余衛(wèi)東,馮利平
小時和日步長熱時對夏玉米生育期模擬的影響
余衛(wèi)東1,2,馮利平2※
(1. 中國氣象局/河南省農業(yè)氣象保障與應用技術重點實驗室,鄭州 450003;2. 中國農業(yè)大學資源與環(huán)境學院,北京 100193)
熱時是模擬和預測作物生育期的重要參數(shù),而小時步長熱時與日步長熱時之間存在差異。該研究利用鄭州農業(yè)氣象試驗站2005-2018年逐小時氣溫數(shù)據(jù)和同期夏玉米生育期觀測資料,南陽、獲嘉和黃泛區(qū)農場2012-2013年玉米分期播種生育期資料和逐時氣溫數(shù)據(jù),選擇線性模型、Logistic模型和Wang-Engel(WE)模型3種作物生育速率溫度響應模型,結合玉米三基點溫度,分別計算了各模型中夏玉米出苗、拔節(jié)、開花和成熟期的小時步長熱時和日步長熱時的累積值,比較這3種模型的小時步長熱時與日步長熱時對玉米生育期的模擬效果。結果表明:在夏玉米生長期內,3個溫度模型的逐日熱時整體上表現(xiàn)為日步長熱時大于小時步長熱時,氣溫日變化是造成這種差異的直接原因。日平均氣溫達到作物生長最適溫度附近時,小時步長熱時與日步長熱時的日差異最大值可達9.7 ℃·d(線性)、9.1 ℃·d(Logistic)和7.4 ℃·d(WE)。線性模型在拔節(jié)期、開花期的日步長熱時累積比小時步長熱時顯著偏多(<0.05),Logistic模型在拔節(jié)、開花和成熟期的日步長熱時累積也比小時步長熱時顯著偏多(<0.05),而WE模型在各生育期均無顯著性差異。在同一溫度模型條件下,日步長熱時與小時步長熱時的生育期模擬差異不大于1 d,生育期時長模擬差異不大于2 d。小時步長熱時沒有顯著提高夏玉米生育期模擬精度。
溫度;作物;模型;小時;生育期;熱時;夏玉米
物候期是反映作物生長發(fā)育進程的重要標志,它決定著同化產物向不同器官的分配比例、產量和品質形成以及農田管理的適宜時間[1-3]。物候期模擬和預測結果對作物產量的構成與估算精度至關重要,也直接影響作物模型的模擬效果[4-5]。溫度是影響作物生長發(fā)育速度的關鍵因子,作物正常生長不僅需要一定的環(huán)境溫度,還需要一定的熱量累積才能完成相應的生長周期[6-7],而發(fā)育過程模擬多以熱時(或積溫)作為參數(shù)[8-10]。由于作物發(fā)育速率與溫度存在非線性關系,尤其是在高溫條件下,不同溫度響應模型差異明顯[11-13],作物完成某個發(fā)育階段所需的熱量累積值并非常數(shù),導致物候期模擬存在偏差。針對這一不足,許多學者開展了不同基點溫度、不同溫度響應模型的比較及其改進工作[14-15]。
日平均溫度是計算熱量累積的基礎。常用4次定時觀測值或最高、最低溫度計算日平均溫度。但當晝夜溫差較大時,這兩種算法的結果與實際日平均溫度存在明顯誤差[16]。不少學者提出了一些改進算法,諸如三小時等間距平均[17]、考慮氣溫日變化規(guī)律的正弦、指數(shù)函數(shù)法等[18-19],進一步減少了計算結果與實際日平均氣溫之間的差異。
隨著觀測儀器、計算機和通信技術的迅速發(fā)展,氣象要素逐小時(甚至更高頻次)采集和存儲變得越來越容易[20-21],這為精確模擬作物及其生長環(huán)境的定量關系提供了有力的數(shù)據(jù)支撐,且已經應用于參考作物蒸散發(fā)校正[22-23]等方面。Purcell[24]比較了2種線性模型小時步長和日步長在不同溫度條件下熱量累積的差異,認為對一年生喜溫作物而言,小時步長的溫度資料并沒有提高熱時的計算精度。蔡冠勛等[25]的研究結果表明,當日平均氣溫接近水稻生物學下限溫度時,用小時尺度的有效積溫預測早稻出苗更為有效。這些研究所用數(shù)據(jù)仍是基于最高、最低氣溫的模擬值,而小時步長熱時用于生育期模擬的實證研究尚不多見。不同溫度響應模型下小時步長熱時與日步長熱時存在差異,與日步長熱時相比,小時步長熱時穩(wěn)定性以及對生育期的模擬精度能否提高等方面仍需要進一步驗證。為此,本研究基于逐小時氣溫觀測數(shù)據(jù)和同期夏玉米生育期資料,依據(jù)作物發(fā)育速率與溫度響應關系的3種模型,結合玉米三基點溫度參數(shù),分析不同發(fā)育階段的小時步長和日步長熱時累積差異規(guī)律,分別基于2種步長熱時模擬夏玉米出苗、拔節(jié)、開花和成熟4個主要生育期,基于評價指標比較不同步長熱時對生育期和生育期時長的模擬效果,以期為提高作物生育期模擬精度提供可靠思路。
選取鄭州農業(yè)氣象試驗站2005-2018年逐小時氣溫數(shù)據(jù)以及同期的夏玉米生育期觀測資料。該站土壤為沙壤土,0~50 cm平均土壤容重1.46g/cm3,田間持水量19.2%,凋萎濕度4.0%,有機質12.7 g/kg,速效氮111.3 g/kg,速效磷45.8 g/kg,速效鉀129.0 g/kg。由于鄭州站不同年份夏玉米品種不一致,為了消除品種影響并對比相同熱時條件下單一品種和多品種玉米生育期模擬差異,另外選取了南陽、獲嘉和黃泛區(qū)農場2012-2013年的夏玉米單一品種分期播種資料及對應的逐小時氣溫數(shù)據(jù),上述4個站點、玉米品種和播種期信息見表1。由于本研究中夏玉米最早播種期為5月25日,最晚成熟期為9月28日。因此,統(tǒng)計分析的氣象數(shù)據(jù)時段為每年的5月21日-9月30日。選用的夏玉米主要生育期為播種、出苗、拔節(jié)、開花和成熟5個關鍵期。
表1 站點、作物品種及播種期
1.2.1 熱時計算方法
分別選用線性模型[5]、Logistic模型[26]和Wang-Engel(WE)模型[27]模擬作物生長發(fā)育速率對溫度的響應。當溫度低于基礎溫度(b,℃)或高于最高溫度(cd,℃)時,發(fā)育速率為0;從b到最適溫度(opt,℃),發(fā)育速率從0到1線性增長(線性模型)或非線性增長(WE模型和Logistic模型);從opt到cd,發(fā)育速率線性或非線性下降。參考文獻[28],玉米三基點溫度b=8.0 ℃,opt=30 ℃,cd=40 ℃。
這三種模型如式(1)~式(3)所示:
1)線性模型[5]
2)WE模型[28]
為作物對溫度的反應系數(shù),由三基點溫度確定。
3)Logistic 模型[27]
式(1)~式(3)中()為日步長或小時步長相對發(fā)育速率;為對應于日步長或小時步長的日平均氣溫或逐小時氣溫,℃;和是常數(shù),根據(jù)本文選定的三基點溫度得出,當b<≤opt時=0.34和=7.30;當opt<≤cd時=?36.76和=?0.92。采用每天24時次定時氣溫的算術平均值表示日平均氣溫。
根據(jù)以上分析,基于日平均溫度的日步長熱時(DTU,℃·d)和基于逐小時氣溫計算的熱時的日平均值作為小時步長熱時(HTU,℃·d)為
DTU=(opt?b)·() (4)
1.2.2 日長影響函數(shù)
玉米屬短日照作物,出苗至開花階段的發(fā)育速率除了受溫度影響以外,日長也是影響因素之一。參考鄭國清等[8]研究結果,采用如下日長影響函數(shù)對出苗-開花階段的熱時進行逐日訂正。
式中為品種感光性參數(shù),取值0.005;L為逐日日長,h;0為臨界日長,取值12.5 h。
1.2.3 生育期數(shù)據(jù)處理方法
首先把每年的播種、出苗、拔節(jié)、開花和成熟期的日期轉換為日序(1月1日日序為1,12月31日日序為365),然后對相同生育期的日序求平均得到多年平均值。其中鄭州站為14 a的平均,其余3站合并計算2 a 3個播期的平均值。
1.2.4 評價方法
用變異系數(shù)(C)和極差(R)反映不同時間步長熱時年際間的穩(wěn)定性。用均方根誤差(Root-mean-square Error,RMSE)、標準化均方根誤差(Normalized RMSE,NRMSE)和平均絕對誤差(Mean Absolute Error,MAE)[7]評價生育期模擬值與觀測值之間的差異。
用SPSS 17.0進行單因素方差分析,顯著性檢驗采用最小顯著法(Least Significant Different,LSD),利用Microsoft Excel 2010作圖。
2.1.1 基于三種模型的小時步長熱時與日步長熱時比較
以鄭州站為例,基于日平均氣溫和逐小時氣溫分別采用三種模型計算日步長熱時和小時步長熱時。在不同日平均氣溫情形下,利用散點圖分別比較三種模型2種步長熱時的差異(圖1)。
由圖1可知,三種模型計算的日步長熱時均大于小時步長熱時。日步長與小時步長的熱時差異在日平均氣溫30 ℃附近最為明顯,二者之間的最大差值分別為9.7 ℃·d(線性)、9.1 ℃·d(Logistic)和7.4 ℃·d(WE)。對日步長熱時與小時步長熱時進行相關分析表明,采用WE模型計算得到的2種熱時相關系數(shù)=0.963,RMSE為1.42 ℃·d;而Logistic和線性模型的2種熱時相關系數(shù)分別為0.903和0.859,RMSE都為2.03 ℃·d??梢?,WE模型的日步長熱時與小時步長熱時最為接近。
2.1.2 小時步長熱時與日步長熱時差異分析
為進一步分析小時步長熱時與日步長熱時差異的主要分布區(qū)間及其差異,將日平均氣溫以5 ℃為間隔進行區(qū)間劃分,統(tǒng)計夏玉米生長期間日平均氣溫在各區(qū)間出現(xiàn)頻率,同時計算在該溫度范圍內日步長熱時與小時步長熱時差異絕對值的平均值(表2)。
表2 鄭州站日步長熱時和小時步長熱時差異分段比較
2005-2018年鄭州農業(yè)氣象試驗站夏玉米生長期內日平均氣溫12.6~34.3 ℃。從表2可以看出,近80%的日平均氣溫分布在20.0~30.0 ℃之間,基于三種模型獲得的日步長熱時與小時步長熱時差異的絕對值0~1.5 ℃·d。在日平均氣溫<20.0 ℃時差異相對較小,基于三種模型獲得的二者間差異均不足1.0 ℃·d。當日平均氣溫>30 ℃,日步長熱時與小時步長熱時差值增大,基于3種模型獲得的日步長熱時比小時步長熱時平均高2.2~3.6 ℃·d,出現(xiàn)頻率13.9 %。
兒童慢性病不僅對患兒自身及其父母的社會心理功能產生消極的影響,還影響著他們之間的關系乃至整個家庭系統(tǒng)[25]。對慢性病患兒及其家庭提供有效的心理社會干預十分必要,不僅能有效解決患兒和父母的心理社會功能障礙,還可以減少患兒的住院時間、降低醫(yī)療費用,帶來健康、經濟以及社會效益[26]。
以WE模型的結果為例,選擇日步長熱時與小時步長熱時之差最大和最小的2個典型日期,深入分析日步長熱時與小時步長熱時差值形成的原因(圖2)。采用式(1)~式(3)計算相對發(fā)育速率。圖2a日平均氣溫為30.9 ℃,日最高氣溫為40.0 ℃,日最低氣溫為22.0 ℃,相對發(fā)育速率為0.99,日步長熱時為 21.8 ℃·d。由于氣溫存在日變化,21:00—09:00的氣溫小于最適溫度,相對發(fā)育速率在0.68~1.00之間;10:00—20:00逐小時氣溫大于最適溫度,且12:00—18:00逐小時氣溫持續(xù)在35 ℃以上,高溫使溫度有效性下降,相對發(fā)育速率在0~0.54之間。該日小時熱時累積值為347.4 ℃·h,小時步長熱時為14.5 ℃·d,比日步長熱時少7.4 ℃·d。圖2b日平均氣溫為25.1 ℃,日最高氣溫為29.9 ℃,日最低氣溫為24.1 ℃,相對發(fā)育速率為0.86,日步長熱時為19.0 ℃·d;全天逐小時溫度處于基礎溫度和最適溫度之間,相對發(fā)育速率處于0.80~0.93之間,小時熱時累積值為436.0 ℃·h,小時步長熱時為18.9 ℃·d,僅比日步長熱時少0.1 ℃·d。
綜上,若日平均氣溫在最適溫度附近,當天相對發(fā)育速率接近1,日步長熱時接近22.0 ℃·d;由于氣溫存在日變化,小時氣溫在最適溫度附近波動,尤其是夏玉米生育期內小時氣溫高于最適溫度的頻率較大(21.6%),導致相對發(fā)育速率下降,從而使日步長熱時大于小時步長熱時。而當日平均氣溫在基礎溫度與最適溫度之間,且逐小時氣溫也多處于該區(qū)間時,當日的相對發(fā)育速率與逐小時的相對發(fā)育速率接近,因此日步長熱時和小時步長熱時之間差異較小。
2.2.1 夏玉米不同發(fā)育階段熱時比較
由于鄭州站是多個品種的生育期觀測數(shù)據(jù),而南陽、獲嘉和黃泛區(qū)農場3站的夏玉米品種相同,為比較品種因素對不同步長熱時的影響,本研究對鄭州站熱時單獨計算,而對其他3站進行合并處理(表3)。
表3 不同發(fā)育階段小時和日步長熱時比較
注:HTUt、HTUl和HTUw分別表示線性、Logistic和WE模型的小時步長熱時,DTUt、DTUl和DTUw則表示對應的日步長熱時,下同。
Note: HTUt, HTUland HTUware hourly thermal-units of line model, Logistic model and WE model, respectively, DTUt, DTUland DTUware daily thermal-units of line model, Logistic model and WE model, respectively, the same as below.
基于鄭州農業(yè)氣象試驗站2005-2018年夏玉米田間觀測數(shù)據(jù)和南陽、獲嘉、黃泛區(qū)農場2012-2013年的分期播種生育期資料,分別統(tǒng)計播種至出苗、拔節(jié)、開花和成熟的日步長熱時和小時步長熱時,并計算其平均值、變異系數(shù)和極差。表3中鄭州站的均值為14 a平均,極差為2005-2018年中最大值和最小值之間的差異,其他站熱時是按相同生育期求算的3個站點2 a 3個播期的平均值。
從表3中可以看出,采用不同模型獲得的熱時存在差異。無論是鄭州站還是其他站,夏玉米各階段采用Logistic模型獲得的熱時均大于采用WE模型獲得的熱時,而采用線性模型計算的熱時最小。
鄭州站全生育期小時步長熱時累積值比日步長熱時偏少109.2 ℃·d(WE)~145.4 ℃·d(Logistic),全生育期多年平均值為102.2 d,平均每日偏少1 ℃·d。其他站全生育期小時步長熱時累積值比日步長熱時偏少119.0 ℃·d(WE)~171.9 ℃·d(Logistic),全生育期平均值為102.5 d,平均每日偏少1.2~1.7 ℃·d。
分別對4個發(fā)育階段的變異系數(shù)和極差求平均,鄭州站和其他站3種溫度模型熱時的C和極差都表現(xiàn)為小時步長熱時小于日步長熱時,小時步長熱時極差的總平均值比日步長熱時減少20.0℃·d,V下降0.4個百分點,這說明小時步長熱時的穩(wěn)定性整體上好于日步長熱時。方差分析表明,鄭州站和其他站都表現(xiàn)為拔節(jié)期和開花期時,線性模型和Logistic模型的日步長熱時顯著高于小時步長熱時(<0.05),成熟期時Logistic模型的日步長熱時顯著高于小時步長熱時(<0.05),而WE模型在各生長階段日步長熱時與小時步長熱時均無顯著差異(>0.05)。
2.2.2 夏玉米生育期模擬效果比較
分別統(tǒng)計3個夏玉米品種播種-出苗、出苗-拔節(jié)、拔節(jié)-開花、開花-成熟的日步長熱時和小時步長熱時累積值(表4),并以此為參數(shù),以實際播種日期為熱時累加開始日期,當累積熱時達到某發(fā)育階段所需熱時指標時,則認為夏玉米進入該發(fā)育階段。
表4 日長訂正后的不同玉米品種各發(fā)育階段熱時
根據(jù)生育期的模擬值和觀測值,分別計算3種溫度模型評價指標(表5)。表中觀測平均值和模擬平均值是以日序表示生育期。從中可以看出,無論是鄭州站還是其他站,溫度模型相同時,基于日步長熱時和小時步長熱時的生育期模擬結果非常接近,兩類熱時對同一生育期模擬的平均值相差均不超過1 d。按相同熱時類型,將所有站點合并求得4個生育期模擬的平均值,結果顯示基于小時步長熱時的RMSE、NRMSE和MAE分別為4.3 d、1.98%和3.5 d,基于日步長熱時的對應指標分別為4.3 d、2.01%和3.6 d。綜上可知,與日步長熱時相比,小時步長熱時雖然在一定程度提高了對夏玉米生育期的模擬精度,但提高幅度非常有限(≤1 d)。
按照相同溫度模型,合并計算4個生育期模擬精度的平均值,分析3個溫度模型之間的差異,可知RMSE分別為3.7 d(WE)、3.9 d(Logistic)和5.1 d(線性),對應的NRMSE分別為1.66%、1.77%和2.50%。無論是日步長熱時還是小時步長熱時,模擬精度總體上都表現(xiàn)為WE最高、Logistic其次、線性模型最低。
從不同發(fā)育時段來看,各溫度模型的模擬誤差均隨發(fā)育進程而增加,成熟期RMSE、NRMSE和MAE的值都大于開花期、拔節(jié)期和出苗期,這可能與生育期模擬誤差的累積有關。
表5 夏玉米生育期模擬比較
注:RMSE為均方根誤差,NRMSE為標準化均方根誤差,MAE為平均絕對誤差。下同。
Note: RMSE, root mean square error, NRMSE, normalized RMSE, MAE, mean absolute error. Same as below.
2.2.3 夏玉米生育期時長模擬效果比較
在生育期模擬結果的基礎上,進一步分析3個溫度模型條件下2種熱時形式對生育期時長模擬效果(表6)。夏玉米播種-出苗、出苗-拔節(jié)、拔節(jié)-開花和開花-成熟發(fā)育時長鄭州站多年平均值分別為6.6、27.4、22.3和45.9 d,而3個分期播站種平均值分別為6.4、29.4、20.3和46.4 d,二者之間生育期時長最大差異不大于2 d,表明鄭州站與其余站的生育期時長相差不大。
與生育期模擬結果類似,在相同溫度模型條件下,2種熱時對同一發(fā)育時長的模擬值也比較接近,二者差值總體上不超過2 d。按相同熱時將所有品種合并求4個發(fā)育時長模擬的平均值,結果顯示基于小時步長熱時累積值參數(shù)的RMSE、NRMSE和MAE分別為3.4 d、15.5%和2.7 d,對應小時步長熱時的指標分別為3.4 d、15.6%和2.8 d。與日步長熱時模擬相比,小時步長熱時僅使NRMSE和MAE分別減少0.1個百分點和0.1 d。由此可見小時步長熱時對提高夏玉米生育期時長的模擬精度也非常有限。
3個溫度模型對各生育期時長模擬精度總體上WE模型最好,其次為Logistic模型,最后為線性模型,其RMSE分別為3.1 d(WE)、3.3 d(Logistic)和3.9 d(線性),對應的NRMSE分別為14.34%(WE)、14.66%(Logistic)和17.74%(線性)。另外,生育期時長的模擬精度也隨發(fā)育時段變化,開花-成熟期的誤差大于其他時段,該生育期時長模擬值的RMSE和MAE均高于其余生育期時長,其RMSE為4~10 d,MAE為3~10 d,而其余生育期時長的RMSE為1~5 d,MAE為1~4 d。
表6 夏玉米各生育期時長模擬比較
依據(jù)作物發(fā)育速率與溫度響應關系的線性模型、Logistic模型和WE模型,結合玉米三基點溫度參數(shù),分別計算并對比分析了3個模型的小時步長熱時和日步長熱時差異規(guī)律。研究表明,在夏玉米生長期內,總體上小時步長熱時小于等于日步長熱。當日平均氣溫處于基礎溫度與最適溫度之間,小時步長熱時與日步長熱之間差值隨氣溫升高而增大;日平均氣溫大于最適溫度時,小時步長熱時與日步長熱差值隨氣溫升高而逐漸減小,這與Cesaraccio等[29]和Purcell[24]研究結論相同。通過分析典型日期逐小時熱時,表明氣溫日變化是造成二者差異的直接原因。即日平均氣溫接近基點溫度時,氣溫的波動會出現(xiàn)大于和小于基點溫度的時段,導致逐小時相對發(fā)育速率與當日相對發(fā)育速率之間的差異,從而引起日步長熱和小時步長熱時之間的差異。日平均氣溫在最適溫度附近時,二者之間最大差值分別可達9.7 ℃·d(線性)、9.1 ℃·d(Logistic)和7.4 ℃·d(WE)。
與線性模型相比,非線性模型更好地反映了作物生長對溫度的響應關系[4,13]。本文對夏玉米生育期和生育期時長的模擬效果顯示,無論是日步長熱還是小時步長熱時,模擬精度總體上都表現(xiàn)為WE模型最好,其次為Logistic模型,最后為線性模型。3個溫度模型的小時步長熱時與日步長熱時相關性分析也表明WE模型中二者相關系性最好,=0.963,RMSE=1.42 ℃·d;Logistic模型=0.903,線性模型=0.859,RMSE都為2.03 ℃·d。線性模型在拔節(jié)期、開花期的日步長熱比小時步長熱時顯著偏多(<0.05);Logistic模型在拔節(jié)、開花和成熟期的日步長熱均比小時步長熱時顯著偏多(<0.05),而WE模型在各生育期均無顯著性差異。
逐小時氣溫資料并沒有顯著提高夏玉米生育期模擬精度?;?個品種2種熱時指標對夏玉米生育期及生育期時長進行模擬,雖然小時步長熱時在、R、RMSE、NRMSE和MAE等方面低于日步長熱時,但在同一溫度模型條件下,2種熱時對生育期的模擬最大差異不超過1 d,對生育期時長的模擬最大差異小于2 d,2種熱時對生育期的模擬效果并沒有明顯差異。雖然線性和Logistic模型的日步長熱時與小時步長熱時在拔節(jié)期和開花期存在顯著性差異,但當以各自熱時作為參數(shù)進行生育期模擬時,參數(shù)的差異性在一定程度上抵消了熱時的差異性,因此對各生育期及其時長的模擬沒有表現(xiàn)出明顯區(qū)別。Purcell[24]也認為對于喜溫作物而言,夏季的小時步長熱時和日步長熱相差無幾,小時步長溫度并不能提高諸如甜瓜、大豆等作物發(fā)育進程預測精度。另外,在相同條件下,鄭州站與其他站在生育期和生育時長的模擬評價指標比較方面,都沒有表現(xiàn)出一致性的規(guī)律,說明品種差異不是影響本次夏玉米生育期模擬精度的主導因素。
小時步長熱時和日步長熱時對夏玉米生育期和生育時長的模擬精度隨發(fā)育進程下降。這可能與成熟期觀測值的穩(wěn)定性差有關。玉米成熟期及開花-成熟期時長觀測值的變異系數(shù)分別為2.2%和13.7%,極差分別為17和21 d,明顯高于其他生育時段。其次,作物發(fā)育進程不僅由熱量單位決定,還受溫度強度的影響。當平均溫度較高時,完成該發(fā)育進程需要累積更多的熱量[13]。另外,溫度是影響夏玉米發(fā)育速度的主導因素,其次是日長。雖然土壤水分、日較差等對發(fā)育速度也有影響,但效果有限。馬玉平等[13]研究認為土壤水分對玉米抽雄后的發(fā)育進程影響不明顯,經水分訂正后生育期模擬的絕對偏差下降不足0.1 d。
本文3個溫度模型中,玉米的基點溫度不隨生育期變化。也有學者在模擬玉米生育期時選用最低、最適下限、最適上限和最高4個溫度指標[5],或不同生長階段用不同的基點溫度[30],參數(shù)變化是否影響小時步長熱時對生育期的模擬精度還需要驗證。此外,本文夏玉米生育期內日平均氣溫都高于基礎溫度(8 ℃),基礎附近小時步長熱時與日步長熱時之間的差異并沒有顯現(xiàn)。而其他作物如冬小麥生育期內日平均氣溫小于基礎溫度(0 ℃)和大于最適溫度(25 ℃)的情形都會出現(xiàn),理論上小時步長熱時與日步長熱時的差異在基礎溫度和最適溫度附近都會增加[25]。因此,不同作物、不同區(qū)域之間小時步長熱時與日步長熱時的差異性還需要在今后的工作中進一步探索。
在夏玉米生長期內,3種溫度模型總體上表現(xiàn)為日步長熱時大于小時步長熱時,二者差異主要分布在最適溫度附近,氣溫日變化是造成差異的直接原因。線性模型中拔節(jié)、開花期的日步長熱時累積值比小時步長熱時顯著偏多(<0.05);Logistic模型中除出苗期外,日步長熱時均比小時步長熱時顯著偏多(<0.05),而WE模型在各生育期均無顯著差異。4站綜合分析,全生育期內日步長熱時比小時步長熱時平均每天偏多1.1~1.7 ℃·d。與日步長熱時相比,小時步長熱時的極差和變異系數(shù)減少,說明其穩(wěn)定性大于日步長熱時。3種模型對生育期和生育期長度的模擬精度總體上表現(xiàn)為WE模型最好,其次為Logistic模型,最后為線性模型,但同一溫度模型,日步長熱時和小時步長熱時累積值對生育期的模擬最大差異不超過1 d,對生育期時長的模擬最大差異小于2 d,小時步長熱時并沒有顯著提高夏玉米生育期模擬精度。
[1] Soltani A, Sinclair T S. A comparison of four wheat model with respect to robustness and transparency: Simulation in a temperature, sub-humid environment[J]. File Crops Research, 2015, 175: 37-46.
[2] Haghverdi A, Washington-Allen R A, Leib B G. Prediction of cotton lint yield from phenology of crop indices using artificial neural networks[J]. Computers and Electronics in Agriculture, 2018, 152: 186-197.
[3] Tobias J, Ulf B, Henning K. A variable thermal of the double ridge to flag leaf emergence phase improves the predictive quality of a CERES-Wheat type phenology model[J]. Computer and Electronics in Agriculture, 2012, 89: 62-69.
[4] Wang N, Wang E, Wang J, et al. Modelling maize phenology, biomass growth and yield under contrasting temperature conditions[J]. Agricultural and Forest Meteorology, 2018, 250-251: 319-329.
[5] Soltani A, Sinclair T R. Modeling Physiology of Crop Development, Growth and Yield[M]. Wallingford, UK: CABI Publishing, 2012.
[6] Wu L, Feng L, Zhang Y , et al. Comparison of five wheat models simulating phenology under different sowing dates and varieties[J]. Agronomy Journal, 2017, 109(4): 1280-1293.
[7] 李蕊,郭建平. 東北春玉米積溫模型的改進與比較[J]. 應用氣象學報,2017,28(6):678-689.
Li Rui, Guo Jianping. Improvement and comparison of the accumulated temperature model of Northeast spring maize[J]. Journal of Applied Meteorological Science, 2017, 28(6): 678-689.(in Chinese with English abstract)
[8] 鄭國清,高亮之. 玉米發(fā)育期動態(tài)模擬模型[J]. 江蘇農業(yè)學報,2000,16(1):15-21.
Zheng Guoqing, Gao Liangzhi. Simulation model of maize phenology[J]. Jiangsu Journal of Agricultural Science, 2000, 16(1): 15-21. (in Chinese with English abstract)
[9] 蘇李君,劉云鶴,王全九. 基于有效積溫的中國水稻生長模型的構建[J]. 農業(yè)工程學報,2020,36(1):162-174.
Su Lijun, Liu Yunhe, Wang Quanjiu. Rice growth model in China based on growing degree days[J]. Transactions of the Chinese Society of Agricultural Engineering Transactions of the CSAE), 2020, 36(1): 162-174. (in Chinese with English abstract)
[10] Liu L L, Wallach D, Li J, et al. Uncertain in wheat phenology simulation induced by cultivar parameterization under climate warming[J]. European Journal of Agronomy, 2018, 94: 46-53.
[11] Wang N, Wang J, Wang E, et al. Increased uncertainty in simulated maize phenology with more frequent supra-optimal temperature under climate warming[J]. European Journal of Agronomy, 2015,71: 19-33.
[12] Lizaso J I, Ruiz-Ramos M, Rodríhuez L, et al. Impact of high temperature in maize: Phenology and yield components[J]. Field Crops Research, 2018,216: 129-140.
[13] 馬玉平,張黎,孫琳麗,等. 持續(xù)性溫強和土壤水分對玉米發(fā)育進程的影響及其模擬[J]. 中國農學通報,2015,31(3):16-193.
Ma Yuping, Zhang Li, Sun Linli, et al. Effect of continuous temperature and soil moisture on development process of maize and its simulation[J]. Chinese Agricultural Science Bulletin, 2015, 31(3): 186-193. (in Chinese with English abstract)
[14] 姜會飛,郭勇,張玉瑩,等. 不同下限基點溫度對積溫模型模擬效果的影響[J]. 中國農業(yè)大學學報,2018,23(5):131-141.
Jiang Huifei, Guo Yong, Zhang Yuying, et al. Impact of base temperature on the growing degree-day and simulation effect of GDD model[J]. Journal of China Agricultural University, 2018, 23(5): 131-141. (in Chinese with English abstract)
[15] Ceglar A, van der Wijngaart R, de Wit A, et al. Improving WOFOST model to simulated winter wheat phenology in Europe: Evaluation and effects on yield[J]. Agricultural System, 2019, 168: 168-180.
[16] 葉芝菡,謝云,劉寶元. 日平均氣溫的兩種計算方法比較[J]. 北京師范大學學報:自然科學版,2002,38(3):421-426.
Ye Zhihan, Xie Yun, Liu Baoyuan. A comparison of mean daily temperature calculated by two methods[J]. Journal of Beijinig Normal University: Natural Science, 2002, 38(3): 421-426. (in Chinese with English abstract)
[17] 曹衛(wèi)星. 數(shù)字農作技術[M]. 北京:科學出版社,2008:162-167.
[18] Weiss A, Hays C J. Calculating daily mean air temperature by different methods: Implication from a non-liner algorithm[J]. Agricultural and Forest Meteorology, 2005, 128: 57-65.
[19] Willian J R, Frank G Z, Ann J S, et al. Evaluation of several degree-day estimation methods in California climates[J]. International Journal of Biometeorol, 1999, 42: 169-176.
[20] 宋連春,李偉. 綜合氣象觀測系統(tǒng)的發(fā)展[J]. 氣象,2008,34(8):3-9.
Song Lianchun, Li Wei. The development of integrated meteorological observation system[J]. Meteorological Monthly, 2008, 34(8): 3-9. (in Chinese with English abstract)
[21] 張雪芬,薛紅喜,孫涵,等. 自動農業(yè)氣象觀測系統(tǒng)功能與設計[J]. 應用氣象學報,2012,23(1):105-112.
Zhang Xuefen, Xue Hongxi, Sun Han, et al. Function and designing of automatic observing system for Agro-meteorology[J]. Journal of Applied Meteorological Science, 2012, 23(1): 105-112. (in Chinese with English abstract)
[22] Ji X, Chen J, Zhao W, et al. Comparison of hourly and daily Penman-Monteith grass- and alfalfa-reference evapotranspiration equations and crop coefficients for maize under arid climatic conditions[J]. Agricultural Water Management, 2017, 192: 1-11.
[23] Perera K, Western A W, Nawarathna B, et al. Comparison of hourly and daily reference crop evapotranspiration equations across seasons and climate zones in Australia[J]. Agricultural Water Management, 2015, 148: 84-96.
[24] Purcell L C . Comparison of thermal units derived from daily and hourly temperatures[J]. Crop Science, 2003, 43(5): 1874-1879.
[25] 蔡冠勛,姚俊萌,段里成,等. 小時尺度有效積溫在水稻出苗期預測中的應用[J]. 氣象與減災研究,2019,42(3):231-235.
Cai Guanxun, Yao Junmeng, Duan Licheng, et al. Applicationof hourly-scale effective accumulated temperature in emergence date prediction[J]. Meteorology and Disaster Reduction Research, 2019, 42(3): 231-235. (in Chinese with English abstract)
[26] 雷濤,郭向紅,畢遠杰. 基于Logistic模型的番茄生長特性研究[J]. 節(jié)水灌溉,2020(10):10-14.
Lei Tao, Guo Xianghong, Bi Yuanjie, et al. Study on tomato growth characteristics based on Logistic model[J]. Water Saving Irrigation, 2020(10): 10-14. (in Chinese with English abstract)
[27] Streck N A, Weiss A, Xue Q, et al. Improving predictions of development stages in winter wheat: A modified Wang and Engel model[J]. Agricultural and Forest Meteorology, 2003, 115: 139-150.
[28] 馮秀藻,陶炳炎. 農業(yè)氣象學原理[M]. 北京:氣象出版社,1991:87.
[29] Cesaraccio C, Spano D, Duce P, et al. An improved model for determining degree-day values from daily temperature data[J]. International Journal of Biometeorology, 2001, 45(4): 161-169.
[30] 欒青,郭建平,馬雅麗,等. 基于線性生長假設的作物積溫模型穩(wěn)定性比較[J]. 中國農業(yè)氣象,2020,41(11):695-706.
Luan Qing, Guo Jianping, Ma Yali, et al. Comparison of model’s stability about integrated temperature based on linear hyphtheses[J]. Chinese Journal of Agrometeorology, 2020, 41(11): 695-706. (in Chinese with English abstract)
Comparison of the simulation effects of summer maize phenology derived from hourly and daily time step thermal units
Yu Weidong1,2, Feng Liping2※
(1.,,450003,; 2.,,100193,)
Thermal-unit accumulation is commonly used to simulate crop phenology, because the crop growth rate depends mainly on the temperature in farmland. However, there is a great difference of thermal units that are derived from hourly and daily temperature, due to the diurnal variation of temperature. Therefore, this study aims to compare the simulation effects of two thermal units on crop phenology. The phenological data of summer maize and hourly temperature at four sites were collected from Zhengzhou, Nanyang, Huojia, and Huangfanqu Farm. The field experimental data in Zhengzhou ranged from 2005 to 2018, while the data at other sites was accessible for a period from 2012 to 2013. Three models of crop phenological rate in response to temperature were selected to simulate summer maize phenology, including linear, logistic, and Wang-Engel (WE) model. Subsequently, three cardinal temperatures of summer maize (the base, optimum, and the maximum temperature),the accumulations of the Hourly Thermal Units (HTU) , and Daily Thermal Units (DTU) were calculated in different phenological stages. The effects of two thermal units on summer maize phenology were compared for different models and phenological stages, including emergency, jointing, flowering, and maturity stage. Specifically, the model performance was evaluated using statistical indicators, such as variable coefficient, the difference between maximum and minimum (Rg), absolute root mean squared error (RMSE), normalized root mean squared error (NRMSE), and absolute bias (ABS) between simulated and measured values. The statistical indicators in phenological stages were also compared in the daily and hourly thermal units. The results showed that the DTU of the three models were all greater than HTU during the growing stage of summer maize, due directly to the diurnal variation of temperature. The maximum daily difference between DTU and HTU reached 9.7℃·d (Linear model), 9.1℃· d (Logistic model), and 7.4℃·d (WE model), respectively, when the daily average temperature was close to the optimum temperature for crop growth. Moreover, the correlation between HTU and DTU was the strongest in WE model (2= 0.927), followed by the logistic model (2= 0.816), and the linear model (2= 0.738). The mean variable coefficient of HTU accumulation was 0.4%, smaller than those of DTU accumulation over the whole phenological period, indicating that HTU had higher stability than DTU. Furthermore, the DTU accumulation in the linear model was significantly greater (<0.05) than HTU accumulation at jointing and flowing stages, while the DTU accumulation in the Logistic model was also greater (<0.05) than HTU accumulation at jointing, flowing, and maturity stages. Nevertheless, there was no significant difference between DTU and HTU accumulation at each phenological stage in the WE model. The simulation of both DTU and HTU showed higher accuracy in the WE model than that in the Logistic model, followed by the linear model at phenological stages and intervals. The accuracies of three temperature models varied in the crop phenology with the root mean square error of 3.7 d, 3.9 d, and 5.1 d, and the NRMSE of 1.66%, 1.77% and 2.50% in the WE, Logistic and Linear models, respectively. In the term of accuracy differences at phenological intervals, the RMSE was 3.1, 3.3, and 3.9 d, and the normalized the root mean square error was 14.34%, 14.66%, and 17.74% in the WE, Logistic and Linear models, respectively. With the same temperature model, the differences between DTU and HTU accumulation were no more than 1d at a phenological stage, and 2 d in the phenological interval. The data demonstrated that there was little difference in thermal unit accumulation derived from hourly temperature and daily temperature for summer maize. Namely, there was no significant improvement in simulation accuracy of phenological stages with shorter time steps in HTU.
temperature; crop; models; hour; phenology; thermal units; summer maize
2020-12-14
2021-03-13
國家重點研發(fā)項目(2016YFD0300201);中國氣象局河南省農業(yè)氣象保障與應用技術重點實驗室項目(AMF201805)
余衛(wèi)東,博士,正高級工程師,研究方向為氣候資源利用與農業(yè)減災。Email:sqywd@sohu.com
馮利平,博士,教授,博士生導師,研究方向為作物系統(tǒng)模擬、資源利用與氣候變化。Email:fenglp@cau.edu.cn
10.11975/j.issn.1002-6819.2021.07.016
S513
A
1002-6819(2021)-07-0131-09
余衛(wèi)東,馮利平. 小時和日步長熱時對夏玉米生育期模擬的影響[J]. 農業(yè)工程學報,2021,37(7):131-139. doi:10.11975/j.issn.1002-6819.2021.07.016 http://www.tcsae.org
Yu Weidong, Feng Liping. Comparison of the simulation effects of summer maize phenology derived from hourly and daily time step thermal units[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(7): 131-139. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.07.016 http://www.tcsae.org