之間財(cái)務(wù)績(jī)效表現(xiàn)差距較大,行業(yè)整體水平有待提升。陳媛媛[14]突破傳統(tǒng)的研究方法與研究視角,利用解釋結(jié)構(gòu)理論及模型來(lái)進(jìn)行高校輔導(dǎo)員職業(yè)能力的因子分析,構(gòu)建高校輔導(dǎo)員職業(yè)能力因子的多級(jí)遞階解釋結(jié)構(gòu)模型,探討職業(yè)能力因子之間的內(nèi)在關(guān)系,為高校輔導(dǎo)員職業(yè)化建設(shè)提供相關(guān)建議。陳新鑠等人[15]以南京市為例,分析了南京市大氣污染影響因素,研究了南京市大氣污染治理中存在的問(wèn)題并提出改進(jìn)措施,為南京市及全國(guó)其他城市大氣污染治理提供參考。宋玉康等人[16]選取蘇州10 個(gè)典型社區(qū)作為研究對(duì)象,利用因子分析法深入剖析影響城郊集中社區(qū)公共空間滿意度的關(guān)鍵因子。結(jié)果顯示:可達(dá)性、采光性、健身設(shè)施完善度、設(shè)施管理維護(hù)等8 個(gè)因子是影響公共空間滿意度的重要客觀因子;居民年齡、月收入、入住時(shí)間與公共空間滿意度呈現(xiàn)顯著相關(guān)性,是影響滿意度的3 個(gè)主觀因子。張秀偉[17]運(yùn)用因子分析模型中不同的參數(shù)估計(jì)方法,客觀、有效地確定新課程課堂教學(xué)評(píng)價(jià)的基本因素,較好地為新課程課堂教學(xué)評(píng)價(jià)的實(shí)施提供依據(jù)。
為了得到相關(guān)指標(biāo)的數(shù)據(jù)筆者對(duì)178 家蘇州工業(yè)園區(qū)現(xiàn)代服務(wù)業(yè)集聚區(qū)的企業(yè)進(jìn)行了問(wèn)卷調(diào)查。由于調(diào)查的數(shù)據(jù)比較分散,一般的因子分析法效果不太理想,表現(xiàn)為尋找的少數(shù)幾個(gè)公因子其累計(jì)貢獻(xiàn)率不高,為此文中選用優(yōu)化方法對(duì)原始數(shù)據(jù)進(jìn)行Box-Cox 變換[18-22]使這尋找的少數(shù)幾個(gè)公因子其累計(jì)貢獻(xiàn)率最大,此法稱為改進(jìn)因子分析法。
對(duì)比較分散的數(shù)據(jù),傳統(tǒng)的因子分析法在一些情況下得到的少數(shù)幾個(gè)公因子其累計(jì)貢獻(xiàn)率不高,而且一般只能處理線性問(wèn)題。因此,文中提出了一種基于非線性變換的因子分析法,該方法通過(guò)Box-Cox 變換,選擇Box-Cox 變換參數(shù),使變換后的變量進(jìn)行因子分析得到的少數(shù)幾個(gè)公因子其累計(jì)貢獻(xiàn)率有最大值,這種改進(jìn)因子分析法效果顯著。
Box-Cox 變換是常用的數(shù)據(jù)變換方法,即
其中,yi為第i 個(gè)變量(指標(biāo))的原始觀測(cè)值,xi是第i 個(gè)變量變換后的數(shù)值,λi為待確定的參數(shù)。
廣義Box-Cox 變換,即
其中,λ1i、λ2i為2 個(gè)待確定的參數(shù),要求yi+λ2i>0。此廣義Box-Cox 變換是一般Box-Cox 變換的推廣。對(duì)yi為負(fù)數(shù)值的情況下可使用下式變換
其中,sign 為符號(hào)函數(shù),λ1i、λ2i為2 個(gè)待確定的參數(shù)。
由于文中調(diào)查的數(shù)據(jù)量化后均為正數(shù),所以實(shí)行一般的Box-Cox 變換。使用優(yōu)化方法,選擇Box-Cox 變換參數(shù),使變換后的變量進(jìn)行因子分析得到的少數(shù)幾個(gè)公因子其累計(jì)貢獻(xiàn)率有最大值。
具體步驟如下:
(1)設(shè)變換后的變量為x1,x2,…,xm
現(xiàn)有n 個(gè)樣品,相應(yīng)的觀測(cè)值為xik,i=1,2,…,n;k=1,2,…,m。作標(biāo)準(zhǔn)化變換后,將xk變換成xk*,即
(2)求矩陣R 的特征值和特征向量
設(shè)相關(guān)矩陣為R=X·X′(假定標(biāo)準(zhǔn)化后的矩陣仍記為X),標(biāo)準(zhǔn)特征方程|R-γI|=0,利用一定的數(shù)學(xué)方法,求出相關(guān)矩陣R 的特征向量矩陣A 和特征值γ1>γ2>…>γp≥0,并使F=A′x,其中F 為主因子陣。
(3)建立因子模型
在因子分析中,一般將A,F(xiàn) 分解為兩部分:
則因子模型為
A1稱為因子載荷矩陣,F(xiàn)1稱為主因子,e 稱為特殊因子。因子模型可具體寫(xiě)成
式中,f1,f2,…,fm為主要因子,分別反映某一方面信息的不可觀測(cè)的潛在變量;aij為因子載荷系數(shù),是第i 個(gè)指標(biāo)在第j 個(gè)因子上的負(fù)荷,若某指標(biāo)在某因子中作用大,則該因子的載荷系數(shù)就大,反之亦然;ei為特殊因子,實(shí)際建模中可忽略。
(4)確定因子貢獻(xiàn)率及累計(jì)貢獻(xiàn)率
(5)因子載荷陣的變換
由因子模型陣得到的初始因子載荷陣,如果因子負(fù)荷的大小相差不大,對(duì)因子的解釋可能有困難。因此,為得出較明確的分析結(jié)果,通過(guò)旋轉(zhuǎn)坐標(biāo)軸,使每個(gè)因子負(fù)荷在新的坐標(biāo)系中能按列向0 或1 兩極分化,同時(shí)也包含按行向兩極分化。旋轉(zhuǎn)的方法有正交旋轉(zhuǎn)和斜交旋轉(zhuǎn)兩種,由于選擇的旋轉(zhuǎn)方法不同,結(jié)果也就不同,一般以能得到較明確的分析結(jié)果為最終計(jì)算結(jié)果。
從系統(tǒng)角度全面考慮,筆者將影響蘇州現(xiàn)代服務(wù)業(yè)集聚區(qū)發(fā)展的指標(biāo)劃分為三個(gè)層次,自上而下分別為目標(biāo)層(1 級(jí)指標(biāo))、控制層(2 級(jí)指標(biāo))、指標(biāo)層(3 級(jí)指標(biāo))。每類指標(biāo)分別確定若干個(gè)子指標(biāo)。根據(jù)指標(biāo)設(shè)計(jì)的綜合性、層次性、代表性、實(shí)用性、動(dòng)態(tài)性原則,考慮蘇州工業(yè)園現(xiàn)代服務(wù)業(yè)集聚區(qū)企業(yè)的實(shí)際情況,課題組設(shè)計(jì)了下列指標(biāo),指標(biāo)體系見(jiàn)表1。
表1 影響蘇州現(xiàn)代服務(wù)業(yè)集聚區(qū)發(fā)展的指標(biāo)體系
對(duì)178 家蘇州工業(yè)園區(qū)現(xiàn)代服務(wù)業(yè)集聚區(qū)的企業(yè)進(jìn)行了問(wèn)卷調(diào)查,指標(biāo)從高到低,從大到小分為5 級(jí),分別為A、B、C、D、E。首先,對(duì)原始資料量化,A 為100,B 為80,C 為60,D 為40,E 為20,將上述經(jīng)過(guò)整理的指標(biāo)數(shù)據(jù)利用MATLAB2106A 軟件進(jìn)行因子分析。
對(duì)15 個(gè)三級(jí)指標(biāo)(變量)的數(shù)據(jù)進(jìn)行Box-Cox 變換
文中用優(yōu)化方法讓前6 個(gè)主要因子貢獻(xiàn)率之和最大,優(yōu)化模型如下
得到15 個(gè)變量的Box-Cox 變換參數(shù)λi,參數(shù)取值結(jié)果見(jiàn)表2。得到變換后的因子分析結(jié)果(6 個(gè)因子特征值、方差貢獻(xiàn)率和累計(jì)貢獻(xiàn)率)見(jiàn)表3。
表2 Box-Cox 變換參數(shù)結(jié)果
表3 特征值、方差貢獻(xiàn)率與累計(jì)貢獻(xiàn)率
從表3 中可以看出,變換前第一因子的方差占所有因子方差的13.38%,前6 個(gè)因子的方差貢獻(xiàn)率累計(jì)48.08%,變換后第一因子的方差占所有因子方差的18.76%,前6 個(gè)因子的方差貢獻(xiàn)率累計(jì)70.01%,基本上能夠描述和解釋影響蘇州現(xiàn)代服務(wù)業(yè)集聚區(qū)發(fā)展的情況。
由于初始的因子載荷矩陣中各因子含義的描述不太明晰,文中對(duì)初始因子載荷矩陣進(jìn)行方差最大旋轉(zhuǎn),旋轉(zhuǎn)后的載荷矩陣見(jiàn)表4。
表4 旋轉(zhuǎn)后因子載荷矩陣
從表4 中可以看出,第一公因子在集聚區(qū)服務(wù)產(chǎn)業(yè)鏈的完整性、企業(yè)業(yè)務(wù)的市場(chǎng)前景、服務(wù)產(chǎn)業(yè)鏈對(duì)企業(yè)的作用、集聚區(qū)的創(chuàng)新氛圍對(duì)服務(wù)產(chǎn)業(yè)鏈的影響上具有較大的載荷,可以反映服務(wù)產(chǎn)業(yè)鏈的影響,將其定義為服務(wù)產(chǎn)業(yè)鏈因子;第二公因子在企業(yè)外遷發(fā)展的可能性上有較大的載荷,將其定義為企業(yè)外遷發(fā)展因子;第三公因子在加強(qiáng)集聚區(qū)之間的聯(lián)系,形成優(yōu)勢(shì)互補(bǔ)的必要性上有較大的載荷,可以反映集聚區(qū)企業(yè)之間的聯(lián)系和優(yōu)勢(shì)互補(bǔ)強(qiáng)弱,將其定義為優(yōu)勢(shì)互補(bǔ)因子;第四公因子在蘇州服務(wù)業(yè)集聚區(qū)總體布局的合理性上有較大的載荷,可以反映集聚區(qū)總體布局的狀況,將其定義為總體布局因子;第五公因子在培育服務(wù)產(chǎn)業(yè)鏈鏈主企業(yè)上有較大的載荷,可以反映培育服務(wù)產(chǎn)業(yè)鏈鏈主企業(yè)方面的情況,將其定義為培育鏈主企業(yè)因子;第六公因子在集聚區(qū)滿足企業(yè)擴(kuò)張的土地瓶頸上具有較大的載荷,將其定義為土地瓶頸因子。這六大因子分別反映的相關(guān)指標(biāo)(載荷大)是影響蘇州現(xiàn)代服務(wù)業(yè)集聚區(qū)發(fā)展的主要因素,且影響大小從第一公因子反映的指標(biāo)到第六因子反映的指標(biāo)依次降低。
對(duì)178 家蘇州工業(yè)園區(qū)現(xiàn)代服務(wù)業(yè)集聚區(qū)的企業(yè)進(jìn)行了問(wèn)卷調(diào)查,用因子分析法進(jìn)行因素分析,得到影響蘇州現(xiàn)代服務(wù)業(yè)集聚區(qū)發(fā)展的主要因素。由于調(diào)查的數(shù)據(jù)比較分散,一般的因子分析法處理效果不太理想,表現(xiàn)為尋找的少數(shù)幾個(gè)公因子其累計(jì)貢獻(xiàn)率不高,為此文中選擇優(yōu)化方法對(duì)原始數(shù)據(jù)進(jìn)行Box-Cox 變換使這尋找的少數(shù)幾個(gè)公因子其累計(jì)貢獻(xiàn)率最大。實(shí)證分析表明,改進(jìn)的因子分析法使得前面幾個(gè)公因子累計(jì)貢獻(xiàn)率顯著提高,且能反映原始指標(biāo)包含的信息。