趙莎 馬澤剛
[摘要]目的 探討L型Ca2+通道阻斷劑伊拉地平對硫酸亞鐵誘導(dǎo)的MES23.5細(xì)胞毒性的作用。方法 以MES23.5多巴胺能細(xì)胞系為觀察對象,利用流式細(xì)胞儀篩選Fe2+最適濃度,伊拉地平則選用實(shí)驗(yàn)室前期篩選濃度5 μmol/L。應(yīng)用免疫印跡法(Western blot)檢測與凋亡相關(guān)蛋白Bcl-2和Bax的表達(dá),初步評估伊拉地平對Fe2+誘導(dǎo)的細(xì)胞毒性的保護(hù)作用。結(jié)果 與對照組相比,40 μmol/L Fe2+組線粒體膜電位(ΔΨm)明顯下降,差異具有統(tǒng)計(jì)學(xué)意義(F=68.190,q=8.898,P<0.001)。與對照組相比,單獨(dú)加Fe2+組細(xì)胞Bcl-2/Bax蛋白表達(dá)比值明顯降低(F=6.856,q=6.055,P<0.01),而伊拉地平預(yù)處理可改善由Fe2+造成的Bcl-2/Bax蛋白表達(dá)比值降低的現(xiàn)象,差異具有統(tǒng)計(jì)學(xué)意義(q=4.103,P<0.05)。結(jié)論 伊拉地平預(yù)處理可以抑制Bcl-2/Bax蛋白表達(dá)比值降低,對Fe2+誘導(dǎo)的細(xì)胞損傷可能具有保護(hù)作用。
[關(guān)鍵詞]伊拉地平;鈣通道阻滯藥;鐵;帕金森病;神經(jīng)保護(hù)
[中圖分類號]R338.2
[文獻(xiàn)標(biāo)志碼]A
[文章編號]2096-5532(2021)02-0190-04
[ABSTRACT]Objective To investigate the effect of isradipine, a blocker of L-type Ca2+ channels, on cytotoxicity induced by ferrous sulfate heptahydrate in MES23.5 cells.?Methods The MES23.5 dopaminergic cell line was selected for observation. Flow cytometry was used to screen out the optimal concentration of Fe2+, and a concentration of 5 μmol/L was determined for isradipine in previous laboratory analysis. Western blot was used to measure the expression of the apoptosis-related proteins Bcl-2 and Bax, and the protective effect of isradipine against Fe2+-induced cytotoxicity was evaluated.?Results Compared with the control group, the 40 μmol/L Fe2+ group had a significant reduction in mitochondrial membrane potential (ΔΨm) (F=68.190,q=8.898,P<0.001). Compared with the control group, the Fe2+ alone group had a significant reduction in Bcl-2/Bax ratio (F=6.856,q=6.055,P<0.01), while pretreatment with isradipine significantly improved the reduction in Bcl-2/Bax ratio caused by Fe2+ (q=4.103,P<0.05).?Conclusion Pretreatment with isradipine can inhibit the reduction in Bcl-2/Bax ratio and thus exert a protective effect against cell injury induced by Fe2+.
[KEY WORDS]isradipine; calcium channel blockers; iron; Parkinson disease; neuroprotection
帕金森?。≒D)是一種常見的神經(jīng)退行性老年疾病,其病理特征是黑質(zhì)(SN)多巴胺(DA)能神經(jīng)元進(jìn)行性缺失以及由此引起的紋狀體DA含量的耗竭[1]。病人表現(xiàn)出靜止性震顫、肌僵直、運(yùn)動遲緩、姿勢平衡障礙等運(yùn)動癥狀[2],以及嗅覺障礙、抑郁、睡眠質(zhì)量差和認(rèn)知功能障礙等非運(yùn)動癥狀[3]。雖然PD的發(fā)病機(jī)制尚未完全明確,但越來越多的證據(jù)表明SN區(qū)過量的鐵沉積是PD發(fā)病的關(guān)鍵因素之一[4-5]。在高鐵作用下,大腦中過量的Fe2+會通過Fenton和Haber-Weiss反應(yīng)產(chǎn)生大量活性氧,從而引起蛋白質(zhì)的異常聚集,損傷神經(jīng)元,導(dǎo)致PD等神經(jīng)退行性疾病的發(fā)生[6]。正常情況下,鐵主要是通過轉(zhuǎn)鐵蛋白和二價(jià)金屬轉(zhuǎn)運(yùn)蛋白1(DMT1)等途徑進(jìn)入細(xì)胞[7],但在PD等病理?xiàng)l件下,轉(zhuǎn)鐵蛋白在腦脊液中處于飽和狀態(tài),表明非轉(zhuǎn)鐵蛋白結(jié)合鐵發(fā)揮主要作用[8],即L型Ca2+通道(LTCC)可能參與了鐵的異常聚集[9]。因此,本實(shí)驗(yàn)探究了LTCC阻斷劑伊拉地平(ISR)對硫酸亞鐵誘導(dǎo)的MES23.5多巴胺能細(xì)胞毒性的作用。
1 材料和方法
1.1 實(shí)驗(yàn)材料
本實(shí)驗(yàn)所用細(xì)胞為MES23.5多巴胺能細(xì)胞系(是由大鼠胚胎中腦神經(jīng)元與小鼠神經(jīng)母細(xì)胞瘤膠質(zhì)瘤細(xì)胞融合而成的雜交瘤細(xì)胞),由大連醫(yī)科大學(xué)附屬醫(yī)院樂衛(wèi)東教授惠贈。胎牛血清(FBS),BI公司;DMEM/F12(1∶1)粉末,Gibco公司;多聚賴氨酸(poly-L),Sigma公司;青霉素/鏈霉素,索萊寶公司;二甲基亞砜(DMSO),Biosharp公司;硫酸亞鐵,Sigma公司;ISR,上海楊帆公司。
1.2 細(xì)胞培養(yǎng)
MES23.5多巴胺能細(xì)胞系用DMEM/F12培養(yǎng)液培養(yǎng),該培養(yǎng)液中添加了10 mL的FBS、2 mL的青霉素/鏈霉素和4.4 mL的佐藤成分(含0.5 g/L胰島素和轉(zhuǎn)鐵蛋白)。實(shí)驗(yàn)前,將細(xì)胞以1×108/L的密度接種在涂有poly-L的培養(yǎng)瓶或者6孔培養(yǎng)皿中。
1.3 Fe2+最適濃度篩選
應(yīng)用不同濃度的硫酸亞鐵(0、20、40、60、80、100 μmol/L Fe2+)處理MES23.5細(xì)胞,通過流式細(xì)胞儀檢測MES23.5多巴胺能細(xì)胞線粒體膜電位(ΔΨm)的變化。將細(xì)胞置于涂有poly-L的6孔板中培養(yǎng)2 d。以PBS洗滌3次后,使用1 mL羅丹明123(5 mg/L)在37 ℃培養(yǎng)箱中孵育30 min,然后通過300目的細(xì)胞濾網(wǎng)收集并制成單細(xì)胞懸液。上流式細(xì)胞儀檢測,設(shè)置門控區(qū)域M1和M2作為標(biāo)記,使用Cell Quest軟件(BD Biosciences,美國)評估熒光強(qiáng)度的變化。
1.4 實(shí)驗(yàn)分組
在確定Fe2+最適濃度的基礎(chǔ)上,后續(xù)實(shí)驗(yàn)分為4組:對照組、Fe2+組、Fe2++ISR組、ISR組。將細(xì)胞以1×108/L的密度種在6孔板中。第3天行分組處理細(xì)胞:對照組用酸性培養(yǎng)液孵育5 h;Fe2+組先用酸性培養(yǎng)液孵育1 h,再使用Fe2+孵育4 h;Fe2++ISR組用ISR預(yù)孵育1 h,再使用Fe2+孵育4 h;ISR組用酸性培養(yǎng)液孵育5 h。ISR選用實(shí)驗(yàn)室前期篩選濃度5 μmol/L。各組細(xì)胞置于37 ℃、體積分?jǐn)?shù)0.05 CO2培養(yǎng)箱中培養(yǎng)。
1.5 免疫印跡法檢測Bcl-2/Bax蛋白表達(dá)
細(xì)胞處理結(jié)束后,以PBS洗滌3次,每孔加入100 μL裂解液冰上裂解30 min。用刮板將細(xì)胞刮下,4 ℃下以12 000 r/min離心20 min。采用二辛可寧酸(BCA)法測定蛋白質(zhì)濃度,計(jì)算十二烷基硫酸鈉-聚丙烯酰胺凝膠電泳(SDS-PAGE)上樣量。用SDS-PAGE(8 mL)分離每泳道包含40 μg蛋白樣品的細(xì)胞裂解液,將蛋白轉(zhuǎn)移到PVDF膜上。在室溫下用50 g/L的脫脂奶粉封閉2 h后,再加入Bcl-2、Bax(1∶1 000)和β-actin(1∶10 000)一抗于4 ℃搖床過夜。次日,使用TBST洗滌3次,加入與辣根過氧化物酶(HRP)偶聯(lián)的山羊抗兔IgG二抗(1∶10 000)在室溫下孵育1 h。采用ECL法,通過化學(xué)發(fā)光的方式對抗原-抗體復(fù)合物進(jìn)行可視化,然后使用Image J系統(tǒng)進(jìn)行光密度分析。
1.6 統(tǒng)計(jì)學(xué)處理
使用Prism Graphpad 5.0軟件進(jìn)行統(tǒng)計(jì)學(xué)處理。實(shí)驗(yàn)所得結(jié)果以x2±s形式表示,多組比較采用單因素方差分析(ANOVA),組間兩兩比較采用Student-Newman-Keuls檢驗(yàn)。P<0.05表示差異具有統(tǒng)計(jì)學(xué)意義。
2 結(jié) 果
2.1 不同濃度Fe2+對MES23.5細(xì)胞ΔΨm的影響
用不同濃度的Fe2+處理MES23.5細(xì)胞24 h后,0、20、40、60、80、100 μmol/L Fe2+處理組細(xì)胞的ΔΨm分別為0.01±1.66、-4.67±3.77、-10.17±3.34、-17.67±1.92、-21.50±2.29和-29.78±2.17(n=6)。與對照組細(xì)胞相比較,20、40、60、80、100 μmol/L Fe2+處理組ΔΨm均有不同程度的降低(F=68.190,P<0.01),且ΔΨm降低呈濃度依賴性。若Fe2+對細(xì)胞毒性太小則損傷不夠,F(xiàn)e2+對細(xì)胞毒性太大則造成細(xì)胞不可逆死亡,因此選取濃度40 μmol/L的Fe2+用于后續(xù)實(shí)驗(yàn)。
2.2 各組細(xì)胞Bcl-2/Bax蛋白表達(dá)比值的比較
對照組、Fe2+組、Fe2++ISR組和ISR組細(xì)胞Bcl-2/Bax蛋白表達(dá)比值分別為1.04±0.12、0.82±0.03、0.97±0.12和0.99±0.08(n=4)。與對照組相比較,F(xiàn)e2+組Bcl-2/Bax蛋白表達(dá)比值明顯降低(F=6.856,q=6.055,P<0.01);ISR預(yù)處理可以明顯緩解由Fe2+誘導(dǎo)的Bcl-2/Bax蛋白表達(dá)比值降低,差異具有統(tǒng)計(jì)學(xué)意義(q=4.103,P<0.05);ISR組與對照組Bcl-2/Bax蛋白表達(dá)比值比較差異無顯著性(P>0.05)。
3 討 論
許多研究已經(jīng)證實(shí),鐵的積累是PD的一個(gè)標(biāo)志[6]。有研究顯示,PD病人以及PD動物模型SN區(qū)DA能神經(jīng)元內(nèi)鐵水平較正常人或動物異常增高[10-11]。但是,尚不清楚SN中鐵蓄積的確切機(jī)制。眾所周知,鐵通過與轉(zhuǎn)鐵蛋白結(jié)合進(jìn)入大腦[12]。但在鐵過載的情況下,轉(zhuǎn)鐵蛋白飽和,非轉(zhuǎn)鐵蛋白途徑顯得尤為重要[13]。因此,包括DMT1和鈣通道介導(dǎo)的鐵轉(zhuǎn)運(yùn)在內(nèi)的非轉(zhuǎn)鐵蛋白結(jié)合鐵(NTBI)途徑已引起更多關(guān)注[14]。有研究結(jié)果表明,鐵可以通過LTCC進(jìn)入心肌細(xì)胞[15-16],LTCC還介導(dǎo)鐵流入其他可興奮細(xì)胞,如胰腺β細(xì)胞[17]、腺垂體細(xì)胞[18]和神經(jīng)元[19]。因此我們推測,在鐵負(fù)載情況下,在DA能神經(jīng)元上廣泛表達(dá)的LTCC可能是鐵過量進(jìn)入DA能神經(jīng)元的重要替代路徑,而鐵的過量積累可能導(dǎo)致DA能神經(jīng)元的損傷甚至死亡[20]。因此,LTCC阻滯劑可能通過阻斷鈣通道來緩解神經(jīng)元中的鐵超負(fù)荷,成為PD的新治療方法。目前,LTCC參與PD的確切機(jī)制仍不清楚,LTCC是否直接參與SN區(qū)鐵的聚集也不清楚,因此深入探討PD發(fā)病過程中LTCC與Fe2+聚集的相關(guān)性,對了解DA能神經(jīng)元的損傷機(jī)制十分重要。
LTCC主要以Cav1.2和Cav1.3亞型的形式存在于神經(jīng)元中[21-22],其相應(yīng)的成孔亞基α1C以及α1D[23]在SN區(qū)DA能神經(jīng)元中功能性表達(dá)[24]。研究表明,DA能神經(jīng)元對Cav1.3鈣通道的異常依賴導(dǎo)致胞質(zhì)內(nèi)Ca2+水平升高,Ca2+進(jìn)入細(xì)胞會持續(xù)刺激線粒體氧化磷酸化,這可能是PD中SN區(qū)DA能神經(jīng)元更易受損的原因之一[25]。而Cav1.2鈣通道在平滑肌細(xì)胞[26]、神經(jīng)元[27]、神經(jīng)內(nèi)分泌細(xì)胞[28]和感覺細(xì)胞等不同細(xì)胞中普遍表達(dá)[29-30]。有研究證實(shí),在6-羥基多巴胺(6-OHDA)損傷的大鼠和1-甲基-4-苯基-1,2,3,6-四氫吡啶(MPTP)處理的PD模型小鼠SN中,Cav1.2 α1亞基的表達(dá)顯著增加[23]。然而,迄今為止尚不清楚Cav1.2鈣通道對PD發(fā)病機(jī)制中鐵誘導(dǎo)的神經(jīng)毒性的影響。而之前的研究報(bào)道,在鐵負(fù)載條件下,LTCC可能是鐵進(jìn)入心肌細(xì)胞的主要途徑[31-32]。
本次研究首先利用不同濃度的Fe2+作用于MES23.5細(xì)胞[33],通過流式細(xì)胞術(shù)觀察細(xì)胞ΔΨm的變化,結(jié)果顯示,F(xiàn)e2+處理MES23.5細(xì)胞后,細(xì)胞△Ψm下降,提示線粒體功能受損。進(jìn)一步的研究結(jié)果顯示,F(xiàn)e2+組Bcl-2/Bax蛋白表達(dá)比值較對照組明顯降低,而5 μmol/L的ISR預(yù)處理部分逆轉(zhuǎn)了Fe2+誘導(dǎo)的Bcl-2/Bax蛋白表達(dá)比值的下降,表明LTCC可能參與了鐵積累引起的PD的發(fā)生??傊陨辖Y(jié)果表明,ISR可能會抑制Fe2+誘導(dǎo)的MES23.5細(xì)胞毒性,LTCC阻滯劑可能通過阻斷鈣通道來緩解神經(jīng)元中的鐵超負(fù)荷。
[參考文獻(xiàn)]
[1]BALESTRINO R, SCHAPIRA A H V. Parkinson disease[J]. European Journal of Neurology, 2020,27(1):27-42.
[2]KALIA L V, LANG A E. Parkinsons disease[J]. The Lancet, 2015,386(9996):896-912.
[3]KOULI A, TORSNEY K M, KUAN W L. Parkinsons di-sease: etiology, neuropathology, and pathogenesis[M]//STOKER T B, GREENLAND J C. Parkinsons disease: pa-thogenesis and clinical aspects. Brisbane (AU): Codon Publications Copyright, 2018.
[4]ZHU Z J, WU K C, YUNG W H, et al. Differential interaction between iron and mutant alpha-synuclein causes distinctive Parkinsonian phenotypes in Drosophila[J]. Biochimica et Biophysica Acta, 2016,1862(4):518-525.
[5]HOWITT J, GYSBERS A M, AYTON S, et al. Increased Ndfip1 in the substantia nigra of Parkinsonian brains is asso-ciated with elevated iron levels[J]. PLoS One, 2014,9(1):e87119.
[6]ZUCCA F A, SEGURA-AGUILAR J, FERRARI E, et al. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinsons disease[J]. Progress in Neurobio-logy, 2017,155:96-119.
[7]YANATORI I, KISHI F. DMT1 and iron transport[J]. Free Radical Biology & Medicine, 2019,133:55-63.
[8]BISHOP G M, DANG T N, DRINGEN R, et al. Accumulation of non-transferrin-bound iron by neurons, astrocytes, and microglia[J]. Neurotoxicity Research, 2011,19(3):443-451.
[9]KUMFU S, CHATTIPAKORN S, CHINDA K, et al. T-type calcium channel blockade improves survival and cardiovascular function in thalassemic mice[J]. European Journal of Haematology, 2012,88(6):535-548.
[10]MOREAU C, DUCE J A, RASCOL O, et al. Iron as a therapeutic target for Parkinsons disease[J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2018,33(4):568-574.
[11]MOCHIZUKI H, CHOONG C J, BABA K. Parkinsons di-sease and iron[J]. Journal of Neural Transmission (Vienna, Austria: 1996), 2020,127(2):181-187.
[12]GOMME P T, MCCANN K B, BERTOLINI J. Transferrin: structure, function and potential therapeutic actions[J]. Drug Discovery Today, 2005,10(4):267-273.
[13]JI C Y, KOSMAN D J. Molecular mechanisms of non-transferrin-bound and transferring-bound iron uptake in primary hippocampal neurons[J]. Journal of Neurochemistry, 2015,133(5):668-683.
[14]CODAZZI F, PELIZZONI I, ZACCHETTI D, et al. Iron entry in neurons and astrocytes: a link with synaptic activity[J]. Frontiers in Molecular Neuroscience, 2015,8:18.
[15]WANG Q M, XU Y Y, LIU S, et al. Isradipine attenuates MPTP-induced dopamine neuron degeneration by inhibiting up-regulation of L-type calcium channels and iron accumulation in the substantia nigra of mice[J]. Oncotarget, 2017,8(29):47284-47295.
[16]JIANG H, QIAN Z M, XIE J X. Increased DMT1 expression and iron content in MPTP-treated C57BL/6 mice[J]. Sheng Li Xue Bao, 2003,55(5):571-576.
[17]SINNEGGER-BRAUNS M J, HETZENAUER A, HUBER I G, et al. Isoform-specific regulation of mood behavior and pancreatic beta cell and cardiovascular function by L-type Ca2+ channels[J]. The Journal of Clinical Investigation, 2004,113(10):1430-1439.
[18]NUSSINOVITCH I. Ca2+ channels in anterior pituitary somatotrophs: a therapeutic perspective[J]. Endocrinology, 2018,159(12):4043-4055.
[19]NAVAKKODE S, LIU C, SOONG T W. Altered function of neuronal L-type calcium channels in ageing and neuroinflammation: implications in age-related synaptic dysfunction and cognitive decline[J]. Ageing Research Reviews, 2018,42:86-99.
[20]ORTNER N J, BOCK G, DOUGALIS A, et al. Lower affinity of isradipine for L-type Ca2+ channels during substantia nigra dopamine neuron-like activity: implications for neuroprotection in Parkinsons disease[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2017,37(28):6761-6777.
[21]ZHANG H, FU Y, ALTIER C, et al. Ca1.2 and CaV1.3 neuronal L-type calcium channels: differential targeting and signaling to pCREB[J]. The European Journal of Neuroscience, 2006,23(9):2297-2310.
[22]BERGER S M, BARTSCH D. The role of L-type voltage-gated calcium channels Cav1.2 and Cav1.3 in normal and pathological brain function[J]. Cell and Tissue Research, 2014,357(2):463-476.
[23]LISS B, STRIESSNIG J. The potential of L-type calcium channels as a drug target for neuroprotective therapy in Parkinsons disease[J]. Annual Review of Pharmacology and Toxicology, 2019,59:263-289.
[24]BRANCH S Y, CHEN C, SHARMA R, et al. Dopaminergic neurons exhibit an age-dependent decline in electrophysiological parameters in the MitoPark mouse model of Parkinsons disease[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2016,36(14):4026-4037.
[25]DRAGICEVIC E, POETSCHKE C, DUDA J, et al. Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons[J]. Brain: a Journal of Neuro-logy, 2014,137(Pt 8):2287-2302.
[26]VILA-MEDINA J, CALDERN-SNCHEZ E, GONZ-LEZ-RODRGUEZ P, et al. Orai1 and TRPC1 proteins Co-localize with CaV1.2 channels to form a signal complex in vascular smooth muscle cells[J]. Journal of Biological Chemistry, 2016,291(40):21148-21159.
[27]LAI Y J, ZHU B L, SUN F, et al. Estrogen receptor α promotes Cav1.2 ubiquitination and degradation in neuronal cells and in APP/PS1 mice[J]. Aging Cell, 2019,18(4):e12961.
[28]PLATZER J, ENGEL J, SCHROTT-FISCHER A, et al. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels[J]. Cell, 2000,102(1):89-97.
[29]YANG G, SHI Y, YU J, et al. CaV1.2 and CaV1.3 channel hyperactivation in mouse islet β cells exposed to type 1 diabetic serum[J]. Cellular and Molecular Life Sciences, 2015,72(6):1197-1207.
[30]HAN J W, LEE Y H, YOEN S I, et al. Resistance to pathologic cardiac hypertrophy and reduced expression of CaV1.2 in Trpc3-depleted mice[J]. Molecular and Cellular Biochemistry, 2016,421(1/2):55-65.
[31]ABD ALLAH E S, AHMED M A, ABDEL MOLA A F. Comparative study of the effect of verapamil and vitamin D on iron overload-induced oxidative stress and cardiac structural changes in adult male rats[J]. Pathophysiology: the Official Journal of the International Society for Pathophysiology, 2014,21(4):293-300.
[32]WANG X S, SAEGUSA H, HUNTULA S, et al. Blockade of microglial Cav1.2 Ca2+ channel exacerbates the symptoms in a Parkinsons disease model[J]. Scientific Reports, 2019,9(1):9138.
[33]WU Q, ZHANG M, LIU X Y, et al. CB2R orchestrates neuronal autophagy through regulation of the mTOR signaling pathway in the hippocampus of developing rats with status epilepticus[J]. International Journal of Molecular Medicine, 2020,45(2):475-484.
(本文編輯 馬偉平)
青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)2021年2期