袁婷婷,張 栩,向小青,常譯丹,牛 猛,張賓佳,賈才華,許 燕,趙思明
冷凍面團品質劣變及改良研究進展
袁婷婷,張 栩,向小青,常譯丹,牛 猛※,張賓佳,賈才華,許 燕,趙思明
(華中農業(yè)大學食品科學技術學院,武漢 430070)
冷凍面團技術實現了面團制作與烘焙的分離,具有標準化、方便化等優(yōu)勢,因此在世界范圍得到快速發(fā)展。然而,受冰晶形成和凍藏作用的影響,冷凍面團仍然存在品質容易劣變和缺乏高效改良方法等問題。該研究主要從冷凍面團的發(fā)酵特性、面團主要組分如面筋蛋白和淀粉的特性、面團結構、冷凍面團的流變學特性等方面對冷凍面團的劣變現象與機理進行綜述,以及改進冷凍工藝,篩選抗凍酵母,添加酶制劑、抗凍劑、乳化劑等改良方法進行總結。通過對冷凍面團發(fā)酵特性、面筋蛋白結構、面團水合狀態(tài)等劣變關鍵因素的分析,為冷凍面團的抗凍研究提供參考,該研究旨在為冷凍面團品質劣變的抑制與高效改良技術的開發(fā)提供理論基礎與實踐參考。
冷凍;質量控制;冷凍面團;面筋蛋白;水分分布;蛋白質結構;酵母活性
隨著人們對高品質食物的不斷追求,以及各類連鎖經營模式的廣泛發(fā)展,冷凍面團技術應運而生。但是,冷凍面團技術也存在著一些問題,如冷凍面團所生產的面包或者饅頭會出現體積變小,硬度增加,貨架期變短等品質劣變問題[1-5]。其中,引起劣變的原因主要是:酵母細胞由于冰晶的破壞導致酵母活性及產氣性降低,面筋蛋白的網絡結構由于冰晶的重結晶作用遭到破壞,破損淀粉含量增加會與面筋蛋白競爭水分導致面筋蛋白失水[6-10]。目前國內外學者已經對冷凍面團品質劣變問題做了大量的研究,針對品質劣變問題的研究主要聚焦在面團結構特征、流變特性、加工性能[11-12],以及對冷凍面團中面筋蛋白、麥谷蛋白、麥醇溶蛋白的聚集行為和理化特性等方面[13-14]。而針對品質改良方面的研究多數停留在改進冷凍工藝,篩選抗凍酵母,以及乳化劑、親水膠體、酶制劑、變性淀粉等添加劑的使用。而單一食品添加劑的使用具有一定的局限性,抗凍蛋白類生產成本高,限制其廣泛應用,乳化劑的過量攝入會引起自身免疫疾病[15]。本文主要對引起冷凍面團劣變的因素進行綜合分析,以期從提高酵母活性、穩(wěn)定面筋蛋白結構、降低水分的流動性、穩(wěn)定淀粉結構這些方面,為解決冷凍面團劣變提供全面的理論指導,解決冷凍面團所面臨的困境,同時為高效健康改良劑的開發(fā)提供思路。
在面團的制作過程中,相比化學膨松劑,酵母更具優(yōu)勢[16],且酵母活性與面團的醒發(fā)時間、體積、硬度和孔隙率存在密切關系[17]。冷凍面團中酵母細胞的生存能力取決于細胞膜的組成和完整性[18],而冰晶的形成會對酵母細胞膜造成機械損傷,導致酵母細胞損傷或死亡[19],還會導致還原劑如谷胱甘肽的釋放,最后通過破壞面筋蛋白的二硫鍵來削弱面團的結構[20]。面團在凍藏過程中酵母活性降低,發(fā)酵特性減弱,具體表現為最大發(fā)酵高度和最終發(fā)酵高度降低。生產上使用的酵母在28 ℃左右快速生長,并進行有氧和無氧呼吸[21],孟露等[22]對面包酵母在-20 ℃無糖環(huán)境下模擬面團發(fā)酵7 d,發(fā)現酵母的存活率為43%,發(fā)酵力下降42%,也有研究發(fā)現同樣溫度凍藏28 d的時候,面團中酵母存活率為48.5%[23],主要原因是后者的酵母存活率是在添加10%蔗糖的條件下測定的。劉玫[19]研究發(fā)現凍結后和凍藏28d后的酵母存活率分別為87.53%和25.02%。溫度的波動也會破壞酵母細胞[24],Jia等[25]研究表明,面團的最大發(fā)酵高度和最終發(fā)酵高度可反映面團在發(fā)酵過程中的產氣能力和持氣能力。酵母細胞在-18 ℃下凍藏28 d后死亡率為47.4%,繼續(xù)凍藏6周后,面團發(fā)酵階段的m從28.7 mm降低至24.3 mm,在氣體釋放階段,氣體保留率從90.4%降低至85.3%[26]。面團在經歷6次凍融循環(huán)之后,生產的面包比容顯著降低(<0.05),可能是由于冰晶刺穿了酵母細胞,降低了冷凍保存過程中酵母存活率,減少了面筋網絡在發(fā)酵過程中保留CO2的能力[27]。湯曉娟[28]研究也得到相同的結論,凍藏使酵母存活率呈顯著下降的趨勢(<0.05),且面團的產氣和持氣能力顯著降低(<0.05)。表1是酵母在凍藏期間的變化情況,即凍藏過程中,酵母活性降低,面團最大發(fā)酵高度m和最終發(fā)酵高度降低,總產氣量T和持氣量1減少。
表1 酵母在凍藏期間變化情況表征
注:m:面團最大發(fā)酵高度,m;:面團最終發(fā)酵高度,m;T:總產氣量,mL;1:持氣量,mL。
Note:m: maximum dough fermentation height, m;:the final dough fermentation height, m;T: total gas volume, mL;1: gas retention volume, mL.
凍藏對酵母活性的影響主要是因為冰晶引起的[29],冰晶對冷凍面團的影響可以概括為以下兩個方面:1)凍結過程中酵母細胞內冰晶的形成會對細胞膜造成破壞,降低酵母活性[30];2)細胞外的面團基質中會形成冰晶,則鹽、糖、其他分子的濃度會增加,導致細胞內滲透壓增加,使酵母細胞失水死亡[31]。凍藏過程中冰晶的形成和重結晶作用會破壞酵母細胞壁,造成酵母活性降低,進而影響面團的產氣能力與持氣量,發(fā)酵性能降低,因此冷凍面團生產的產品質構特性下降,體積減小,孔隙率減小,硬度增加。
針對冷凍面團中酵母活性和產氣性能低的問題,目前國內的研究大多集中在篩選抗凍酵母:1)篩選天然抗凍酵母:汪正強等[32]從土壤、谷物、果蔬、空氣等不同來源篩選分離得到60多株酵母菌,得到三株耐凍酵母菌;2)特定的培養(yǎng)條件選育抗凍酵母:艾羽函[33]發(fā)現用20%質量分數的葡萄糖培養(yǎng)酵母時,酵母的抗凍能力和面團的產氣能力最佳,這是由于高滲環(huán)境有利于酵母合成海藻糖、甘油和乙醇,而海藻糖和甘油能夠增強酵母的抗凍性[34],因此可以通過高滲培養(yǎng)酵母提高酵母的抗凍能力;3)生物技術培養(yǎng)抗凍酵母:譚海剛等[35]研究發(fā)現,敲除NTH1基因后能明顯改善酵母菌株的耐凍特性。其他方法:李娜等[36]的研究表明,通過酵母與碳酸氫鈉混配,也可以解決冷凍面團酵母細胞活性和持氣力,當碳酸氫鈉用量為0.2%~0.4%時,冷凍面團饅頭表現出較好的表面色澤、外觀形狀、內部氣孔分布、氣味、口味以及口感,且能促進面筋蛋白二硫鍵的形成。
面團作為一個復雜的體系,主要包括面筋蛋白、淀粉、水分等成分,在一定含水率的情況下,小麥蛋白質與淀粉相互作用,促進了面筋網絡結構的形成。其中面筋蛋白作為面團的骨架結構,淀粉顆粒通過吸水膨脹支撐和強化面團結構。面團在凍藏過程中,由于冰晶的生長和重結晶作用,面筋蛋白網絡結構遭到破壞,損傷淀粉含量也會增加,面筋蛋白中的水分發(fā)生轉移,造成水分重新分布[37],同時冷凍面團中的可凍結水含量增加。因此,冷凍面團的劣變主要可概括為以下3個方面:1)面筋蛋白網絡結構的破壞;2)水分重新分布;3)損傷淀粉的影響。表2是面團在凍藏期間結構和品質劣變的表征,冷凍面團的結構和功能特性都發(fā)生改變,主要表現為麥谷蛋白和醇溶蛋白的共價鍵發(fā)生斷裂,非共價鍵發(fā)生改變,麥谷蛋白大分子聚合體(Glutenin Macropolymer,GMP)含量降低,可凍結水含量增加,損傷淀粉含量增加,面筋蛋白微觀結構遭到破壞,最后導致面團的黏彈性降低,品質劣變。
表2 面團凍藏期間結構和品質劣變的表征
注:SDS-PAGE:十二烷基硫酸鈉-聚丙烯酰胺凝膠電泳;SEC-MALLS:尺寸排阻色譜-多角度激光光散射;FTIR:傅里葉轉換紅外光譜;DSC:差示掃描量熱;Δ:焓;SEM, TEM:掃描電子顯微鏡,透射電子顯微鏡;、、tan:彈性模量,黏性模量,損耗角正切。
Note: SDS-PAGE: Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis; SEC-MALLS: Size Exclusion Chromatography Multi-Angle Laser Light Scattering; FTIR: Fourier Transform Infrared Spectroscopy; DSC: Differential Scanning Calorimetry; Δ: Enthalpy; SEM, TEM: Scanning Electron Microscopy, Transmission Electron Microscopy;、、tan: Elastic Modulus, Viscous Modulus, Loss Tangent.
面筋蛋白的構架蛋白麥谷蛋白和醇溶蛋白在面團的形成過程中產生了連續(xù)的黏彈性網絡結構,面筋網絡在面團發(fā)酵和蒸煮過程中對面團的延展性、產品尺寸和質量方面起著決定性的作用[49]。面筋網絡可以保持酵母發(fā)酵過程中產生的CO2氣體[50],現代聚合物理論認為面筋蛋白分子量大小和結構與其功能特性緊密相關,而GMP的數量、面團結構特性與冷凍面團制作的產品質量之間存在相關性[51]。面團在凍藏過程中由于冰晶的作用使水分發(fā)生重新分布,面筋蛋白作為面團的主要功能性成分,凍藏過程中高分子量的面筋蛋白發(fā)生解聚,導致面筋網絡退化。對面筋蛋白結構的具體研究包括分子量大小、二硫鍵的變化、表面疏水性及二級結構的變化。
2.1.1 蛋白質分子量
面筋蛋白在十二烷基硫酸鈉(Sodium Dodecyl Sulfate,SDS)溶液中的溶解度可以反映面筋蛋白的聚合程度,GMP解聚被認為是表征面筋蛋白品質劣變的主要指標之一[52],因此研究凍藏過程中面筋蛋白和麥谷蛋白SDS溶解度和GMP含量可以解釋面筋蛋白的劣變機制。劉玫[19]研究發(fā)現經歷凍結和凍藏處理的面筋蛋白和麥谷蛋白的SDS溶解度增加,GMP含量降低,且SDS-LMW(Low Molecular Weight)(<91 000 Da)部分含量增加程度高于SDS-HMW(High Molecular Weight)(91 000~688 000 Da)部分。經歷60 d冷凍儲藏導致GMP含量顯著降低(<0.05),而SDS可溶性單體組分增加[38],推測凍結和凍藏階段由于冰晶的形成和重結晶導致GMP發(fā)生解聚,生成了SDS可溶性蛋白。Zhao等[53]研究發(fā)現,經歷凍融循環(huán)后的面筋蛋白分子量顯著降低(<0.05)。高分子量麥谷蛋白(High Molecular Weight Glutenin Subunits,HMW-GS)和低分子量麥谷蛋白(Low Molecular Weight Glutenin Subunits,LMW-GS)亞基比例也是分子量分布的決定因素之一,Jia等[54]研究表明,凍藏5周之后,HMW/LMW的比率降低為新鮮面團的31.3%,由于谷蛋白的解聚導致高分子量麥谷蛋白亞基數量減少,而低分子量亞基數量增加。此外,王沛[39]的研究也得到相同的結論,可溶性蛋白的分子量分布范圍不隨冷凍時間的延長而變化,但可溶性蛋白的含量隨冷凍時間的延長而增加,并研究了麥醇溶蛋白對面筋蛋白結構形成的阻礙作用,建立了GMP的解聚度和凍藏時間及醇溶蛋白含量呈線性正相關的關系,證實了面筋蛋白和谷蛋白中GMP的解聚過程主要通過鏈外二硫鍵的斷裂作用進行。因此,凍藏過程中由于冰晶的作用導致面筋蛋白的關鍵組分GMP發(fā)生了解聚作用,使其骨架結構遭到破壞,進而弱化了面團的網絡結構。
2.1.2 二硫鍵
麥谷蛋白和醇溶蛋白主要通過共價鍵來進行分子內/分子間的相互作用并形成面筋蛋白網絡結構。作為面筋蛋白的功能基團,游離巰基(Free Thiol,S-H)通??赏ㄟ^形成二硫鍵(Disulfide Bond,S-S)來參與到蛋白聚集行為中,同時S-S鍵也是維持面筋蛋白三維網絡結構的主要作用力,通過鏈內和鏈間的共價S-S鍵決定面筋蛋白的功能特性,從而決定面團的最終使用質量[55]。劉玫[19]對面筋蛋白的S-S鍵含量進行了測定,發(fā)現S-S鍵含量在凍藏28 d后顯著降低(<0.05),說明二硫鍵在凍藏過程中發(fā)生了斷裂。王沛[39]研究發(fā)現在凍藏60 d后,冷凍面團中面筋蛋白的S-H 含量由 6.89mol/g 升至11.03mol/g,推測S-S鍵的斷裂形成游離S-H,進而導致面筋蛋白網絡弱化。Xuan等[56]的研究發(fā)現,凍藏60 d后面筋蛋白的游離S-H含量增加了82.93%,但面筋蛋白中游離S-H含量在凍藏15 d時出現了下降的趨勢,推測冷凍收縮現象導致面筋蛋白內部形成了更多的鏈內/鏈間S-S鍵[57]。朱建[58]發(fā)現面筋蛋白經歷凍融循環(huán)后的S-S鍵含量顯著降低(<0.05),S-H含量顯著升高(<0.05),證實了凍融循環(huán)對面筋蛋白的結構造成破壞。趙雷[40]發(fā)現,與恒溫凍藏相比,凍融對S-S鍵的破壞比較大,由于面筋蛋白的自由氨基含量沒有變化,面筋蛋白的亞基也沒有發(fā)生變化,游離S-H含量隨著凍藏時間的增加而增加,這就表明,由于二硫鍵斷裂使得面筋蛋白的大聚合體發(fā)生了解聚現象導致了面筋蛋白分子量的下降,這與上述蛋白質分子量的研究結果一致。凍藏期間蛋白質空間構象的重排是由S-S鍵和疏水相互作用共同作用的[59],溫度波動引起的水分遷移和冰晶的重結晶對面筋蛋白和谷蛋白的網絡結構造成擠壓和破壞,造成二硫鍵密度分布不均勻從而使鍵合作用變弱,氧氣將這部分鍵合作用較弱的二硫鍵氧化,從而使部分二硫鍵斷裂[40]。
2.1.3 表面疏水性
疏水相互作用是維持蛋白質結構的作用力,它對蛋白質的功能特性和穩(wěn)定性具有重要作用,相比蛋白質的整體疏水性,表面疏水性更能揭示蛋白質結構的變化[60],8-苯胺-1-萘磺酸熒光探針法是一種常用的測定蛋白質表面疏水性的方法。面筋蛋白中的疏水氨基酸主要包括亮氨酸、脯氨酸等,這些氨基酸之間一般以疏水相互作用存在,朱建[58]研究發(fā)現經凍融循環(huán)處理的面筋蛋白的表面疏水性增加。柳小軍[61]研究表明,隨凍藏時間和凍融循環(huán)次數的增多,面筋蛋白表面疏水性顯著增加(<0.05)。因此,凍藏過程中冰晶破環(huán)了面筋蛋白結構,導致結構弱化,面筋蛋白構象發(fā)生改變,使疏水基團暴露,因此表面疏水性增加。
2.1.4 二級結構
蛋白質的二級結構與面筋蛋白網絡結構特征密切相關。二級結構的分析可以用傅里葉轉換紅外光譜(Fourier Transform Infrared Spectroscope,FTIR)進行分析,主要有-螺旋,-折疊,-轉角和-反平行4種結構,其中-螺旋、-折疊是有序結構,-螺旋一般為支撐多肽的主要骨架結構,-折疊含量一般在各二級結構中占主要地位,而-轉角和-反平行是無序結構。表3為冷凍面團二級結構的變化的表征,主要表現為-螺旋結構的降低,不同的研究顯示的二級結構變化存在差異,可能與冷凍面團的配方有關。-折疊主要依賴于麥谷蛋白的水合作用,-螺旋是醇溶蛋白的特征結構,維持-螺旋結構的主要作用力為氫鍵,冷凍破壞了-螺旋結構中的氫鍵等非共價鍵,蛋白質的親水和疏水殘基暴露在外界環(huán)境中,導致蛋白分子間、分子內出現新的交聯現象,從而改變了蛋白質的二級結構[14]。
表3 冷凍面團二級結構變化的表征
注:“—”未顯示反平行-折疊結構含量。
Note: “—” The content of antiparallel-sheets structure is not showed.
由上可見,面筋蛋白在凍藏過程結構的破壞主要概括為以下過程:凍藏過程中冰晶的形成和重結晶導致面筋蛋白GMP發(fā)生解聚,這種解聚主要是二硫鍵的斷裂引起的,通過對面筋蛋白的表面疏水性進行分析發(fā)現,表面疏水性增加,進而引起面筋蛋白二級結構發(fā)生變化,主要表現為-螺旋和-折疊結構弱化,最終導致面筋蛋白結構破壞。
酶制劑類食品添加劑能夠增強面筋蛋白結構,因具有高效、天然、安全的特性被廣泛應用于冷凍面團的加工中[15],常用的酶制劑有:葡萄糖氧化酶,轉谷氨酰胺酶,纖維素酶等。袁永利[64]研究發(fā)現,添加葡萄糖氧化酶之后的面團凍藏35 d仍然有大量的連續(xù)的面筋網絡存在。葡萄糖氧化酶在有氧條件下發(fā)生氧化反應生成葡萄糖酸內酯,釋放的過氧化氫可以將面筋蛋白中的游離S-H氧化成S-S,進而增強面筋網絡的結構[65]。Tang等[66]研究表明,轉谷氨酰胺酶可以降低高分子量谷蛋白亞基與低分子量谷蛋白亞基的比例,并增加GMP的粒徑。轉谷氨酰胺酶可用于蛋白質的交聯,可以減少冷凍面團中由于冰晶導致的面筋強度降低。谷氨酰胺轉氨酶存在的情況下,賴氨酸殘基上的-氨基酸和谷氨酰胺殘基上的-羥酰胺基反應生成-賴氨酸異肽鍵,-賴氨酸異肽鍵作用力比氫鍵和其他非共價鍵強,從而起到增強筋力的作用[65]。
持水性是蛋白質的重要功能性質,柳小軍[61]研究了凍藏對小麥面筋蛋白持水性的影響,結果顯示凍藏會使面筋蛋白的持水性顯著性下降(<0.05),且經歷凍融循環(huán)后,面筋蛋白的持水性進一步降低。湯曉娟[28]研究發(fā)現,濕面筋的含水率隨凍融循環(huán)次數的增多而減少,這主要是由于冰晶的生長和重結晶作用,小麥面筋蛋白低溫變性導致隱藏在其內部的部分疏水基團暴露,使得小麥面筋蛋白網絡對水分子的束縛力減弱[59]。具體來說,面筋蛋白在凍藏過程中的吸水能力下降是由S-S共價鍵及非共價鍵變化共同作用引起的蛋白空間構象重排所致,最終導致小麥面筋蛋白持水性的下降。
2.2.1 水分的遷移與重新分布
冷凍面團中水分的分布情況直接影響著面團的發(fā)酵活力和面筋的網絡結構,最終影響冷凍面團產品的質量[67]。面團中的水分分布一般用時域核磁共振(Time-Domain Nuclear Magnetic Resonance,TD-NMR)測定橫向弛豫時間來表示,面團中的水一般可以分成3部分,分別對應冷凍面團在弛豫時間內的3個峰21、22、23。21表示與淀粉或蛋白質氨基酸殘基結合最為緊密的深層結合水,22表示介于深層結合水和自由水之間的弱結合水,23表示可凍結的自由水,而自由水是面團在凍藏過程中極易失去的一部分水。隨著凍藏時間的延長,深層結合水比例從17.40%下降至14.40%,而自由水占比上升了3.40%[68],Jiang等[41]研究發(fā)現凍藏120 d后,冷凍面團中的深層結合水含量顯著降低(<0.05),自由水含量顯著增加(<0.05),弱結合水含量無顯著改變(>0.05)。面筋蛋白中的深層結合水和弱結合水對凍藏敏感,它們的2弛豫時間峰值的寬度和幅度的變化受凍藏時間的增加而變化[13]。隨著凍融循環(huán)次數的增多,自由水含量顯著增加(<0.05),深層結合水含量顯著降低(<0.05),表明面筋網絡在經歷凍融循環(huán)之后脫水[69]。Zhang等[70]研究發(fā)現經歷凍融循環(huán)處理后,冷凍面團中的深層結合水顯著降低(<0.05),而自由水顯著增加(<0.05),表明凍融處理后冷凍面團中的水分流動性進一步增加。Ding等[43]用低場核磁共振(Low Field-Nuclear Magnetic Resonance,LF-NMR)在高空間分辨率下無損實時顯示水分分布,發(fā)現新鮮面團的彩色圖像均勻且邊緣清晰,表明水分均勻的分布在新鮮面團的內部和表面,凍融循環(huán)后,這種均勻狀態(tài)被破壞,水分主要集中在面團的中心,邊緣分布較少,這是由于凍融處理后面團中的水分含量降低,導致質子密度的信號強度降低[27]。冷凍面團中的水分由于重結晶作用會發(fā)生重新分布,經過凍藏和凍融處理后,面筋蛋白的疏水相互作用增強,導致面筋蛋白與深層結合水和弱結合水的作用力減弱,導致面團中水分流動性增加,進一步導致面團失水。圖1[39]是冷凍面團中水分在宏觀、微觀及分子水平的分布情況。
Fig 1 Water distribution in frozen dough at the macroscopic, microscopic and molecular levels
2.2.2 可凍結水含量
冰晶是破壞冷凍面團面筋蛋白網絡結構的主要因素之一,而可凍結水的含量決定了在凍藏過程中冰晶的生成量,可凍結水含量的測定通過差示掃描量熱(Differential Scanning Calorimetry,DSC)儀。冷凍面團中可凍結水比例隨凍藏時間的延長而增加[41],冷凍面團經歷了30 d凍藏處理后可凍結水比例從31.7%增加到47.5%[44]。經歷5次凍融循環(huán)之后,面團中可凍結水比例從38.70%增加到44.34%[72],由于在凍結過程中,只有可凍結水轉化為冰晶,因此冰晶的熔融焓值(Δ)可以反映樣品中的可凍結水比例[43]。經歷12周凍藏處理的面團的焓值從76 J/g增長到86 J/g,而同時經歷凍融循環(huán)面團的焓值從76 J/g增長到89 J/g,且焓值在前四周會增加明顯,水分遷移和冷凍后可凍結水立即增加,主要歸因于面團初次暴露在這樣的低溫環(huán)境中引起的面筋網絡結構的劣變[12]。Xuan等[56]研究發(fā)現,經歷60 d的凍藏之后,焓值Δ從134.20 J/g增加至166.27 J/g??蓛鼋Y水含量和焓值Δ的升高可能是因為凍藏過程中冰晶的生長和重結晶作用,減弱了面筋蛋白中非極性、極性氨基酸之間的相互作用,使面團中不能凍結的松散的結合水與小麥面筋蛋白的相互作用減弱,這部分結合水從面筋網絡中釋放出來,進而轉變成了自由水,導致冷凍面團中的可凍結水含量增加[57,61],這也與上述自由水含量增加的結果一致。
目前食品膠體和抗凍劑類食品添加劑主要用于控制冷凍面團中水分子的遷移,進而阻止大冰晶的形成。常用的食品膠有黃原膠、海藻酸鈉、卡拉膠等。其中黃原膠有很強的吸水性,能夠使水分均勻分散在面筋網絡結構中,減緩因冰晶的遷移與生長帶來的面筋蛋白結構破壞,汪星星[72]的研究表明,添加黃原膠、卡拉膠能夠有效抑制二硫鍵的斷裂,抑制冷凍面團黏彈性模量的降低,保護面筋蛋白網絡結構。常用的抗凍劑有抗凍蛋白,海藻糖,抗凍肽類。其中抗凍蛋白主要有3種作用:1)熱滯活性;2)重結晶抑制活性;3)細胞膜保護作用,因此抗凍蛋白通過抑制冰晶的作用保護面筋蛋白結構[73],目前抗凍肽已經成功應用于冷凍面團。Chen等[74]的研究表明,添加抗凍肽減弱了在凍融處理過程中水分的流動性,并改善了冷凍面團中的水分分布。海藻糖具有很強的抗脫水作用,可以有效防止面筋蛋白在寒冷環(huán)境下遭受損傷,周一鳴等[75]的研究表明,通過復配海藻糖、食品膠、乳化劑、酶制劑能夠使冷凍面團面筋蛋白網絡結構清晰完整,使冷凍面團饅頭比容極顯著提高(<0.01),增強面團的抗凍性。
淀粉作為面團中占比最大的物質,在冷凍面團的劣變過程中也發(fā)揮著重要作用。面團在經歷凍藏/凍融循環(huán)之后,損傷淀粉(Damaged Starch,DS)含量會增加,導致吸水率增加,使水分從面筋基質中流出[8],損傷淀粉的含量高也會使面團發(fā)黏且不易成型,彈性和可伸展性的下降,與此同時,由于面筋與損傷淀粉之間競爭水分,也會導致面團的結構較弱[76]。圖2[45]為天然淀粉和損傷淀粉的SEM圖,觀察到天然淀粉的表面光滑平坦,損傷淀粉表面粗糙。DS的含量會影響面團對水的吸收和面粉的混合特性,但是適量的DS(12.2%~21.9%)可以改善粉質特性,將水分保留在面團中,對冷凍面團更有利[77]。凍藏過程中DS含量顯著增加(<0.05)[78],DS含量增加會降低雙螺旋結構,導致面團的穩(wěn)定性受到影響。且DS增加1%可使面團吸水能力提高約4倍,慢速(-0.14 ℃/min)冷凍面團的DS在凍藏期間含量高于快速(-1.75 ℃/min)冷凍面團的DS。Tao等[79]研究發(fā)現,經歷10次凍融循環(huán)處理的淀粉使面團的彈性模量(Elastic Modulus,), 黏性模量(Viscous Modulus,)增加,且損耗角正切(Loss Tangenttan)值沒有顯著變化(>0.05),主要原因是損傷淀粉含量增加導致更少的水分來形成面團[80]。經歷凍藏后的淀粉使面筋蛋白的-螺旋、-折疊轉換成無序的-轉角和無規(guī)則卷曲,使面團形成時間增加,tan值降低,面包芯的硬度顯著增加(<0.05),最終導致面包的品質下降,因此,損傷淀粉的增加將導致面團品質的下降[46]。凍藏處理改變了小麥淀粉結構性質,弱化了淀粉顆粒與蛋白質分子之間的相互作用,導致面筋蛋白的二級結構變得無序化,面筋網絡結構疏松,面團的黏彈特性發(fā)生改變,最后降低冷凍面團品質。
Fig 2 Scanning electron micrographs of native and damaged starch granules
面筋蛋白在凍藏過程中結構的變化可以通過SEM觀察,也可以通過激光共聚焦電子顯微鏡觀察。在凍藏初期,冷凍面團面筋蛋白維持著高度的三維網狀結構,孔洞致密且均勻,尺寸范圍從8~20m[41]。凍藏之后面筋網絡發(fā)生斷裂,面筋結構變得非常粗糙,更多的淀粉顆粒被暴露出來[28]。凍藏60 d的面筋蛋白由于相鄰孔洞之間的網絡破壞導致孔徑變大,且分布不規(guī)則,這是由于冰晶的形成和生長,導致S-H增加,S-S鍵斷裂[56]。Wang等[13]研究發(fā)現,經歷60 d的凍藏之后,連續(xù)的面筋網絡結構遭到破壞,可以觀察到在面筋蛋白和冰晶之間發(fā)生相分離,面筋網絡的冷凍收縮過程減少了分離相鄰冰晶的蛋白質的間隙區(qū)域,從而對微觀結構造成機械損傷[39]。忻晨[81]發(fā)現面筋蛋白的網絡結構在經歷凍藏之后,由平滑完整的結構變得孔徑變大,導致網絡結構的完整性和連續(xù)性遭到破壞,這是由于面筋蛋白在凍藏過程脫水,使得冰晶含量增多導致的。水的相變會引起冰晶的體積增大,面筋蛋白的間隙區(qū)域由于冷凍收縮過程受到擠壓,導致面筋蛋白的微觀結構受到機械損傷[82]。隨著凍藏時間的延長,面筋網絡出現了不同程度的破損,面筋膜變得稀薄,并且出現了較多不同形狀的孔洞,凍融處理會導致更為嚴重的網絡結構的破壞,面筋網絡斷裂,連續(xù)性變差,可能導致最終產品的持氣性降低,產品品質不佳[83]。
面團是一種具有黏彈性的物料,它的黏彈性主要來源于具有彈性的麥谷蛋白和黏性的醇溶蛋白,面團的流變性能在一定程度上決定其最終產品品質。面筋蛋白和麥谷蛋白的彈性模量(Elastic Modulus,)都大于黏性模量(Viscous Mudulus,),說明其主要體現固體性質。凍藏過程中,損耗角正切(Loss Tangent,tan)是衡量蛋白質品質的重要指標之一,其值越大說明蛋白劣變程度越高[84]。研究表明面筋蛋白的彈性模量隨著凍藏時間的延長而降低,醇溶蛋白的黏彈特性在凍藏過程中沒有顯著差異(>0.05)[85-86],因此推測面筋蛋白的黏彈特性在凍藏期間的變化主要由麥谷蛋白導致的。Ribotta等[11]研究發(fā)現冷凍和凍藏導致面團和顯著降低(<0.05),證明冷凍和凍藏會使面團彈性和黏性降低。凍藏過程中,面團的彈性模量和黏性模量都逐漸降低,可能是面筋蛋白和淀粉顆粒之間的結構被破壞。經歷5次凍融循環(huán)處理后,面團的和降低,且tan值隨凍融循環(huán)次數的增加而增加,表明面團的黏彈性都下降了[70]。Tang等[69]發(fā)現經歷凍融循環(huán)處理后,和顯著降低(<0.05),tan值顯著增加(<0.05),隨著凍融循環(huán)次數的增多,這是由于冰的重結晶等因素對面筋蛋白的破壞較為嚴重,導致流變學性能下降[83]。凍藏過程中,面筋蛋白和谷蛋白的與GMP含量存在顯著正相關關系(gluten=0.964,glutenin=0.985),表明二者彈性的降低與其中的GMP解聚直接相關[39]。Li等[87]研究分析冰晶可以使面筋網絡變得無序,導致面團質構特性改變。冷凍面團流變學特性的改變也可以用冷凍過程中冰晶的形成來解釋,冰晶的重結晶破壞了面筋蛋白的網絡結構[7,11,88-89],導致其黏彈性降低,且黏彈性損失與GMP解聚也存在顯著正相關。因此,GMP解聚也是引起面筋蛋白黏彈性下降的主要原因之一。面筋蛋白流變學特性在凍藏過程中的劣變主要概括為以下3個方面:1)相對分子量,一般分子量越大,面筋蛋白的黏彈性越好[90];2)面筋蛋白結構,凍藏由于冰晶作用對面筋蛋白的結構造成破壞,因此導致其黏彈性下降[54];3)面團中的水分分布及水分狀態(tài)也會影響其黏彈特性[91]。面團在凍藏過程中,水分重新分布及重結晶作用導致面筋蛋白GMP解聚,共價及非共價鍵變化,因此面筋蛋白結構遭到破壞,流變學特性發(fā)生變化,和減小,tan值增加,對面團的加工特性產生不利影響并在一定程度上決定產品品質。
乳化劑可以與冷凍面團中的蛋白質、淀粉相結合,防止淀粉老化,降低面筋蛋白和淀粉之間的水分遷移,增強面團的凍融穩(wěn)定性,進而改善冷凍面團的品質。其中蔗糖酯和聚山梨醇酯可以與麥谷蛋白形成復合物,強化面團結構;單甘酯則與淀粉相互作用形成復合物,延緩冷凍面團產品硬化[92];雙乙酰酒石酸單(雙)甘油酯(Diacetyl Tartaric acid Ester of Monoglycerides, DATEM)能夠強化面筋網絡機構,增強面包的持氣能力[11]。周錦楓等[93]的研究表明,DATEM可以降低冷凍面團中水分遷移速度,并提高其所生產面包的比容。-淀粉酶通過分解損傷淀粉為糊精、麥芽糖或葡萄糖等的簡單化合物,為酵母提供營養(yǎng)物質,促進酵母的生長和繁殖,極大的提高冷凍面團的發(fā)酵特性[94],Thuy等[95]的研究表明,添加0.01%的-淀粉酶可以顯著增強冷凍面團的筋力。而變性淀粉有良好的持水性及抗凍融效果,應用于冷凍面團中可以提高其質量。王亞楠等[96-97]的研究表明醋酸酯馬鈴薯淀粉顯著增加冷凍面團的持水力,減弱水分子的流動性,且增大了面包的比容,改善面包的品質。目前也有研究發(fā)現一些兼具抗凍和營養(yǎng)特性的原料,Wang等[98]的研究表明加入2%的黑麥麩皮阿拉伯木聚糖能夠改善冷凍面團的品質;Bea等[99]的研究發(fā)現添加50%全麥面粉的冷凍面團有很好的凍融穩(wěn)定性,這些新型冷凍面團改良劑還具有一定的生理功能。
除了外源添加改良劑,冷凍面團的加工工藝也會影響面團的品質,采用速凍的方式進行凍結會使形成的冰晶細小且均勻,對面團的影響較?。粌霾貤l件也會影響冰晶的生長和水分重結晶。Kenny等[100]的研究表明,冷凍面團的適宜凍藏溫度為-18~-22 ℃,Du等[101]的研究發(fā)現,在-35℃速凍溫度下,能減緩冷凍面團的品質劣變,采用冷凍前不發(fā)酵和快速發(fā)酵的方式能夠降低酵母的敏感性,增強面團的抗凍效果[102-103]。
本文從面團在凍藏過程中酵母活性和產氣性能、面團主要組分特性、面團結構和流變學特性4個方面對冷凍面團的劣變規(guī)律進行了綜述,針對冷凍工藝方面,采用先進的冷凍設備,減少溫度波動來降低冷凍面團的裂變;針對酵母活性降低,一般通過篩選抗凍酵母提升冷凍面團產氣性低的問題;針對面筋蛋白結構弱化,酶制劑類食品添加劑被用來增強面筋蛋白結構;針對水分遷移的問題,添加食品膠和抗凍劑類來阻止水分遷移引起的大冰晶的形成;針對淀粉結構的破壞,變性淀粉的添加可以通過增強面團的持水力來改善冷凍面團品質。乳化劑可以降低水分遷移,防止淀粉老化,但是過量攝入會誘發(fā)自身免疫疾病。酶制劑具有天然、安全、高效的優(yōu)點。抗凍蛋白雖然可以修復細胞超微結構,但是成本高。變性淀粉原料來源廣、方便、經濟。單一的食品添加劑有一定的局限性,通過復配使用添加劑已經成為一種趨勢。綜上可見,隨著人們對營養(yǎng)、健康的追求越來越高,開發(fā)天然、綠色、健康、營養(yǎng)型抗凍劑具有廣闊的應用前景。
[1] 周舟,杜險峰. 凍藏過程中面團組分的變化及改良劑的研究進展[J]. 食品科技,2020,45(12):144-149.
Zhou Zhou, Du Xianfeng. Research progress of changes in dough components and improvers during frozen storage[J]. Food Science and Technology, 2020, 45(12): 144-149. (in Chinese with English abstract)
[2] Dalvi-Isfahan M, Jha P K, Tavakoli J, et al. Review on identification, underlying mechanisms and evaluation of freezing damage[J]. Journal of Food Engineering, 2019, 255: 50-60.
[3] Maity T, Saxena A, Raju P S. Use of hydrocolloids as cryoprotectant for frozen foods[J]. Critical Reviews in Food Science & Nutrition, 2018, 58(3): 420-435.
[4] Yang S, Jeong S, Lee S. Elucidation of rheological properties and baking performance of frozen doughs under different thawing conditions[J]. Journal of Food Engineering, 2020, 284: 110084.
[5] 范會平,李瑞,鄭學玲,等. 酵母對冷凍面團發(fā)酵特性及饅頭品質的影響[J]. 農業(yè)工程學報,2016,32(20):298-305.
Fan Huiping, Li Rui, Zheng Xueling, et al. Effect of yeast products on fermentation characteristics of frozen dough and quality of steamed bread[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(20): 298-305. (in Chinese with English abstract)
[6] Feng W J, Ma S, Wang X X. Quality deterioration and improvement of wheat gluten protein in frozen dough[J]. Grain & Oil Science and Technology, 2020, 3(1): 29-37.
[7] Baier-schenk A, Handschin S, Vonsch?nau M, et al. In situ observation of the freezing process in wheat dough by confocal laser scanning microscopy (CLSM): Formation of ice and changes in the gluten network[J]. Journal of Cereal Science, 2005, 42(2): 255-260.
[8] Yang Y, Zheng S S, Li Z, et al. Influence of three types of freezing methods on physicochemical properties and digestibility of starch in frozen unfermented dough[J]. Food Hydrocolloids,2021, 115: 106619-106626.
[9] Omedi J O, Huang W N. Advances in present-day frozen dough technology and its improver and novel biotech ingredients development trends: A review[J]. Cereal Chemistry, 2019, 96(1): 34-56.
[10] Kim H J, Yoo S H. Effects of combined-amylase and endo-xylanase treatments on the properties of fresh and frozen doughs and final breads[J]. Polymers, 2020, 12(6): 1349-1358.
[11] Ribotta P D, Perez G T, Len A E, et al. Effect of emulsifier and guar gum on micro structural, rheological and baking performance of frozen bread dough[J]. Food Hydrocolloids, 2004, 18(2): 305-313.
[12] Lu L, Yang Z, Guo X N, et al. Effect of NaHCO3and freeze–thaw cycles on frozen dough: From water state, gluten polymerization and microstructure[J]. Food Chemistry, 2021, 358:129869-129879.
[13] Wang P, Xu L, Nikoo M, et al. Effect of frozen storage on the conformational, thermal and microscopic properties of gluten: Comparative studies on gluten-, glutenin- and gliadin-rich fractions[J]. Food Hydrocolloids, 2014, 35: 238-246.
[14] Wang P, Chen H Y, Mohanad B, et al. Effect of frozen storage on physico-chemistry of wheat gluten proteins: Studies on gluten-, glutenin- and gliadin-rich fractions[J]. Food Hydrocolloids, 2014, 39: 187-194.
[15] 王岸娜,施桂林,吳立根,等. 食品添加劑對冷凍面團品質影響的研究綜述[J]. 河南工業(yè)大學學報:自然科學版,2018,39(5):127-132.
Wang Anna, Shi Guilin, Wu Ligen, et al. Review on effects of food additives on frozen dough[J]. Journal of Henan University of Technology: Natural Science Edition, 2018, 39(5): 127-132. (in Chinese with English abstract)
[16] Wang P, Yang R Q, Gu Z X, et al. Comparative study of deterioration procedure in chemical-leavened steamed bread dough under frozen storage and freeze/thaw condition[J]. Food Chemistry, 2017, 229: 464-471.
[17] Akbarian M, Dehkordi M S M, Ghasemkhani N, et al. Hydrocolloids and cryoprotectant used in frozen dough and effect of freezing on yeast survival and dough structure: A review[J]. Research Laboratory for Agricultural Biotechnology & Biochemistry, 2015, 9(3): 1-9.
[18] Meziani S, Jasniewski J, Ribotta P, et al. Influence of yeast and frozen storage on rheological, structural and microbial quality of frozen sweet dough[J]. Journal of Food Engineering, 2012, 109(3): 538-544.
[19] 劉玫. 重組抗凍蛋白對冷凍面團品質劣變的干預及其機制研究[D]. 無錫:江南大學,2018.
Liu Mei. Intervention and Mechanism Study of Recombinant Antifreeze Proteins on Quality Deterioration of Frozen Dough[D]. Wuxi: Jiangnan University, 2018. (in Chinese with English abstract)
[20] ?ztürk S, Cerit ?, Mutlu S, et al. Enrichment of cookies with glutathione by inactive yeast cells (): Physicochemical and functional properties[J]. Journal of Cereal Science, 2017, 78: 19-24.
[21] Yi J, Kerr W L. Combined effects of freezing rate, storage temperature and time on bread dough and baking properties[J]. LWT - Food Science and Technology, 2009, 42(9): 1474-1483.
[22] 孟露,劉晗誠,劉雅涵,等. 代謝組和轉錄組學分析工業(yè)面包酵母 () ABY3冷凍脅迫應答機制[J/OL]. 食品科學,[2020-01-14]2020:1-14. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=SPKX2020041600R&v=17WwU59A5kCjiDB%25mmd2B68XkFFc9FiSdlydmZtnyvXegsX6M0rH%25mmd2Bp1sNMuOLO6xGEMPi.
Meng Lu, Liu Hancheng, Liu Yahan, et al. Metabolome and transcriptome analysis of response mechanism of baker's yeast under freeze stress[J]. Food Science, [2020-01-14]2020:1-14. https://kns.cnki.net/kcms/detail/ detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=SPKX2020041600R&v=17WwU59A5kCjiDB%25mmd2B68XkFFc9FiSdlydmZtnyvXegsX6M0rH%25mmd2Bp1sNMuOLO6xGEMPi. (in Chinese with English abstract)
[23] Nguyen C T, Yuan M, Yu J S, et al. Isolation of ice structuring collagen peptide by ice affinity adsorption, its ice-binding mechanism and breadmaking performance in frozen dough[J]. Journal of Food Biochemistry, 2018, 42(3): e12506.
[24] Berglund P T, Shelton D R, Freeman T P. Frozen bread dough ultrastructure as affected by duration of frozen storage and freeze-thaw cycles[J]. Cereal Chemistry, 1991, 68(1): 105-107.
[25] Jia C L, Huang W N, Wu C, et al. Frozen bread dough properties modified by thermostable ice structuring proteins extract from Chinese privet () leaves[J]. Cereal Chemistry, 2012, 89(3): 162-167.
[26] Zhang C, Zhang H, Wang L. Effect of carrot () antifreeze proteins on the fermentation capacity of frozen dough[J]. Food Research International, 2007, 40(6): 763-769.
[27] Chen X, Wu J H, Li L, et al. The cryoprotective effects of antifreeze peptides from pigskin collagen on texture properties and water mobility of frozen dough subjected to freeze–thaw cycles[J]. European Food Research & Technology, 2017, 243(7): 1149-1156.
[28] 湯曉娟. 產胞外多糖酸面團發(fā)酵及其冷凍面團抗凍機理研究[D]. 無錫:江南大學,2019.
Tang Xiaojuan. Sourdough Fermented by Exopolysaccharide Forming Strain: Application and Mechanism Studies in Frozen Dough[D]. Wuxi: Jiangnan University, 2019. (in Chinese with English abstract)
[29] Luo W H, Sun D W, Zhu Z W. Improving freeze tolerance of yeast and dough properties for enhancing frozen dough quality: A review of effective methods[J]. Trends in Food Science & Technology, 2018, 72: 25-33.
[30] Muldrew K, Mcgann L E. Mechanisms of intracellular ice formation[J]. Biophysical Journal, 1990, 57(3): 525-532.
[31] Randez-gil F, Sanz P, Prieto J A. Engineering baker's yeast: Room for improvement[J]. Trends in Biotechnology, 1999, 17(6): 237-244.
[32] 江正強,王怡斯,李里特. 低糖面團用耐冷凍酵母的篩選及其性質[J]. 中國糧油學報,2009,24(6):15-19.
Jang Zhengqiang, Wang Yisi, Li Lite. Screening and characterization of freeze-tolerant yeast[J]. Journal of the Chinese Cereals and Oils Association, 2009, 24(6): 15-19. (in Chinese with English abstract)
[33] 艾羽函. 不同酵母對發(fā)酵速凍面團品質影響及凍藏過程中蛋白質變化的研究[D]. 鄭州:河南農業(yè)大學,2019.
Ai Yuhan. Effects of Different Yeasts on the Quality of Frozen Dough and Protein Changes During Freezing and Storage[D]. Zhengzhou: Henan Agricultural University, 2019. (in Chinese with English abstract)
[34] 李曉軍,徐鵬,欒靜,等. 耐高滲釀酒酵母的代謝流分析[J]. 食品與生物技術學報,2009,28(3):356-360.
Li Xiaojun, Xu Peng, Luan Jing, et al. The metabolic flux analysis of the osmotolerant[J]. Journal of Food Science and Biotechnology, 2009, 28(3): 356-360. (in Chinese with English abstract)
[35] 譚海剛,董健,王光路,等. 中性海藻糖酶基因缺失對面包酵母耐冷凍性的影響[J]. 現代食品科技,2014,30(2):66-71, 16.
Tan Haigang, Dong Jian, Wang Guanglu, et al. Effect of neutral trehalase genes deletion on the freeze-tolerant characteristics of bread yeast[J]. Modern Food Science and Technology, 2014, 30(2): 66-71, 16. (in Chinese with English abstract)
[36] 李娜,繆治煉,邢麗,等. 碳酸氫鈉對酵母細胞活性及冷凍面團品質的影響[J]. 生物加工過程,2020,18(5):642-649.
Li Na, Miu Zhilian, Xing Li, et al. Effects of sodium bicarbonate on yeast cell activity and frozen dough quality[J]. Chinese Journal of Bioprocess Engineering, 2020, 18(5): 642-649. (in Chinese with English abstract)
[37] Li J, Kang J, Wang L, et al. Effect of water migration between arabinoxylans and gluten on baking quality of whole wheat bread detected by magnetic resonance imaging (MRI)[J]. Journal of Agricultural & Food Chemistry, 2012, 60(26): 6507-6514.
[38] Yu W J, Xu D, Zhang H, et al. Effect of pigskin gelatin on baking, structural and thermal properties of frozen dough: Comprehensive studies on alteration of gluten network[J]. Food Hydrocolloids, 2020, 102: 105591-105601.
[39] 王沛. 冷凍面團中小麥面筋蛋白品質劣變機理及改良研究[D]. 無錫:江南大學,2016.
Wang Pei. Gluten Deterioration in Frozen Dough: Mechanism and Improvement Study[D]. Wuxi: Jiangnan University, 2016. (in Chinese with English abstract)
[40] 趙雷. 凍藏對面筋蛋白分子量、鏈結構及聚集態(tài)影響的研究[D]. 廣州:華南理工大學,2012.
Zhao Lei. Study on Effect Frozen Storage on Molecular Weight and Distribution, Chain Conformation and Aggregated State Structure of Gluten[D]. Guangzhou: South China University of Technology, 2012. (in Chinese with English abstract)
[41] Jiang Y L, Zhao Y M, Zhu Y F, et al. Effect of dietary fiber-rich fractions on texture, thermal, water distribution, and gluten properties of frozen dough during storage[J]. Food Chemistry, 2019, 297: 124902-124911.
[42] 王世新,楊強,李新華.水分對冷凍小麥面團質構及面筋蛋白二級結構的影響[J].食品科學,2017,38(09):149-155.
Wang Shixin, Yang Qiang, Li Xinhua. Effect of moisture on texture and gluten protein secondary structure in frozen wheat dough[J]. Food Science, 2017,38(09):149-155. (in Chinese with English abstract)
[43] Ding X L, Zhang H, Wang L, et al. Effect of barley antifreeze protein on thermal properties and water state of dough during freezing and freeze-thaw cycles[J]. Food Hydrocolloids, 2015, 47: 32-40.
[44] Huang L Q, Wan J J, Huang W N, et al. Effects of glycerol on water properties and steaming performance of prefermented frozen dough[J]. Journal of Cereal Science, 2011, 53(1): 19-24.
[45] Barrera G N, Georgina C D, Jorge C P, et al. Evaluation of the mechanical damage on wheat starch granules by SEM, ESEM, AFM and texture image analysis[J]. Carbohydrate Polymers, 2013, 98(2): 1449-1457.
[46] 陶晗. 小麥淀粉在凍藏過程中品質劣變機理及其對面團品質影響的研究[D]. 無錫:江南大學,2017.
Tao Han. Wheat Starch Deterioration during Frozen Storage: Mechanism and Effect on the Quality of Dough[D]. Wuxi: Jiangnan University, 2017. (in Chinese with English abstract)
[47] Kieffer R, Schurer F, K?hler P, et al. Effect of hydrostatic pressure and temperature on the chemical and functional properties of wheat gluten: Studies on gluten, gliadin and glutenin[J]. Journal of Cereal Science, 2006, 45(3): 285-292.
[48] Leray G, Oliete B, Mezaize S, et al. Effects of freezing and frozen storage conditions on the rheological properties of different formulations of non-yeasted wheat and gluten-free bread dough[J]. Journal of Food Engineering, 2010, 100(1): 70-76.
[49] Wang X Y, Guo X N, Zhu K X. Polymerization of wheat gluten and the changes of glutenin macropolymer (GMP) during the production of Chinese steamed bread[J]. Food Chemistry, 2016, 201: 275-283.
[50] Zhu F. Influence of ingredients and chemical components on the quality of Chinese steamed bread[J]. Food Chemistry, 2014, 163: 154-162.
[51] Sapirstein H D, Suchy J. SDS-protein gel test for prediction of bread loaf volume[J]. Cereal Chemistry, 1999, 76(1): 144-150.
[52] Hayta M, Schofield J D. Heat and additive induced biochemical transitions in gluten from good and poor breadmaking quality wheats[J]. Journal of Cereal Science, 2004, 40(3): 245-256.
[53] Zhao L, Li L, Liu G Q, et al. Effect of freeze–thaw cycles on the molecular weight and size distribution of gluten[J]. Food Research International, 2013, 53(1): 409-416.
[54] Jia C L, Huang W N, Rayas-duarte P, et al. Hydration, polymerization and rheological properties of frozen gluten-water dough as influenced by thermostable ice structuring protein extract from Chinese privet () leaves[J]. Journal of Cereal Science. 2014, 59(2): 132-136.
[55] Herbert W. Chemistry of gluten proteins[J]. Food Microbiology, 2006, 24(2): 115-119.
[56] Xuan Y F, Zhang Y, Zhao Y Y, et al. Effect of hydroxypropylmethylcellulose on transition of water status and physicochemical properties of wheat gluten upon frozen storage[J]. Food Hydrocolloids, 2017, 63: 35-42.
[57] Kontogiorgos V, Goff H D, Kasapis S. Effect of aging and ice-structuring proteins on the physical properties of frozen flour-water mixtures[J]. Food Hydrocolloids, 2008, 22(6): 1135-1147.
[58] 朱建. 凍融循環(huán)對小麥HMW-GS近等基因系面筋蛋白的物理性能及結構的影響[D]. 楊凌:西北農林科技大學,2019.
Zhu Jian. Effects of Freeze–thaw Cycles on the Physical and Structural Properties of Wheat Gluten with Variations in the HMW-GS at the Glu-B1 Locus[D]. Yangling: Northwest A&F University, 2019. (in Chinese with English abstract)
[59] Esselink E F J, Vanaalst H, Maliepaard M, et al. Process in dough processing and cereal science from unilever research and development: Long-term storage effect in frozen dough by spectroscopy and microscopy[J]. Cereal Chemistry, 2003, 80(4): 396-403.
[60] Srinivasan D. Refolding of thermally unfolded soy proteins during the cooling regime of the gelation process: Effect on gelation[J]. Journal of Agricultural & Food Chemistry, 1988, 36(2): 262-269.
[61] 柳小軍. 凍藏對面筋蛋白性能的影響及脫水機理研究[D]. 鄭州:河南工業(yè)大學,2011.
Liu Xiaojun. The Studies of Frozen Storage on Gluten Properties and Mechanism of Dehydration[D]. Zhengzhou: Henan University of Technology, 2011. (in Chinese with English abstract)
[62] 孫麗潔. 魚皮抗凍多肽的制備及其提高冷凍面團抗凍性的研究[D]. 無錫:江南大學,2017.
Sun Lijie. Study on the Preparation of Antifreeze Peptide from Fish Skin and Its Cryoprotective Effects on Frozen Doughs[D]. Wuxi: Jiangnan University, 2017. (in Chinese with English abstract)
[63] Yang J J, Zhang B, Zhang Y Q, et al. Effect of freezing rate and frozen storage on the rheological properties and protein structure of non-fermented doughs[J]. Journal of Food Engineering, 2021, 293: 110377-110384.
[64] 袁永利. GOD和TGase在冷凍面團中的應用研究[D]. 無錫:江南大學,2007.
Yuan Yongli. Studies on the Application of GOD and TGase in Frozen Doughs[D]. Wuxi: Jiangnan University, 2007. (in Chinese with English abstract)
[65] 史爽. Ana-rLOX和rGOx-m對冷凍非發(fā)酵面團的品質影響及其對冷凍面條的應用研究[D]. 南京:南京農業(yè)大學,2015.
Shi Shuang. Effect of Ana-rLOX and rGOx-m on Frozen Non-fermented Dough Quality and Its Application on Frozen Noodles[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese with English abstract)
[66] Tang X, Wang F, Huang W, et al. The combination of rhizopus chinensis lipase and transglutaminase affects the rheology and glutenin macropolymer properties of frozen dough[J]. Cereal Chemistry, 2016, 93: 377-385.
[67] Ban C, Yoon S, Han J, et al. Effects of freezing rate and terminal freezing temperature on frozen croissant dough quality[J]. LWT - Food Science and Technology, 2016, 73: 219-225.
[68] 龔維,吳磊燕,鐘雅云,等. 刺槐豆膠對冷凍面團水分分布及面包品質的影響[J]. 現代食品科技,2018,34(12):67-73.
Gong Wei, Wu Leiyan, Zhong Yayun, et al. Effect of locust bean gum on water distribution and bread quality of frozen dough[J]. Modern Food Science and Technology, 2018, 34(12): 67-73. (in Chinese with English abstract)
[69] Tang X J, Zhang B L, Huang W N, et al. Hydration, water distribution and microstructure of gluten during freeze thaw process: Role of a high molecular weight dextran produced by Weissella confusa QS813[J]. Food Hydrocolloids, 2019, 90: 377-384.
[70] Zhang Y Y, Li Y L, Liu Y, et al. Effects of multiple freeze–thaw cycles on the quality of frozen dough[J]. Cereal Chemistry, 2018, 95(4): 499-507.
[71] 賈春利. 熱穩(wěn)定冰結構蛋白提高冷凍面團體系抗凍性的機制研究[D]. 無錫:江南大學,2013.
Jia Chunli. Studies on Cryoprotective Characteristics of Frozen Doughs Using Thermostable Ice Structuring Protein[D]. Wuxi: Jiangnan University, 2013. (in Chinese with English abstract)
[72] 汪星星. 凍融凍藏過程中三種食品膠對面筋蛋白結構影響的研究[D]. 廣州:華南農業(yè)大學,2016.
Wang Xingxing. Effect of Hydrocolloids on Protein Structure of Gluten during Freeze-thaw Cycles Storage[D]. Guangzhou: South China Agricultural University, 2016. (in Chinese with English abstract)
[73] 丁香麗. 大麥籽??箖龅鞍椎闹苽浼翱箖龌|的研究[D]. 無錫:江南大學,2015.
Ding Xiangli. Study on the Preparation and the Antifreeze Mechanism of Antifreeze Protein from Barley ()[D]. Wuxi: Jiangnan University, 2015. (in Chinese with English abstract)
[74] Chen X, Wu J H, Li L, et al. The cryoprotective effects of antifreeze peptides from pigskin collagen on texture properties and water mobility of frozen dough subjected to freeze–thaw cycles[J]. European Food Research and Technology, 2017, 243: 1149-1156.
[75] 周一鳴,張亞園,呂欣東,等. 復合改良劑對后發(fā)酵饅頭冷凍面團凍藏品質的影響[J]. 農業(yè)工程學報,2020,36(16):274-282.
Zhou Yiming, Zhang Yayuan, Lv Xindong, et al. Effect of compound quality improver on the frozen quality of frozen dough for steamed bread[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(16): 274-282. (in Chinese with English abstract)
[76] Barrera G N, León A E, Ribotta P D. Use of enzymes to minimize the rheological dough problems caused by high levels of damaged starch in starch-gluten systems.[J]. Journal of the Science of Food and Agriculture, 2016, 96(7): 2539-2546.
[77] Ma S, Li L, Wang X X, et al. Effect of mechanically damaged starch from wheat flour on the quality of frozen dough and steamed bread[J]. Food Chemistry, 2016, 202: 120-124.
[78] Irene S-G M, Benjamín R-W, Isabel T-C P, et al. Effect of freezing rate and storage on the rheological, thermal and structural properties of frozen wheat dough starch[J]. Starch - St?rke, 2016, 68(11/12): 1103-1110.
[79] Tao H, Wang P, Ali B, et al. Fractionation and reconstitution experiments provide insight into the role of wheat starch in frozen dough[J]. Food Chemistry, 2016, 190: 588-593.
[80] León A E, Barrera G N, Pérez G T, et al. Effect of damaged starch levels on flour-thermal behaviour and bread staling[J]. European Food Research & Technology, 2006, 224(2): 187-192.
[81] 忻晨. 不同結構羧甲基纖維素鈉影響冷凍面團品質及其機制探究[D]. 武漢:華中農業(yè)大學,2018.
Xi Chen. Effect on Sodium Carboxymethyl Cellulose with Different Structures on Quality of Frozen Dough and Its Mechanism[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese with English abstract)
[82] Nicolas Y, Smit R J M, Aalst H V, et al. Effect of storage time and temperature on rheological and microstructural properties of gluten[J]. Cereal Chemistry, 2003, 80(4): 371-377.
[83] 潘志琴. 漆酶協同阿魏酸對小麥面團微觀結構及凍藏穩(wěn)定性的影響機制[D]. 廣州:華南理工大學,2019.
Pan Zhiqin. Effect of Laccase and Ferulic Acid on the Microstructure and Frozen Stability of Wheat Dough[D]. Guangzhou: South China University of Technology, 2019. (in Chinese with English abstract)
[84] Song Y H, Zheng Q. Dynamic rheological properties of wheat flour dough and proteins[J]. Trends in Food Science & Technology, 2007, 18(3): 132-138.
[85] Adams V, Ragaee S M, Abdel-Aal E-S M. Rheological properties and bread quality of frozen yeast-dough with added wheat fiber[J]. Journal of the Science of Food and Agriculture, 2017, 97(1): 191-198.
[86] Jasim A, Linu T, Al-Hazza A. Effects of frozen storage on texture, microstructure, water mobility and baking quality of brown wheat flour/-glucan concentrate Arabic bread dough[J]. Journal of Food Measurement and Characterization, 2020, 15(4): 1258-1269.
[87] Li M, Sun Q J, Han C W, et al. Comparative study of the quality characteristics of fresh noodles with regular salt and alkali and the underlying mechanisms[J]. Food Chemistry, 2018, 246: 335-342.
[88] Selomulyo V O, Zhou W B. Frozen bread dough: Effects of freezing storage and dough improvers[J]. Journal of Cereal Science, 2007, 45(1): 1-17.
[89] Havet M, Mankai M, Bail A L. Influence of the freezing condition on the baking performances of French frozen dough[J]. Journal of Food Engineering, 2000, 45(3): 139-145.
[90] Lefebvre J, Mahmoudi N. The pattern of the linear viscoelastic behaviour of wheat flour dough as delineated from the effects of water content and high molecular weight glutenin subunits composition[J]. Journal of Cereal Science, 2007, 45(1): 49-58.
[91] Meerts M, Cardinaels R, Oosterlinck F, et al. The impact of water content and mixing time on the linear and non-linear rheology of wheat flour dough[J]. Food Biophysics, 2017, 12(2): 151-163.
[92] Gómez M, Del Real S, Rosell C M, et al. Functionality of different emulsifiers on the performance of breadmaking and wheat bread quality[J]. European Food Research and Technology, 2004, 219(2): 145-150.
[93] 周錦楓,吳磊燕,鐘雅云,等. 三種甘油酯對冷凍面團及其面包品質的對比分析[J]. 現代食品科技,2020,36(3):38-47, 112.
Zhou Jinfeng, Wu Leiyan, Zhong Yayun, et al. Comparative analysis of three glycerides on the quality of frozen dough and bread[J]. Modern Food Science and Technology, 2020, 36(3): 38-47, 112. (in Chinese with English abstract)
[94] Michal H. Effects of trehalose and dough additives incorporating enzymes on physical characteristics and sensory properties of frozen savory danish dough[J]. LWT-Food Science and Technology, 2017, 86: 603-610.
[95] Thuy N T T, Phuong N N M. Improving of bread quality from frozen dough using ascorbic acid and α-amylase[J]. Can Tho University Journal of Science, 2017, 6: 121-126.
[96] 王亞楠,侯召華,檀琮萍,等. 變性淀粉對冷凍面團面包焙烤特性的影響[J]. 糧食與油脂,2017,30(8):81-83.
Wang Yanan, Hou Zhaohua, Tan Congping, et al. Effect of modified starch on baking properties of frozen dough bread[J]. Cereals & Oils, 2017, 30(8): 81-83. (in Chinese with English abstract)
[97] 王亞楠,侯召華,檀琮萍,等. 變性淀粉對冷凍面團水分特性的影響[J]. 糧食與油脂,2017,30(6):63-65.
Wang Yanan, Hou Zhaohua, Tan Congping, et al. Effect of modified starch on water characteristics of frozen dough[J]. Cereals & Oils, 2017, 30(6): 63-65. (in Chinese with English abstract)
[98] Wang P, Tao H, Jin Z Y, et al. Impact of water extractable arabinoxylan from rye bran on the frozen steamed bread dough quality[J]. Food Chemistry, 2016, 200: 117-124.
[99] Bea W, Lee B, Hou G G, et al. Physicochemical characterization of whole-grain wheat flour in a frozen dough system for bake off technology[J]. Journal of Cereal Science, 2014, 60(3): 520-525.
[100] Kenny S, Wehrle K, Auty M, et al. Influence of sodium caseinate and whey protein on baking properties and rheology of frozen dough[J]. Cereal Chemistry, 2001, 78(4):458-463.
[101] 杜浩冉,鄭學玲,韓小賢,等.冷凍條件和解凍方式對酵子冷凍面團饅頭品質的影響[J].糧食與飼料工業(yè),2015 (05):14-18.
Du Haoran, Zheng Xueling, Han Xiaoxian, et al. Effects of freezing conditions and thawing methods on the qualities of emptins frozen dough for steamed bread[J]. Cereal & Feed Industry, 2015(05):14-18. (in Chinese with English abstract)
[102] 潘振興. 冷凍保護劑影響冷凍面團發(fā)酵與烘焙特性的研究[D]. 無錫:江南大學,2008.
Pan Zhenxing. Study on the Effects of Cryoprotectants on the Fermentation and Baking Characteristics of Frozen Dough[D]. Wuxi: Jiangnan University, 2008. (in Chinese with English abstract)
[103] Rasanen J, Harkonen H, Autio K. Freeze-thaw stability of prefermented frozen lean wheat dough: Effect of flour quality and fermentation time[J]. Cereal Chemistry, 1995, 72(6): 637-642.
Research progress in the deterioration and improvement of frozen dough quality
Yuan Tingting, Zhang Xu, Xiang Xiaoqing, Chang Yidan, Niu Meng※, Zhang Binjia, Jia Caihua, Xu Yan, Zhao Siming
(,430070,)
Frozen dough technology has widely been used beyond family bread production at present. The procedures of dough making and baking have therefore been separated to effectively extend the shelf life of bread, while free of starch aging to ensure the freshness for the convenience of transport and consumption of dough products. Therefore, the technology has been rapidly developed to promote the chain operation of the baking industry in the world. Meanwhile, it is necessary to explore the efficient improvement in response to the frozen dough being easy to deteriorate, due to the formation of ice crystals under freezing storage. This study aims to systematically review the degradation mechanism of frozen dough from the following aspects: the yeast activity and gas production, the changes of key components (such as gluten protein, water distribution, and damaged starch), the microstructure of gluten protein, as well as the rheological properties of frozen dough. The improvement of frozen dough was covered ranging from the freezing technology, the screening of antifreeze yeast, together with the addition of enzyme preparation, antifreeze agents, and emulsifiers. In freezing, the yeast activity and gas production decreased, resulting from the changes in the cell membrane of yeast. The screening of antifreeze yeast effectively strengthened the activity of yeast for a higher quality of frozen dough. Nevertheless, the structure of gluten protein was deteriorated, due to the formation of ice crystals. Specifically, the content of glutenin macromolecular polymer was significantly reduced, and the content of soluble protein increased. The elasticity and hardness of dough relied mainly on the depolymerization of glutenin macromolecular polymer, further on the break of the disulfide bond. Non-covalent bond was also involved in the polymerization of gluten protein. The surface hydrophobicity of gluten protein increased during the frozen storage, where the aggregation state of gluten protein molecular was destroyed to rearrange the gluten protein structure with the exposure of hydrophobic sites. In frozen storage, the secondary structure in gluten protein also changed significantly to damage the whole structure, where there were some changes in the content of-helix and-sheet orderly structure, while an increase in the anti-parallel-sheet, and-turns disorderly structure. As such, the enzyme preparations were used to enhance the structure of gluten protein. The water in the frozen dough was redistributed due to the recrystallization of ice crystals, where the spatial conformation rearrangement of gluten protein was caused by the change of disulfide and non-covalent bond. Thus, the interaction between tightly bound water and gluten protein was weakened, and the water holding capacity of gluten protein decreased. Correspondingly, food gums and antifreeze agents were added to prevent the formation of large ice crystals caused by water migration. Damaged starch transferred the water in gluten protein, and further weakened the interaction between starch granules and gluten protein, indicating an adverse influence on the gluten structure and processing characteristics of dough. The modified starch was generally added to enhance the water holding of dough for the better quality of frozen dough. These approaches contributed to preventing the deterioration of gluten structure, while enhancing the viscoelastic properties of frozen dough. The emulsifier was used to reduce water migration resistance to starch aging. The improvement of freezing technology was a benefit to the antifreeze effect of dough and the less sensitivity of yeast. This review can provide a promising theoretical basis and practical reference to inhibit the quality deterioration of frozen dough. The efficient improvement technology was also evaluated from three key factors, including the fermentation characteristics, the structure of gluten, and the state of water.
freezing; quality control; frozen dough; gluten protein; water distribution; protein structure; yeast activity
袁婷婷,張栩,向小青,等. 冷凍面團品質劣變及改良研究進展[J]. 農業(yè)工程學報,2021,37(8):296-306.doi:10.11975/j.issn.1002-6819.2021.08.034 http://www.tcsae.org
Yuan Tingting, Zhang Xu, Xiang Xiaoqing, et al. Research progress in the deterioration and improvement of frozen dough quality[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(8): 296-306. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.08.034 http://www.tcsae.org
2020-12-16
2021-04-12
國家重點研發(fā)計劃項目(2018YFC1604001)
袁婷婷,博士生,研究方向:食品大分子結構與功能特性。Email:794845173@qq.com
牛猛,博士,副教授,研究方向:食品大分子結構與功能特性。Email:nmjay@mail.hzau.edu.cn
10.11975/j.issn.1002-6819.2021.08.034
TS213.2
A
1002-6819(2021)-08-0296-11