肖雪 畢明霞 焦倩 陳曦 杜希恂 姜宏
[摘要]目的 探討生長(zhǎng)激素促分泌素受體1a(GHSR1a)基因敲除對(duì)小鼠黑質(zhì)區(qū)γ-氨基丁酸(GABA)信號(hào)傳遞的影響。方法 取3只GHSR1a敲除(Ghsr-/-)小鼠和3只同窩野生型(WT)小鼠的黑質(zhì)區(qū),應(yīng)用轉(zhuǎn)錄組學(xué)測(cè)序(RNA-seq)技術(shù)篩選出差異表達(dá)基因(DEGs),并通過(guò)KEGG富集分析神經(jīng)活性配體受體信號(hào)通路的變化,以及對(duì)GABA信號(hào)傳遞的影響。結(jié)果 與WT組相比,Ghsr-/-組神經(jīng)活性配體受體相互作用信號(hào)通路上的12個(gè)基因表達(dá)發(fā)生了顯著性變化,其中γ-氨基丁酸受體α2(Gabra2)和γ-氨基丁酸受體α4(Gabra4)分別是GABA-A受體α2亞基和α4亞基的編碼基因。在Ghsr-/-小鼠中,Gabra2和Gabra4表達(dá)出現(xiàn)明顯上調(diào)。除此之外,與GABA轉(zhuǎn)運(yùn)相關(guān)的轉(zhuǎn)運(yùn)蛋白溶質(zhì)載體家族6成員1(Slc6a1)基因表達(dá)出現(xiàn)明顯下調(diào)。結(jié)論 GHSR1a基因敲除通過(guò)增加GABA受體亞基表達(dá),抑制GABA重?cái)z取,從而調(diào)控GABA信號(hào)傳遞。
[關(guān)鍵詞]受體,胃促生長(zhǎng)素;黑質(zhì);γ氨基丁酸;信號(hào)傳導(dǎo);轉(zhuǎn)錄組測(cè)序;小鼠
[中圖分類(lèi)號(hào)]R338.2
[文獻(xiàn)標(biāo)志碼]A
[文章編號(hào)]2096-5532(2021)02-0171-03
[ABSTRACT]Objective To investigate the effect of growth hormone secretagogue receptor 1a (GHSR1a) gene knockout on γ-aminobutyric acid (GABA) signal transduction in the substantia nigra of mice.?Methods Three GHSR1a-knockout (Ghsr-/-) mice and three wild-type (WT) littermates were selected, and RNA-seq technology was used to screen out differently expressed genes (DEGs) in the substantia nigra. KEGG enrichment analysis was used to investigate the change in the neuroactive?ligand-receptor interaction signaling pathway and the impact of GABA signal transduction. ?Results Compared with the WT group, the Ghsr-/- group had significant changes in the expression of 12 genes in the neuroactive ligand-receptor interaction signaling pathway, among which γ-aminobutyric acid A receptor α2 (Gabra2) and γ-aminobutyric acid A receptor α4 (Gabra4) were the coding genes of the α2 and α4 subunits of GABA-A receptor, respectively. Gabra2 and Gabra4 were significantly upregulated in Ghsr-/- mice. In addition, solute carrier family 6 member 1 (Slc6a1) related to GABA transport was significantly downregulated.Conclusion GHSR1a knockout regulates GABA signal transduction by increasing the expression of GABA receptor subunits and inhibiting GABA reuptake.
[KEY WORDS]receptors, ghrelin; substantia nigra; gamma-aminobutyric acid; signal transduction; RNA-seq; mice
生長(zhǎng)激素促分泌素受體1a(GHSR1a)是G蛋白偶聯(lián)受體(GPCR)家族成員,同時(shí)也是ghrelin的功能型受體[1-2]。GHSR1a由366個(gè)氨基酸殘基和7個(gè)跨膜結(jié)構(gòu)域(TMD)組成,不僅在中樞神經(jīng)系統(tǒng)廣泛表達(dá),在外周器官中也有較低水平表達(dá)[2]。本實(shí)驗(yàn)室前期研究結(jié)果也證實(shí)了ghrelin-GHSR1a系統(tǒng)具有神經(jīng)保護(hù)作用[3-6]。除了介導(dǎo)ghrelin的功能外,GHSR1a還具有本構(gòu)型活性,在無(wú)ghrelin刺激時(shí)可參與多種生物學(xué)活動(dòng),如影響學(xué)習(xí)記憶、生長(zhǎng)發(fā)育、癲癇發(fā)作、血壓和癌癥等,還可以通過(guò)Gi/o信號(hào)通路影響γ-氨基丁酸(GABA)釋放,產(chǎn)生抑制性突觸后電流(IPSCs)并最終導(dǎo)致神經(jīng)元興奮性增強(qiáng)[7]。為了更加全面地了解GHSR1a影響GABA釋放的分子機(jī)制,本研究選用3月齡GHSR1a基因敲除小鼠(Ghsr-/-小鼠)和同窩野生型(WT)小鼠,對(duì)其黑質(zhì)區(qū)進(jìn)行轉(zhuǎn)錄組學(xué)測(cè)序(RNA-seq),篩選差異表達(dá)基因(DEGs)并進(jìn)行KEGG信號(hào)通路富集分析,以期為闡明腦內(nèi)GHSR1a參與GABA信號(hào)傳遞及影響神經(jīng)元興奮性提供新的思路。
1 材料與方法
1.1 實(shí)驗(yàn)材料
生理鹽水,水合氯醛,干冰,液氮,PBS緩沖液,手術(shù)剪,眼科鑷,EP管,玻璃培養(yǎng)皿,注射器,液氮罐,-80 ℃冰箱,制冰機(jī)。
1.2 實(shí)驗(yàn)方法
1.2.1 實(shí)驗(yàn)動(dòng)物與分組 3月齡Ghsr-/-雄性小鼠3只(Ghsr-/-組)和同窩WT雄性小鼠3只(WT組),體質(zhì)量(20±2)g,均購(gòu)自上海南方模式生物科技發(fā)展有限公司。小鼠在室溫(23±1)℃、12 h晝夜循環(huán)光照的環(huán)境下進(jìn)行飼養(yǎng),可自由飲水與進(jìn)食。所有動(dòng)物實(shí)驗(yàn)操作均遵循醫(yī)學(xué)倫理學(xué)原則。
1.2.2 小鼠黑質(zhì)區(qū)樣本的采集及測(cè)序 使用水合氯醛對(duì)小鼠進(jìn)行麻醉,脫臼法處死小鼠,解剖取腦后立即置于生理鹽水中沖洗腦組織表面血污,使用眼科鑷于冰上進(jìn)行黑質(zhì)組織塊的取材,取材完畢立即置于脫酶EP管中,并保存于液氮中。測(cè)序樣本從液氮中取出后干冰運(yùn)輸至北京諾禾致源生物科技有限公司進(jìn)行RNA-seq。對(duì)Ghsr-/-組和WT組小鼠測(cè)序所得結(jié)果進(jìn)行分析。
2 結(jié) 果
2.1 質(zhì)量控制
測(cè)序錯(cuò)誤率隨著測(cè)序長(zhǎng)度的增加而降低,本研究6個(gè)樣本的測(cè)序錯(cuò)誤率均小于1%,GC含量均小于50,Q30約為90%,6個(gè)樣本間的Pearson相關(guān)系數(shù)均大于0.95,說(shuō)明數(shù)據(jù)均質(zhì)化程度高,可用于后續(xù)分析。
2.2 DEGs篩選
共有533個(gè)基因在Ghsr-/-組和WT組之間呈現(xiàn)出差異性表達(dá),其中258個(gè)基因在WT組高表達(dá),275個(gè)基因在Ghsr-/-組高表達(dá)。
2.3 KEGG富集通路分析
有12個(gè)DEGs富集到神經(jīng)活性配體受體相互作用通路上,與WT組相比,Ghsr-/-組中表達(dá)上調(diào)基因有6個(gè),分別為γ-氨基丁酸受體α2(Gabra2)、γ-氨基丁酸受體α4(Gabra4)、膽堿能受體煙堿α4(Chrnb4)、AMPA離子型谷氨酸受體3(Gria3)、阿片受體1(Oprd1)和甘氨酸受體(Glrb);表達(dá)下調(diào)基因6個(gè),分別為膽堿能受體煙堿α5(Chrna5)、N-甲基-D-天冬氨酸離子能谷氨酸受體2D(Grin2d)、離子型谷氨酸受體海藻酸鹽5(Grik5)、神經(jīng)降壓素受體2(Ntsr2)和黑色素皮質(zhì)素受體3(Mc3r)。其中,Gabra2和Gabra4是編碼GABA受體亞基的基因,其上調(diào)提示GABA-A受體表達(dá)增多。除此之外,與GABA轉(zhuǎn)運(yùn)有關(guān)的轉(zhuǎn)運(yùn)蛋白溶質(zhì)載體家族6成員1(Slc6a1)基因表達(dá)出現(xiàn)明顯下調(diào),其下調(diào)會(huì)導(dǎo)致突觸間隙中GABA不能被重吸收,從而增強(qiáng)其神經(jīng)抑制作用。以上結(jié)果表明,GHSR1a基因敲除對(duì)GABA信號(hào)傳遞具有顯著性影響。
3 討 論
GHSR1a是由7個(gè)TMD組成的GPCR家族中的一員,主要分布于下丘腦和垂體,是ghrelin的功能型受體[8-9]。當(dāng)GHSR1a被ghrelin激活時(shí),能夠發(fā)揮抗炎、抗凋亡、增強(qiáng)學(xué)習(xí)記憶、促進(jìn)生長(zhǎng)發(fā)育等作用[7,10]。本實(shí)驗(yàn)室前期研究結(jié)果表明,PD病人的血漿ghrelin水平顯著降低[4]。而且ghrelin激活GHSR1a之后能夠拮抗1-甲基-4-苯基-1,2,3,6-四氫吡啶對(duì)小鼠黑質(zhì)多巴胺能神經(jīng)元的神經(jīng)毒性作用[6]。以上結(jié)果表明,ghrelin-GHSR1a系統(tǒng)具有神經(jīng)保護(hù)作用。另外,GHSR1a不依賴(lài)于ghrelin刺激的本構(gòu)型活性對(duì)腦內(nèi)功能、生長(zhǎng)發(fā)育等多種生物學(xué)過(guò)程也產(chǎn)生影響[11-13]。缺乏ghrelin時(shí),GHSR1a可以通過(guò)Gi/o信號(hào)通路影響突觸前Ca2+電流,減少抑制性神經(jīng)遞質(zhì)GABA的釋放和IPSCs的形成并最終導(dǎo)致神經(jīng)元興奮性增強(qiáng)[14-15]。
GABA是重要的抑制性神經(jīng)遞質(zhì),通過(guò)與其受體結(jié)合能夠調(diào)節(jié)神經(jīng)元興奮性[16-17]。GABA受體屬于氯離子通道受體,分布于整個(gè)中樞神經(jīng)系統(tǒng),介導(dǎo)中樞神經(jīng)系統(tǒng)大部分抑制性神經(jīng)傳遞,Gabra2和Gabra4是編碼該受體亞基的基因[18-19]。本研究結(jié)果顯示,在Ghsr-/-組小鼠中Gabra2和Gabra4的表達(dá)明顯升高,這可能會(huì)增加GABA受體組裝進(jìn)而增強(qiáng)GABA與受體結(jié)合,通過(guò)增強(qiáng)IPSCs導(dǎo)致神經(jīng)元興奮性降低[20-21]。GABA發(fā)揮抑制性突觸傳遞作用除了與受體有關(guān),還受到GABA轉(zhuǎn)運(yùn)體的影響[22]。在本研究中,Ghsr-/-小鼠GABA轉(zhuǎn)運(yùn)蛋白Slc6a1基因表達(dá)出現(xiàn)明顯下調(diào)。Slc6a1為溶質(zhì)載體家族6的成員之一,是大腦中主要的GABA轉(zhuǎn)運(yùn)蛋白,負(fù)責(zé)從突觸間隙重新攝取GABA[19,23]。突觸間隙中的GABA主要來(lái)源于神經(jīng)膠質(zhì)細(xì)胞細(xì)胞膜、突觸前膜或囊泡膜上GABA轉(zhuǎn)運(yùn)體(CAT)的攝取。Slc6a1可使GABA在突觸間隙中的濃度降低,從而減弱GABA的突觸傳遞作用[24-25]。當(dāng)Slc6a1蛋白表達(dá)降低時(shí),從突觸間隙重新攝取GABA可能會(huì)受到抑制,從而增強(qiáng)GABA的抑制作用。因此,研究GHSR1a敲除對(duì)GABA信號(hào)傳遞的影響能夠更加深入地了解神經(jīng)元興奮性的影響因素,從而為神經(jīng)系統(tǒng)疾病的治療提供更多思路。
[參考文獻(xiàn)]
[1]GUAN X M, YU H, PALYHA O C, et al. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues[J]. Brain Research Molecular Brain Research, 1997,48(1):23-29.
[2]HOWARD A D, FEIGHNER S D, CULLY D F, et al. A receptor in pituitary and hypothalamus that functions in growth hormone release[J]. Science (New York, N Y), 1996,273(5277):974-977.
[3]YU J H, XU H M, SHEN X L, et al. Ghrelin protects MES23.5 cells against rotenone via inhibiting mitochondrial dysfunction and apoptosis[J]. Neuropeptides, 2016,56:69-74.
[4]SONG N, WANG W W, JIA F, et al. Assessments of plasma ghrelin levels in the early stages of Parkinsons disease[J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2017,32(10):1487-1491.
[5]DONG J J, SONG N, XIE J X, et al. Ghrelin antagonized 1-methyl-4-phenylpyridinium (MPP(+))-induced apoptosis in MES23.5 cells[J]. Journal of Molecular Neuroscience: MN, 2009,37(2):182-189.
[6]JIANG H, LI L J, WANG J, et al. Ghrelin antagonizes MPTP-induced neurotoxicity to the dopaminergic neurons in mouse substantia nigra[J]. Experimental Neurology, 2008,212(2):532-537.
[7]XIAO X, BI M X, JIAO Q, et al. A new understanding of GHSR1a: independent of ghrelin activation[J]. Ageing Research Reviews, 2020,64:101187.
[8]ABIZAID A, HOUGLAND J L. Ghrelin signaling: GOAT and GHS-R1a take a LEAP in complexity[J]. Trends in Endocrinology and Metabolism: TEM, 2020,31(2):107-117.
[9]LI H Z, SHOU L L, SHAO X X, et al. Identifying key residues and key interactions for the binding of LEAP2 to receptor GHSR1a[J]. The Biochemical Journal, 2020,477(17):3199-3217.
[10]KERN A, MAVRIKAKI M, ULLRICH C, et al. Hippocampal dopamine/DRD1 signaling dependent on the ghrelin receptor[J]. Cell, 2015,163(5):1176-1190.
[11]MEAR Y, ENJALBERT A, THIRION S. GHS-R1a constitutive activity and its physiological relevance[J]. Frontiers in Neuroscience, 2013,7:87.
[12]HOLST B, HOLLIDAY N D, BACH A, et al. Common structural basis for constitutive activity of the ghrelin receptor family[J]. The Journal of Biological Chemistry, 2004,279(51):53806-53817.
[13]HYLAND L, PARK S B, ABDELAZIZ Y, et al. Ghrelin infused into the dorsomedial hypothalamus of male mice increases food intake and adiposity[J]. Physiology & Behavior, 2020,220:112882.
[14]MARTNEZ DAMONTE V, RODRGUEZ S S, RAINGO J. Growth hormone secretagogue receptor constitutive activity impairs voltage-gated calcium channel-dependent inhibitory neurotransmission in hippocampal neurons[J]. The Journal of Physiology, 2018,596(22):5415-5428.
[15]MUSTAF E R, LPEZ SOTO E J, MARTNEZ DAMONTE V, et al. Constitutive activity of the Ghrelin receptor reduces surface expression of voltage-gated Ca2+ channels in a CaVβ-dependent manner[J]. Journal of Cell Science, 2017,130(22):3907-3917.
[16]PETROFF O A. GABA and glutamate in the human brain[J]. The Neuroscientist: a Review Journal Bringing Neurobiology, Neurology and Psychiatry, 2002,8(6):562-573.
[17]ZHU S T, NOVIELLO C M, TENG J F, et al. Structure of a human synaptic GABA A receptor[J]. Nature, 2018,559(7712):67-72.
[18]BUTLER K M, MOODY O A, SCHULER E, et al. De novo variants in GABRA2 and GABRA5 alter receptor function and contribute to early-onset epilepsy[J]. Brain: a Journal of Neurology, 2018,141(8):2392-2405.
[19]FAN C X, GAO Y, LIANG G M, et al. Transcriptomics of Gabra4 knockout mice reveals common NMDAR pathways underlying autism, memory, and epilepsy[J]. Molecular Autism, 2020,11(1):13.
[20]UUSI-OUKARI M, KORPI E R. Regulation of GABA(A) receptor subunit expression by pharmacological agents[J]. Pharmacological Reviews, 2010,62(1):97-135.
[21]STEIGER J L, RUSSEK S J. GABAA receptors: building the bridge between subunit mRNAs, their promoters, and cognate transcription factors[J]. Pharmacology & Therapeutics, 2004,101(3):259-281.
[22]SOUDIJN W, VAN WIJNGAARDEN I. The GABA transporter and its inhibitors[J]. Current Medicinal Chemistry, 2000,7(10):1063-1079.
[23]CARVILL G L, MCMAHON J M, SCHNEIDER A, et al. Mutations in the GABA transporter SLC6A1 cause epilepsy with myoclonic-atonic seizures[J]. The American Journal of Human Genetics, 2015,96(5):808-815.
[24]BODDUM K, JENSEN T P, MAGLOIRE V, et al. Astrocy-tic GABA transporter activity modulates excitatory neurotransmission[J]. Nature Communications, 2016,7:13572.
[25]DAYAN-ALON O, KANNER B I. Internal gate mutants of the GABA transporter GAT1 are capable of substrate exchange[J]. Neuropharmacology, 2019,161:107534.
(本文編輯 馬偉平)
青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)2021年2期