王書(shū)平,宋玉梅,劉 爽,郭鵬然*
海水養(yǎng)殖底泥中外源汞甲基化及生物響應(yīng)研究
王書(shū)平1,2,宋玉梅1,劉 爽1,郭鵬然1*
(1.廣東省科學(xué)院測(cè)試分析研究所(中國(guó)廣州分析測(cè)試中心),廣東省化學(xué)危害應(yīng)急檢測(cè)技術(shù)重點(diǎn)實(shí)驗(yàn)室,廣東省水環(huán)境污染在線(xiàn)監(jiān)測(cè)工程技術(shù)研究中心,廣東 廣州 510070;2.昆明理工大學(xué)環(huán)境科學(xué)與工程學(xué)院,云南 昆明 650500)
本文選擇沙蠶作為底棲生物,通過(guò)模擬海水養(yǎng)殖環(huán)境,研究在外源汞(Hg(NO3)2)脅迫下,沙蠶對(duì)汞(Hg)的甲基化和甲基汞(MeHg)的富集,以及沙蠶的生物應(yīng)激響應(yīng).結(jié)果表明,海水養(yǎng)殖區(qū)沙蠶一方面自身具有將汞轉(zhuǎn)化為MeHg的能力,同時(shí)沙蠶擾動(dòng)會(huì)促進(jìn)沉積物中Hg的甲基化,沙蠶擾動(dòng)沉積物中MeHg的含量為無(wú)擾動(dòng)沉積物中的1.93倍.隨著外源汞含量和暴露時(shí)間的增加,沙蠶對(duì)MeHg的富集量逐漸增加,而富集速率逐漸降低.沙蠶體內(nèi)MeHg富集含量為0.007~0.079mg/kg,占沙蠶體內(nèi)總汞(THg)含量的31.20%~86.90%.與無(wú)機(jī)Hg相比,MeHg會(huì)對(duì)沙蠶造成更大的氧化壓力,具有更強(qiáng)的生物毒性.沙蠶的SOD,CAT活性和GSH,MDA含量與暴露時(shí)間及含量有顯著相關(guān)性.當(dāng)沉積物中外源汞輸入含量超過(guò)0.5mg/kg,沙蠶抗氧化應(yīng)激系統(tǒng)將超過(guò)防御極限.
外源汞;甲基化;沉積物;沙蠶;氧化應(yīng)激
中國(guó)的海水養(yǎng)殖長(zhǎng)期采用高密度和高投餌料的養(yǎng)殖方式,而海水養(yǎng)殖的飼料轉(zhuǎn)化率通常為59%左右,近40%的飼料將殘留在沉積物中,造成近海養(yǎng)殖場(chǎng)沉積物中有機(jī)質(zhì)大量沉積[1],含大量有機(jī)質(zhì)的沉積物非常適合微生物和底棲生物的生長(zhǎng)繁殖,生物活動(dòng)會(huì)影響沉積物中重金屬的形態(tài)和遷移轉(zhuǎn)化[2-3].Hg是海水養(yǎng)殖沉積物中最常見(jiàn)的有毒重金屬之一,中國(guó)海水養(yǎng)殖區(qū)及部分地區(qū)近海沉積物中THg含量為0.07~11.90mg/kg[2,4],最大值高于國(guó)家標(biāo)準(zhǔn)值[GB 18668–2002][5]59.40倍.海水養(yǎng)殖沉積物中Hg以多種形式存在(例如元素汞(Hg0),二價(jià)汞(Hg2+)和甲基汞(MeHg)),MeHg具有很強(qiáng)的神經(jīng)毒性,其毒性強(qiáng)于其他任何形態(tài)的汞,并且MeHg能夠沿食物鏈逐漸放大[6],最終危害到人類(lèi)身體健康.沉積物中的Hg可通過(guò)生物[7]和非生物作用[8]2種途徑進(jìn)行甲基化.研究表明,厭氧微生物(硫酸鹽還原菌,鐵還原細(xì)菌和產(chǎn)甲烷菌等)在厭氧條件下對(duì)Hg具有高親和力和甲基化作用,是環(huán)境中MeHg的主要貢獻(xiàn)者,同時(shí)還發(fā)現(xiàn)某些需氧微生物和含有特定基因簇(HgcAB)的微生物也具有將Hg甲基化的能力[7].汞生物甲基化的主要影響因素為生物可利用態(tài)Hg和微生物群落[10],但以上2個(gè)因素受環(huán)境中包括溫度,pH值,氧化還原電位(Eh),有機(jī)質(zhì),生物擾動(dòng)等諸多條件影響[7,9-10].有研究證明,相比于其他近海沉積物,海水養(yǎng)殖沉積物中微小粒徑的有機(jī)物含量增長(zhǎng)更明顯,Hg在沉積物中更傾向于與粒徑較小,比表面積更大,活性位點(diǎn)更多的有機(jī)顆粒結(jié)合[11].有機(jī)質(zhì)作為碳源可以增強(qiáng)沉積物中微生物的活性,提高厭氧微生物(如產(chǎn)甲烷菌,鐵還原菌,硫酸鹽還原菌)對(duì)無(wú)機(jī)汞的生物甲基化能力[10].同時(shí),大型生物(蚯蚓,魚(yú)類(lèi)和水生植物)也能將無(wú)機(jī)汞轉(zhuǎn)化成MeHg[6,12-13].沙蠶作為底棲生物鏈的主要組成部分,以攝食沉積物為生,也是多種水環(huán)境捕食者(如魚(yú),螃蟹)的食物,同時(shí)還是水產(chǎn)養(yǎng)殖業(yè)中難得的優(yōu)質(zhì)餌料,對(duì)海水養(yǎng)殖環(huán)境中汞在食物鏈的生物放大過(guò)程起著重要作用[14].研究發(fā)現(xiàn),底棲生物對(duì)沉積物的攝食是其富集Hg和MeHg的主要途徑[15].同時(shí),底棲生物體內(nèi)的MeHg也可能來(lái)自生物體內(nèi)輔酶或微生物對(duì)Hg的甲基化[15].然而,底棲生物中的MeHg的可能來(lái)源和產(chǎn)生機(jī)理,以及底棲生物對(duì)外源汞甲基化的影響仍未得到充分研究.
Hg在生物體內(nèi)的蓄積毒性由的暴露劑量和持續(xù)時(shí)間決定,測(cè)量生物對(duì)Hg的富集是評(píng)估環(huán)境中Hg風(fēng)險(xiǎn)的常規(guī)做法[16-17],但是僅測(cè)量Hg在生物體內(nèi)的富集和分布,以及對(duì)生物生理結(jié)構(gòu)損傷不能完全評(píng)估環(huán)境損害.相比之下,分子水平的生物指示物對(duì)Hg污染更加敏感.生物在受到Hg脅迫時(shí),生物體內(nèi)會(huì)發(fā)生Haber-Weiss反應(yīng)導(dǎo)致活性氧(ROS)的產(chǎn)生,ROS是一系列具有強(qiáng)氧化性的物質(zhì),如超氧自由基(O2??),過(guò)氧化氫(H2O2)和羥基自由基(HO?)等[18].為了確保機(jī)體的正常生理代謝,生物體的抗氧化系統(tǒng)會(huì)被激活,超氧化物歧化酶(SOD),過(guò)氧化氫酶(CAT),還原型谷胱甘肽(GSH)作為生物體內(nèi)抗氧化系統(tǒng)的重要防線(xiàn),可去除體內(nèi)因暴露于汞而產(chǎn)生的ROS,保護(hù)生物體免受氧化壓力[19-20].當(dāng)生物體自身抗氧化系統(tǒng)不能夠消除污染物造成的氧化物時(shí),未能消除的ROS將氧化生物體膜,從而導(dǎo)致丙二醛(MDA)的生成,即MDA水平的升高表明膜損傷.因此,本研究使用生物標(biāo)志物(SOD,CAT,GSH,MDA)對(duì)環(huán)境Hg污染進(jìn)行監(jiān)測(cè),研究外源汞脅迫下沙蠶的生物響應(yīng),對(duì)海水養(yǎng)殖區(qū)沉積物中Hg污染生物毒性評(píng)價(jià)具有重要指示意義.
本研究以近海養(yǎng)殖區(qū)沉積物為供試材料,沙蠶為研究對(duì)象,在模擬試驗(yàn)條件下研究海水養(yǎng)殖區(qū)沉積物外源汞輸入后,沙蠶對(duì)MeHg的富集,Hg的甲基化影響,以及沙蠶的生物應(yīng)激響應(yīng),以期待了解受外源汞污染沉積物中汞的形態(tài)轉(zhuǎn)化,為底棲生物對(duì)汞污染早期預(yù)警提供參考.
沉積物樣品采自柘林灣海水養(yǎng)殖區(qū),利用彼得森采樣器采集表層沉積物(0~20cm),快速將樣品裝入充滿(mǎn)氮?dú)獾木垡蚁┎蓸哟?放入裝有冰塊的保溫箱,運(yùn)回實(shí)驗(yàn)室后測(cè)定其基本理化性質(zhì)與Hg含量(表1).剩余樣品冷凍干燥處理(-75℃,真空度5.0Pa),研磨過(guò)60目篩保存.
表1 柘林灣沉積物重金屬含量與基本理化信息
模擬海水養(yǎng)殖實(shí)驗(yàn)裝置為長(zhǎng)30cm,寬20cm,高20cm的玻璃缸,將6kg過(guò)篩的沉積物均勻填裝到模擬海水養(yǎng)殖實(shí)驗(yàn)裝置中,模擬裝置中沉積物最終厚度約10~12cm.向各個(gè)模擬裝置沉積物中添加外源汞溶液使沉積物中外源汞含量分別為0,0.2,0.5,1,2, 5mg/kg(干重),外源汞處理后,測(cè)得沉積物的THg平均值分別為0.03,0.15,0.86,1.69,4.43mg/kg.添加鹽度為(21±2)‰的模擬海水使沉積物濕度一致,再用攪拌器將沉積物攪拌均勻,并保持溫度(26±1)℃,實(shí)驗(yàn)體系的pH值平均值為5.08,Eh平均值為231m.生物組投放底棲生物,非生物組不投放底棲生物,共計(jì)12個(gè)實(shí)驗(yàn)組,每個(gè)實(shí)驗(yàn)組設(shè)置3個(gè)平行.
人工養(yǎng)殖的沙蠶采購(gòu)于中國(guó)廣東省湛江市沙蠶養(yǎng)殖廠(chǎng),先將沙蠶漂洗并在曝氣的模擬海水中洗滌72h,之后將其轉(zhuǎn)移至Hg含量很低的沉積物(0.027mg/kg)中馴化7d.馴養(yǎng)結(jié)束后,用超純水清洗沙蠶,并將沙蠶置于鋪有濾紙的燒杯中清腸24h.從中選擇大小及重量較均一[平均長(zhǎng)度(9±0.50)cm,平均質(zhì)量為(3±0.20)g]的沙蠶進(jìn)行暴露實(shí)驗(yàn).每個(gè)實(shí)驗(yàn)裝置投放30條沙蠶,在(25±1)℃環(huán)境下暴露21d,暴露過(guò)程中若發(fā)現(xiàn)沙蠶死亡,立刻剔除.沙蠶暴露時(shí)間為7,14,21d時(shí),從每個(gè)實(shí)驗(yàn)裝置中取20g沉積物,并從存在沙蠶的實(shí)驗(yàn)裝置中隨機(jī)取6條沙蠶用于生化指標(biāo)測(cè)定.沙蠶取出后先用超純水清洗,再將沙蠶置于鋪有濾紙的燒杯中清腸24h,之后將一部分沙蠶冷凍保存用于測(cè)定生物體酶活性,另一部分沙蠶與沉積物冷凍干燥研磨處理后用于測(cè)定Hg和MeHg的含量.
1.4.1 總汞分析 準(zhǔn)確稱(chēng)取0.05g待測(cè)物,采用Lumex RA-915+汞分析儀及PYRO-915配件(俄羅斯Lumex分析儀器公司),使用Model I模式,在熱解析溫度為680~740℃,氣體流量為0.80~1.20L/min,積分時(shí)間為90s的條件下測(cè)定暴露實(shí)驗(yàn)過(guò)程及暴露后沉積物和沙蠶體內(nèi)Hg的含量.
1.4.2 甲基汞(MeHg)的萃取與分析 沉積物中MeHg采用文獻(xiàn)[21]方法進(jìn)行萃取.準(zhǔn)確稱(chēng)取2g冷凍干燥的沉積物于50mL離心管中,然后加入5mL酸性KBr和1mL CuSO4溶液萃取沉積物中的MeHg,混和均勻后靜置1h;再加6mL二氯甲烷到離心管中,超聲浸提30min,使MeHg萃取至二氯甲烷中.以3000r/min離心15min,使用分相濾紙對(duì)有機(jī)相和水相進(jìn)行分離,收集有機(jī)相;取5mL有機(jī)相至40mL玻璃瓶中,加入15mL去離子水,放入3粒高純聚四氟乙烯(PTFE)沸石,65℃加熱至有機(jī)相消失后再加熱4h,使二氯甲烷完全揮發(fā),將剩余的樣品溶液用流動(dòng)相(0.10%(/)L-半胱氨酸-60mmol/L乙酸銨)定容至25mL.
沙蠶中MeHg采用Wang等的方法進(jìn)行萃取[22].準(zhǔn)確稱(chēng)取0.10g冷凍干燥的沙蠶于10mL聚乙烯管中,然后加入5mL由0.10%(/)HCl,0.10%(/)2-巰基乙醇和0.15%(/)KCl溶液萃取沙蠶中的MeHg,將混合溶液放入搖床中,150r/min,30℃振蕩12h,隨后超聲15min,以3000r/min離心15min,收集上清液,再向殘余物中加5mL萃取溶液并振蕩5min,重復(fù)上述操作,將所得的上清液混合并過(guò)0.45μm濾膜,用流動(dòng)相定容至25mL.
間隙水樣品采用離心法進(jìn)行萃取,每次樣品采集完成后,立即取30g沉積物,加入到50mL離心管中,4000r/min離心15min,上清液過(guò)0.45μm濾膜,再加10μL濃HNO3酸化過(guò)濾液,用去離子水定容到25mL.
用高效液相色譜(HPLC,Agilent 1100,USA)和電感耦合等離子質(zhì)譜(ICP-MS,Agilent 8800,USA)聯(lián)用技術(shù)測(cè)定不同形態(tài)的Hg[23].采用C18反向色譜柱(Agilent Zorbax Plus,USA)分離各溶液中的Hg,以5%(/)甲醇,0.10%(/)L-半胱氨酸和0.06mol/L乙酸銨為流動(dòng)相,用氨水和乙酸調(diào)節(jié)pH值為4.5,進(jìn)樣量20μL,流速1.0mL/min,測(cè)定沉積物,沙蠶以及間隙水樣品中的Hg.
取0.10g冷凍干燥的沙蠶,按照1:9(/)的比例加入預(yù)冷的生理鹽水(0.90% NaCl),于全自動(dòng)樣品快速研磨儀中以10000r/min勻漿10s,勻漿液在低溫離心機(jī)中3000r/min下離心15min,取上清液4 ℃保存待測(cè).使用商業(yè)測(cè)試試劑盒(南京建成生物工程研究所,南京,中國(guó))對(duì)沙蠶樣品的蛋白質(zhì),SOD,CAT, MDA,GSH進(jìn)行測(cè)定.
沉積物和生物樣品的分析均采用方法空白,試劑空白和標(biāo)準(zhǔn)物質(zhì)進(jìn)行質(zhì)量控制.以確保分析方法和樣品中THg,MeHg分析結(jié)果的準(zhǔn)確度.THg和MeHg標(biāo)準(zhǔn)參考物質(zhì)的回收率分別為84.80%~ 98.50%和83.60%~99.10%,方法測(cè)量結(jié)果準(zhǔn)確度和精密度均較好.
所有數(shù)據(jù)均使用統(tǒng)計(jì)分析軟件SPSS 22.0進(jìn)行統(tǒng)計(jì)分析,使用ANOVA分析實(shí)驗(yàn)組之間的顯著性差異,顯著性水平設(shè)置為*<0.05,**<0.01,使用皮爾遜相關(guān)性分析不同實(shí)驗(yàn)組之間的相關(guān)性.圖均用Origin version 8.0繪制.
從圖1(a)可知,沙蠶體內(nèi)THg含量隨外源汞的增加而顯著增加,THg含量范圍為0.01~0.19mg/kg.沙蠶暴露于外源汞含量分別為0.2,0.5,1,2,5mg/kg沉積物中,其體內(nèi)THg的最大富集量分別為無(wú)外源汞含量時(shí)的2.55,3.49,4.59,8.31和11.90倍.沙蠶在不同外源汞含量沉積物中暴露7,14和21d,其體內(nèi)THg增加量分別為暴露前的0.60~6.70,0.15~0.33和0.05~0.25倍,沙蠶體內(nèi)THg的富集量隨著暴露時(shí)間的延長(zhǎng)而顯著增加.
如圖1(b)所示,暴露前7d為沙蠶對(duì)Hg的富集高峰期,隨著暴露時(shí)間的延長(zhǎng),沙蠶對(duì)外源汞的富集速率逐漸降低,暴露14~21d時(shí)富集速率最低,沙蠶對(duì)Hg的富集速率隨暴露時(shí)間的延長(zhǎng)呈先快后緩的趨勢(shì).同一暴露時(shí)間段沙蠶對(duì)Hg的富集速率隨外源汞含量的增加而增加.
如圖1(c)可知,沙蠶體內(nèi)MeHg的含量為0.007~0.079mg/kg,占沙蠶體內(nèi)THg含量的31.20%~ 86.90%.沙蠶暴露于外源汞含量分別為0.2,0.5,1,2和5mg/kg沉積物中,其體內(nèi)MeHg的最大富集量為無(wú)外源汞時(shí)的2.13,3.19,3.83,5.62和6.78倍.沙蠶在不同外源汞含量沉積物中暴露7,14和21d,其體內(nèi)MeHg增加量分別為暴露前的0.70~4.39,0.28~0.45和0.17~0.21倍.沙蠶體內(nèi)MeHg含量隨著暴露時(shí)間和含量的增加而顯著增加.
如圖1(d)所示,沙蠶體內(nèi)MeHg在暴露前7d的增長(zhǎng)速率最快,7~14d的增長(zhǎng)速率顯著低于前7d, 14~21d的增長(zhǎng)速率最低,沙蠶體內(nèi)MeHg的增長(zhǎng)速率隨著暴露時(shí)間延長(zhǎng)逐漸降低,沙蠶對(duì)MeHg的增長(zhǎng)速率隨暴露時(shí)間的延長(zhǎng)呈先快后緩的趨勢(shì).同一暴露時(shí)間段沙蠶體內(nèi)MeHg的增長(zhǎng)速率隨著外源汞含量的增加而增加.
同一濃度暴露實(shí)驗(yàn)組不同字母表示存在顯著性差異(<0.05)
如圖2(a)可知,在沙蠶擾動(dòng)下,低含量處理(0.2, 0.5,1mg/kg)沉積物在整個(gè)暴露過(guò)程THg含量變化不存在顯著差異;高含量外源汞處理(2,5mg/kg)的沉積物中THg含量在暴露7d后存在降低的現(xiàn)象,但差異不顯著.圖2(b)表明,在無(wú)沙蠶擾動(dòng)下,不同含量外源汞處理的沉積物中THg含量變化均不存在顯著差異.
據(jù)圖2(c)和2(d)可知,低外源汞含量處理(0,0.2和0.5mg/kg)時(shí),沉積物中未檢出MeHg;高外源汞含量處理(1,2和5mg/kg)時(shí),沉積物中MeHg可明顯檢出,且隨沉積物外源汞含量和暴露時(shí)間的增加而增加.在外源汞含量1,2,5mg/kg處理下,存在沙蠶擾動(dòng)的沉積物中MeHg含量均高于無(wú)沙蠶擾動(dòng)的沉積物,MeHg含量分別為無(wú)沙蠶擾動(dòng)沉積物中的2.62,1.37和1.39倍,表明底棲生物的存在使其周?chē)练e物中MeHg含量明顯增多.
圖2 沉積物中THg和MeHg含量
由圖3可知,沙蠶體內(nèi)SOD,CAT活性和GSH, MDA含量均隨外源汞含量的增加而逐漸增加,在暴露前7d呈顯著增長(zhǎng).
根據(jù)圖3(a)可知,沙蠶體內(nèi)SOD活性增長(zhǎng)速率隨著外源汞暴露含量增加均呈現(xiàn)先快后緩的趨勢(shì).沉積物中外源汞含量為0.2,0.5mg/kg時(shí),沙蠶體內(nèi)SOD活性增長(zhǎng)速率較快,其中外源汞含量為0.5mg/kg時(shí),SOD活性在暴露14~21d出現(xiàn)顯著性增長(zhǎng);沉積物中外源汞含量為1,2,5mg/kg時(shí),SOD活性在暴露7~21d無(wú)顯著性變化,且增長(zhǎng)較緩慢.
由圖3(b)可知,沙蠶體內(nèi)GSH含量隨著暴露含量呈現(xiàn)先快后緩的上升趨勢(shì),沉積物中外源汞含量為0.2和0.5mg/kg時(shí),沙蠶體內(nèi)GSH含量增長(zhǎng)速率較快,暴露14~21d時(shí),GSH含量均呈現(xiàn)顯著性增長(zhǎng),沉積物中外源汞含量為1,2,5mg/kg時(shí), GSH含量在暴露7~21d無(wú)顯著性變化?且增長(zhǎng)較緩慢.
外源汞含量為0.2,0.5mg/kg時(shí),隨暴露時(shí)間延長(zhǎng),沙蠶體內(nèi)CAT活性先升高后降低,且在14d達(dá)到峰值,與0d時(shí)相比CAT活性分別增加了1.73和2.09倍;沉積物中外源汞含量為1,2,5mg/kg時(shí),CAT活性隨暴露時(shí)間的延長(zhǎng)顯著增長(zhǎng)(圖3(c)).
如圖3(d),MDA含量隨著外源汞暴露含量的增加而增加.外源汞含量為0.2,0.5,1,2,5mg/kg時(shí),沙蠶體內(nèi)MDA含量在暴露前7d的增長(zhǎng)量為暴露前的0.79,1.79,2.99,3.37和3.73倍.外源汞含量為0.2,1,2和5mg/kg,在暴露7~21d時(shí),MDA含量未出現(xiàn)顯著性增長(zhǎng).但沉積物中外源汞含量為0.5mg/kg時(shí),MDA含量在暴露7~21d時(shí)再次出現(xiàn)顯著性增長(zhǎng).
圖3 沙蠶體內(nèi)SOD,CAT活性和GSH,MDA含量
同一濃度暴露實(shí)驗(yàn)組不同字母表示存在顯著性差異(<0.05)
沉積物THg含量均隨著外源汞含量增加而逐漸增加(圖2(a),(b)),且存在沙蠶擾動(dòng)的高外源汞含量處理(2,5mg/kg)組沉積物中THg含量在沙蠶暴露至第7d時(shí)呈明顯降低而后變化平緩,與沙蠶體內(nèi)THg含量增長(zhǎng)速率隨暴露時(shí)間先快后緩變化趨勢(shì)較一致.沙蠶在暴露期間對(duì)Hg的富集量隨著外源汞含量增加而增加(圖1(b)),而富集速率隨著暴露時(shí)間的延長(zhǎng)逐漸降低,且其在高外源汞含量處理組富集速率高于低外源汞含量處理組,這可能是高外源汞含量處理組沙蠶體內(nèi)Hg的富集量接近“飽和點(diǎn)”,導(dǎo)致富集速率逐漸降低[19,24];低外源汞含量處理組沉積物中外源汞暴露濃度低于高外源汞處理組,暴露濃度較低從而影響沙蠶對(duì)Hg的吸收速率.在設(shè)置暴露含量范圍內(nèi),沙蠶體內(nèi)Hg富集量在暴露期間未達(dá)到“飽和點(diǎn)”,這可能是暴露時(shí)間較短,沙蠶對(duì)Hg的攝取率與消除率尚未達(dá)到平衡.
低外源汞含量(£0.5mg/kg)下,沉積物中MeHg未檢出,而沙蠶體內(nèi)檢出MeHg,且MeHg含量隨著暴露時(shí)間的延長(zhǎng)逐漸增加.這一方面可能是沙蠶吸收沉積物中Hg[4],使得沉積物中Hg含量降低,導(dǎo)致沉積物中轉(zhuǎn)化為MeHg的量太少而無(wú)法檢出;另一方面可能是沙蠶直接吸收沉積物中Hg轉(zhuǎn)化的MeHg導(dǎo)致[25].而且研究發(fā)現(xiàn)生物體內(nèi)富集的MeHg不僅是從沉積物攝入,還可能由無(wú)機(jī)汞在生物體內(nèi)轉(zhuǎn)化形成[6].沙蠶攝食的沉積物含有復(fù)雜的腐殖質(zhì),沙蠶消化道內(nèi)微生物會(huì)對(duì)其進(jìn)行消化和吸收,該耗氧消化過(guò)程會(huì)導(dǎo)致沙蠶內(nèi)氧化還原電位值梯度下降,使消化道形成適宜厭氧微生物生存的缺氧環(huán)境[26];同時(shí)沙蠶消化道內(nèi)的酸性環(huán)境使消化道沉積物中的穩(wěn)定態(tài)Hg從吸附位點(diǎn)解吸轉(zhuǎn)化成易被甲基化的生物可利用態(tài)Hg[27-28].在沙蠶消化道缺氧環(huán)境中,消化道中的厭氧微生物(如產(chǎn)甲烷菌,鐵還原菌和硫酸鹽還原菌)[29]會(huì)將沉積物中的生物可利用態(tài)Hg轉(zhuǎn)化為MeHg,并在消化道內(nèi)由消化液的促進(jìn)作用吸收富集于沙蠶體內(nèi)[28].因此,沙蠶體內(nèi)富集的MeHg可能源自無(wú)機(jī)汞在沙蠶體內(nèi)的轉(zhuǎn)化和其對(duì)周?chē)练e物中MeHg的吸收.
高外源汞含量(>0.5mg/kg)下,沉積物和沙蠶均檢出MeHg,且外源汞含量為2mg/kg,暴露21d時(shí),沙蠶體內(nèi)MeHg平均含量為其周?chē)练e物中MeHg平均含量的3.88倍(圖1(c),圖2(c)),表明沙蠶對(duì)MeHg具有較強(qiáng)富集能力.沉積物和沙蠶體內(nèi)不同形態(tài)Hg與沙蠶氧化應(yīng)激指標(biāo)的相關(guān)系數(shù)矩陣見(jiàn)表2,據(jù)表中沉積物和沙蠶體內(nèi)不同形態(tài)Hg的數(shù)據(jù),沙蠶體內(nèi)MeHg與沙蠶體內(nèi)THg及沉積物中MeHg均呈極顯著正相關(guān)(2=0.924,<0.01;2=0.684,<0.01),且與前者相關(guān)性更好.這表明沙蠶體內(nèi)富集的MeHg不僅是從沉積物攝入,還可能是沙蠶體內(nèi)無(wú)機(jī)汞轉(zhuǎn)化形成[4];沙蠶體內(nèi)轉(zhuǎn)化吸收的MeHg較其從沉積物中吸收的MeHg對(duì)沙蠶體內(nèi)MeHg含量影響更明顯,具體貢獻(xiàn)比例目前研究工作尚未確定.沙蠶體內(nèi)MeHg與沉積物中THg不存在顯著相關(guān)性(2= 0.296,>0.05),表明沉積物THg含量對(duì)沙蠶體內(nèi)MeHg含量影響不大,可能是沙蠶對(duì)沉積物中無(wú)機(jī)Hg的吸收速率遠(yuǎn)大于沙蠶消化道對(duì)汞甲基化速率.沙蠶存在時(shí)沉積物中MeHg含量比無(wú)沙蠶存在時(shí)明顯較高,最高達(dá)1.93倍,這表明沙蠶擾動(dòng)會(huì)促進(jìn)沉積物中Hg的甲基化[30].這可能是沙蠶分泌液提高了沉積物中Hg的生物可利用性[4],促使沉積物中其他微生物的生物甲基化和光化學(xué)甲基化;也可能是分泌液中微生物促進(jìn)了沉積物中Hg的生物甲基化[30].因此,沙蠶擾動(dòng)對(duì)沉積物中汞甲基化極可能存在化學(xué)作用,同時(shí)存在化學(xué)-生物作用.如圖4所示,沙蠶可通攝食和皮膚吸收沉積物中Hg和MeHg,沙蠶消化道環(huán)境能促進(jìn)Hg轉(zhuǎn)化為MeHg.沙蠶的分泌物會(huì)促進(jìn)沉積物中Hg轉(zhuǎn)化為MeHg,從而增加沙蠶皮膚對(duì)MeHg的富集量.
圖4 沙蠶對(duì)周?chē)练e物中汞的甲基化作用示意
表2 沉積物和沙蠶體內(nèi)不同形態(tài)Hg與沙蠶氧化應(yīng)激指標(biāo)的相關(guān)系數(shù)矩陣
注:**為0.01水平(雙側(cè))上顯著相關(guān).
高外源汞含量下,沉積物中可明顯檢出MeHg (圖2(c),2(d)),隨著暴露時(shí)間的延長(zhǎng),沉積物中MeHg含量增長(zhǎng)速率呈現(xiàn)降低趨勢(shì),與目前研究結(jié)果一致,隨著暴露時(shí)間延長(zhǎng),MeHg的含量逐漸進(jìn)入平穩(wěn)期,沉積物中汞的甲基化與脫甲基化過(guò)程趨于平衡[31].沉積物中MeHg含量與沉積物中THg含量及間隙水含量均呈極顯著正相關(guān)(2=0.722,<0.01;2=0.887,<0.01),但與后者相關(guān)性更好,說(shuō)明沉積物中Hg甲基化受沉積物中THg含量的影響,而沉積物中生物可利用態(tài)Hg對(duì)沉積物中MeHg貢獻(xiàn)率更高[32].
由于海水養(yǎng)殖區(qū)沉積物中沉積大量魚(yú)糞和未食用的魚(yú)食,導(dǎo)致海水養(yǎng)殖區(qū)沉積物中有機(jī)質(zhì)含量顯著增加[11],有機(jī)質(zhì)作為碳源可以增強(qiáng)沉積物中微生物的活性,提高厭氧微生物(如產(chǎn)甲烷菌,鐵還原菌,硫酸鹽還原菌)對(duì)無(wú)機(jī)汞的生物甲基化能力[10],有機(jī)質(zhì)含量與MeHg含量具有很好的相關(guān)性[33].同時(shí)沉積物中高含量有機(jī)質(zhì)具有-SH基團(tuán),可與無(wú)機(jī)汞形成高穩(wěn)定性和低溶解度的有機(jī)質(zhì)-Hg絡(luò)合物,降低汞的生物可利用性,從而降低汞的甲基化率[34].但沉積物中MeHg與生物可利用態(tài)Hg顯著正相關(guān),表明有機(jī)質(zhì)通過(guò)降低汞的生物可利用性對(duì)汞甲基化影響不大,而有機(jī)質(zhì)通過(guò)為厭氧微生物提供碳源促進(jìn)了沉積物中Hg的甲基化.
沙蠶體內(nèi)SOD,CAT活性和GSH,MDA含量隨外源汞含量的增加而增加,且在暴露前7d均呈顯著增長(zhǎng),表明沙蠶受到外源汞脅迫時(shí),抗氧化防御系統(tǒng)能被迅速激活[35].沙蠶氧化應(yīng)激指標(biāo)與沙蠶體內(nèi)THg和MeHg呈極顯著正相關(guān)(230.813,<0.01),且與后者的相關(guān)性更好,這表明沙蠶抗氧化防御系統(tǒng)對(duì)Hg脅迫的應(yīng)激性受沙蠶體內(nèi)Hg富集量的影響,而MeHg會(huì)對(duì)底棲生物造成更大的氧化壓力,具有更強(qiáng)的生物毒性.
受外源汞脅迫時(shí),沙蠶體內(nèi)的SOD活性隨著暴露時(shí)間的增加而顯著增加,且增長(zhǎng)速率與沙蠶體內(nèi)Hg和MeHg一致,隨暴露時(shí)間延長(zhǎng)呈先快后緩的上升趨勢(shì),而SOD是生物體內(nèi)去除O2??的主要酶[36],這說(shuō)明在外源汞暴露下沙蠶體內(nèi)會(huì)產(chǎn)生大量O2??,且其體內(nèi)在暴露期間一直存在大量O2??,可能是富集在沙蠶體內(nèi)的Hg和MeHg均會(huì)誘導(dǎo)其產(chǎn)生大量ROS(O2??,H2O2,HO?等).同時(shí)SOD在消除O2??的過(guò)程中會(huì)生成H2O2[37].
2O2??+ 2H+→H2O2+O2(1)
GSH能夠在谷胱甘肽過(guò)氧化物酶的作用下將H2O2還原為H2O[38],而GSH含量隨外源汞暴露含量與暴露時(shí)間變化的趨勢(shì)與SOD較一致,且沙蠶體內(nèi)SOD與GSH呈極顯著正相關(guān)(2=0.986,<0.01),進(jìn)一步說(shuō)明了GSH具有清除生物體內(nèi)的H2O2的能力.沙蠶體內(nèi)GSH含量與沙蠶體內(nèi)THg和MeHg含量隨外源汞暴露含量與暴露時(shí)間變化的趨勢(shì)相近,且沙蠶體內(nèi)GSH含量與沙蠶體內(nèi)THg和MeHg含量均呈極顯著正相關(guān)(2=0.828,<0.01;2=0.870,< 0.01),這可能是沙蠶體內(nèi)Hg能誘導(dǎo)其GSH基因的表達(dá),隨著沙蠶體內(nèi)富集的Hg含量增加,大量GSH被誘導(dǎo)合成[39],同時(shí),GSH作為生物體最重要的非酶類(lèi)抗氧化物,可通過(guò)-SH將Hg絡(luò)合形成GS-Hg-SG巰基共軛物,從而去除沙蠶體內(nèi)的Hg[40].
GSH+Hg2+?GS-Hg1++H+(2)
GSH+GS-Hg1+?GS-Hg-SG (3)
雖GSH具有還原H2O2的能力,但生物體內(nèi)去除H2O2主要清除劑為CAT[36].低外源汞含量(£0.5mg/ kg)時(shí),CAT的活性隨暴露時(shí)間的增加呈先增后降的趨勢(shì),且在暴露至第14d時(shí)達(dá)到峰值,這可能是沙蠶被Hg誘發(fā)產(chǎn)生較低水平的H2O2,CAT會(huì)通過(guò)催化H2O2氧化沙蠶體內(nèi)其他細(xì)胞毒性物質(zhì)(如酚和醇)[38],從而使沙蠶體內(nèi)的H2O2被逐漸消耗,以致沙蠶體內(nèi)CAT的誘導(dǎo)程度減弱.高外源汞含量(>0.5mg/kg)時(shí),沙蠶體內(nèi)CAT活性隨暴露時(shí)間的延長(zhǎng)呈顯著上升趨勢(shì),且在暴露至第21d時(shí)CAT活性仍繼續(xù)升高,這可能是沙蠶被高含量Hg誘導(dǎo)產(chǎn)生大量H2O2,而較高水平的H2O2會(huì)導(dǎo)致CAT的催化反應(yīng)發(fā)生轉(zhuǎn)變,轉(zhuǎn)變后的催化反應(yīng)中H2O2既充當(dāng)氫分子的受體,又充當(dāng)氫分子的供體,反應(yīng)生成H2O和O2[38],以致沙蠶體內(nèi)CAT的誘導(dǎo)程度增強(qiáng).
2H2O2→2H2O+O2(4)
外源汞含量為0.2mg/kg時(shí),沙蠶MDA含量在暴露前7d呈顯著增長(zhǎng)而后變化平緩,且其含量較低,這可能是沙蠶暴露于較低含量Hg時(shí),其體內(nèi)的抗氧化防御系統(tǒng)雖啟動(dòng),但尚未及時(shí)消除沙蠶體內(nèi)的全部H2O2和O2??,在Hg2+的誘導(dǎo)下發(fā)生Fenton和Haber Weiss反應(yīng),引起較低程度的脂質(zhì)過(guò)氧化[41-42].當(dāng)外源汞含量為0.5mg/kg時(shí),沙蠶MDA含量出現(xiàn)顯著增長(zhǎng),且其最大含量與外源汞含量為1mg/kg時(shí)的最大含量不存在顯著差異,而外源汞含量大于0.5mg/kg時(shí),ROS被大量誘導(dǎo),導(dǎo)致MDA含量暴露前7d迅速增加,在暴露第7d之后,MDA含量達(dá)到最大值且不再降低,這表明當(dāng)沉積物中外源汞含量超過(guò)0.5mg/kg時(shí),沙蠶的抗氧化防御系統(tǒng)將無(wú)法抵御汞的毒性,并嚴(yán)重引起細(xì)胞膜損傷[43].沙蠶體內(nèi)SOD活性,GSH含量與MDA含量隨暴露時(shí)間和含量變化的趨勢(shì)較一致,說(shuō)明沉積物中外源汞輸入含量超過(guò)0.5mg/kg,沙蠶抗氧化應(yīng)激系統(tǒng)則超過(guò)防御極限.
4.1 海水養(yǎng)殖區(qū)沙蠶一方面具有將汞轉(zhuǎn)化為MeHg的能力,同時(shí)沙蠶活動(dòng)會(huì)促進(jìn)沉積物中Hg的甲基化,存在沙蠶擾動(dòng)的沉積物中MeHg含量為無(wú)沙蠶擾動(dòng)沉積物中MgHg含量的1.93倍.
4.2 海水養(yǎng)殖沉積物中沙蠶對(duì)MeHg具有明顯的蓄積性,隨著外源汞含量和暴露時(shí)間的增加,其體內(nèi)MeHg富集量逐漸增加,而富集速率逐漸降低;沙蠶體內(nèi)MeHg富集含量為0.007~0.079mg/kg,占沙蠶體內(nèi)THg含量的31.20%~86.90%.
4.3 SOD,CAT活性和GSH,MDA含量對(duì)Hg的響應(yīng)與Hg暴露時(shí)間和Hg含量有關(guān),沙蠶體內(nèi)SOD, CAT活性和GSH,MDA含量均隨外源汞含量的增加而逐漸增加,在暴露前7d均呈顯著增長(zhǎng);沉積物中外源汞含量超過(guò)0.5mg/kg時(shí),沙蠶抗氧化應(yīng)激系統(tǒng)超過(guò)防御極限;與無(wú)機(jī)Hg相比,MeHg會(huì)對(duì)沙蠶造成更大的氧化壓力,具有更強(qiáng)的生物毒性.
[1] 黃洪輝,林 欽,林燕棠,等.大亞灣網(wǎng)箱養(yǎng)殖海域大型底棲動(dòng)物的時(shí)空變化 [J]. 中國(guó)環(huán)境科學(xué), 2005,25(4):412-416.
Huang H H, Ling Q, Lin Y T, et al. Spatial-temporal variation of large macrobenthic animals in cage culture sea area in Daya Bay [J]. China Environmental Science, 2005,25(4):412-416.
[2] Wang Y, Wei Y N, Guo P R, et al. Distribution variation of heavy metals in maricultural sediments and their enrichment, ecological risk and possible source-A case study from Zhelin bay in Southern China [J]. Marine Pollution Bulletin, 2016,113(1/2):240-246.
[3] Wu Q H, Zhou H C, Tam N F Y, et al. Contamination, toxicity and speciation of heavy metals in an industrialized urban river: Implications for the dispersal of heavy metals [J]. Marine Pollution Bulletin, 2016,104(1/2):153-161.
[4] Xu Z, Fan W, Shi Z, et al. Mercury and methylmercury bioaccumulation in a contaminated bay [J]. Marine Pollution Bulletin, 2019,143:134-139.
[5] GB 18668-2002 海洋沉積物質(zhì)量 [S].
[6] GB 18668-2002 Marine sediment quality [S].
[7] Wang R, Feng X B, Wang W X, In vivo mercury methylation and demethylation in freshwater tilapia quantified by mercury stable isotopes [J]. Environmental Science & Technology, 2013,47(14): 7949-7957.
[8] Helieen H K, Katarzyk K H, Zhang T, et al. Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review [J]. Environmental Science & Technology, 2013,47(6):2441-2456.
[9] Celo V, Lean D R, Scott S L, Abiotic methylation of mercury in the aquatic environment, Science of the Total Environment [J], 2006, 368(1):126-137.
[10] 任家盈,姜 霞,陳春霄,等.太湖營(yíng)養(yǎng)狀態(tài)對(duì)沉積物中總汞和甲基汞分布特征的影響 [J]. 中國(guó)環(huán)境科學(xué), 2013,33(7):1290-1297.
Ren J Y, Jiang X, Cheng C X, et al. The Effect of nutrition status on sediments distribution characteristics of total mercury and methylmercury in Lake Taihu [J]. China Environmental Science, 2013, 33(7):1290-1297.
[11] Ullrich S M, Tanton T W, Abdrashitova S A, Mercury in the Aquatic Environment: A Review of Factors Affecting Methylation [J]. Critical Reviews in Environmental Science and Technology, 2001,31(3):241- 293.
[12] Xu Z, Wu S, Christie P, et al. Impacts of estuarine dissolved organic matter and suspended particles from fish farming on the biogeochemical cycling of mercury in Zhoushan island, eastern China Sea [J]. Science of the Total Environment, 2020,705:135921.
[13] Gothberg A, Greger M, Formation of methyl mercury in an aquatic macrophyte [J]. Chemosphere, 2006,65(11):2096-2105.
[14] Rieder S R, Brunner I, Daniel O, et al. Methylation of mercury in earthworms and the effect of mercury on the associated bacterial communities [J]. PLOS One, 2013,8(4):e61215.
[15] Patrick S, A review of the biology, ecology and potential use of the common ragworm Hediste diversicolor (O.F. Müller) (Annelida Polychaeta) [J]. Hydrobiologia, 2002,470(1-3):203-218.
[16] Wang W X, Stupakoff I, Gagnon C, et al. Bioavailability of inorganic and methylmercury to a marine deposit-feeding polychaete [J]. Environmental Science & Technology, 1998,32(17):2564-2571.
[17] Ernst G, Zimmermann S, Christie P, et al. Mercury, cadmium and lead concentrations in different ecophysiological groups of earthworms in forest soils [J]. Environmental Pollution, 2008,156(3):1304-1313.
[18] Suthar S, Singh S, Dhawan S, Earthworms as bioindicator of metals (Zn, Fe, Mn, Cu, Pb and Cd) in soils: Is metal bioaccumulation affected by their ecological category? [J]. Ecological Engineering, 2008,32(2):99-107.
[19] Francesco R, Winston W G, Quantification of Total Oxidant Scavenging Capacity of Antioxidants for Peroxynitrite, Peroxyl Radicals, and Hydroxyl Radicals [J]. Toxicology and Applied Pharmacology, 1999,156(2):96-105.
[20] Jaramillo D M, Rocha A M, Chiang G, et al. Biochemical and behavioral responses in the estuarine polychaete Perinereis gualpensis (Nereididae) after in situ exposure to polluted sediments [J]. Ecotoxicology and Environmental Safety, 2013,89:182-188.
[21] 劉 爽,馬 旭,劉 寧,等.高效液相色譜-電感耦合等離子體質(zhì)譜法測(cè)定海水養(yǎng)殖底泥中甲基汞和乙基汞[J]. 分析實(shí)驗(yàn)室, 2019, 38(9):1043-1047.
Liu S, Ma X, Liu N, et al. Detection of methylmercury and ethylmercury in marine culture sediment by high performance liquid chromatography-inductively coupled plasma mass spectrometry [J]. Chinese Journal of Analysis Laboratory, 2019,38(9):1043-1047.
[22] Wang M, Feng W, Shi J, et al. Development of a mild mercaptoethanol extraction method for determination of mercury species in biological samples by HPLC-ICP-MS [J]. Talanta, 2007,71(5):2034-2039.
[23] Jia X Y, Gong D R, Han Y, et al. Fast speciation of mercury in seawater by short-column high-performance liquid chromatography hyphenated to inductively coupled plasma spectrometry after on-line cation exchange column preconcentration [J]. Talanta, 2012,88:724- 729.
[24] Cardoso P G, Lillebo A I, Pereira E, et al. Different mercury bioaccumulation kinetics by two macrobenthic species: the bivalve Scrobicularia plana and the polychaete Hediste diversicolor [J]. Marine Environmental Research, 2009,68(1):12-18.
[25] Taylor V F, Bugge D, Jackson B P, et al. Pathways of CH3Hg and Hg ingestion in benthic organisms: an enriched isotope approach [J]. Environmental Science & Technology, 2014,48(9):5058-5065.
[26] Canario J, Miguel C, Evidence for elevated production of methylmercury in salt marshes [J]. Environmental Science & Technology, 2007,41(21):7376-7382.
[27] Kaschak E, Knopf B, Petersen J H, et al. Biotic methylation of mercury by intestinal and sulfate-reducing bacteria and their potential role in mercury accumulation in the tissue of the soil-living Eisenia foetida [J]. Soil Biology and Biochemistry, 2014,69:202-211.
[28] Dang F, Zhao J, Greenfield B K, et al. Soil geochemistry and digestive solubilization control mercury bioaccumulation in the earthworm Pheretima guillemi [J]. Journal of Hazardous Materials, 2015,292: 44-51.
[29] Li M, Yang H, Gu J D, Phylogenetic diversity and axial distribution of microbes in the intestinal tract of the polychaete Neanthes glandicincta [J]. Microbial Ecology, 2009,58(4):892-902.
[30] Sizmur T, Canario J, Edmonds S, et al. The polychaete worm Nereis diversicolor increases mercury lability and methylation in intertidal mudflats [J]. Environmental Toxicology and Chemistry, 2013,32(8): 1888-1895.
[31] Jonsson S, Skyllberg U, Nilsson M B, et al. Mercury methylation rates for geochemically relevant Hg(II) species in sediments [J]. Environmental Science & Technology, 2012,46(21):11653-11659.
[32] Zhao L, Wang R, Zhang C, et al. Geochemical controls on the distribution of mercury and methylmercury in sediments of the coastal East China Sea [J]. Science of the Total Environment, 2019,667:133- 141.
[33] Ding L, Zhao K, Zhang L, et al. Distribution and speciation of mercury affected by humic acid in mariculture sites at the Pearl River estuary [J]. Environmental Pollution, 2018,240:623-629.
[34] Hammerschmidt C R, Fitzgerald W F., Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments [J]. Environmental Science & Technology, 2004,38(5): 1487-1495.
[35] Maity S, Banerjee R, Goswami P, et al. Oxidative stress responses of two different ecophysiological species of earthworms (Eutyphoeus waltoni and Eisenia fetida) exposed to Cd-contaminated soil [J]. Chemosphere, 2018,203:307-317.
[36] Liu T, Wang X, Xu J, et al. Biochemical and genetic toxicity of dinotefuran on earthworms (Eisenia fetida) [J]. Chemosphere, 2017, 176:156-164.
[37] Jonas N, Elias S J A, Reactive oxygen species, antioxidants, and the mammalian thioredoxin system [J]. Free Radical Biology and Medicine, 2001,31(11):1287-1312.
[38] Regoli F, Giuliani M E, Oxidative pathways of chemical toxicity and oxidative stress biomarkers in marine organisms [J]. Marine Environmental Research, 2014,93(SI):106-117.
[39] Beyersmann D, Hechtenberg S, Cadmium, Gene Regulation, and Cellular Signalling in Mammalian Cells [J]. Toxicology and Applied Pharmacology, 1997,144(2):247-261.
[40] Rubino F M, Toxicity of Glutathione-Binding Metals: A Review of Targets and Mechanisms [J]. Toxics, 2015,3(1):20-62.
[41] Moltedo G, Martuccio G, Catalano B, et al. Biological responses of the polychaete Hediste diversicolor (O.F.Muller, 1776) to inorganic mercury exposure: A multimarker approach [J]. Chemosphere, 2019, 219:989-996.
[42] Sun F H, Zhou Q X, Oxidative stress biomarkers of the polychaete Nereis diversicolor exposed to cadmium and petroleum hydrocarbons [J]. Ecotoxicology and Environmental Safety, 2008,70(1):106-114.
[43] Geracitano L A, Bocchetti R, Monserrat J M, et al. Oxidative stress responses in two populations of Laeonereis acuta (Polychaeta, Nereididae) after acute and chronic exposure to copper [J]. Marine Environmental Research, 2004,58(1):1-17.
Research of the methylation and biological response of exogenous mercury in mariculture sediments.
WANG Shu-ping1,2, SONG Yu-mei1, LIU Shuang1, GUO Peng-ran1*
(1.Guangdong Provincial Engineering Research Center for Online Monitoring of Water Pollution, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences(China National Analytical Center,Guangzhou) Guangzhou 510070, China;2.Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China)., 2021,41(6):2871~2880
By simulation of mariculture environment and Nereis diversicolor as benthic, the methylation of Mercury (Hg), accumulation of methylmercury (MeHg) and the oxidative stress of Nereis diversicolor were studied under the existence of Hg(NO3)2. The results showed that mercury could be transformed to methylmercury by both Nereis diversicolor and the environment, especially in that with Nereis diversicolor. The concentration of MeHg in the sediments with Nereis diversicolor was 1.93 times that without Nereis diversicolor. With increasing of the external input mercury concentration and exposure time, the concentration of MeHg increased and the accumulation rate decreases gradually in benthic body. The concentration of methylmercury in Nereis diversicolor body was 0.007~0.079mg/kg that was 31.20%~86.90% of Total mercury. The activity of SOD and CAT, the concentration of GSH and MDA in the Nereis diversicolor were significantly correlated with exposed time and Hg concentration. Compared with inorganic Hg, Methylmercury could cause more oxidative stress and had stronger biotoxicity. The defense limit of the oxidative stress system of the silkworm would be broken, when the concentration of external input mercury exceeds 0.5mg/kg in the sediment.
exogenous mercury;methylation;sediment;nereis diversicolor;oxidative stress
X503.23;X55
A
1000-6923(2021)06-2871-10
2020-11-02
國(guó)家自然科學(xué)基金資助項(xiàng)目(21777150);國(guó)家重點(diǎn)研發(fā)計(jì)劃資助項(xiàng)目(2018YFC1801701)
* 責(zé)任作者, 研究員, prguo@fenxi.com.cn
王書(shū)平(1996-),男,湖北恩施人,昆明理工大學(xué)碩士研究生,主要從事固體廢物資源化利用研究.發(fā)表論文2篇.