吳建麗 袁珍 王永亮 劉凌宇 孫嘉靖 李諾 陸閣玲 梅榮軍
〔摘要〕 目的 觀察電項針對慢性睡眠剝奪(CSD)輕度認知障礙大鼠海馬組織中突觸素(SYN)、腦源性神經(jīng)營養(yǎng)因子(BDNF)和酪氨酸激酶受體B(TrkB)蛋白表達的影響,探討電項針改善CSD記憶損傷的作用機制。方法 將24只雄性Wistar大鼠隨機分為大平臺對照組、模型組和電項針組,每組8只。模型組和電項針組采用改良的多平臺水環(huán)境法制備模型,大平臺對照組除平臺表面有細密鐵絲網(wǎng)外,其他條件與造模環(huán)境一致。電項針組選取兩側(cè)的風(fēng)池和供血穴電針治療,模型組和大平臺對照組給予相同時間的捆綁固定,共14 d。Morris水迷宮實驗檢測大鼠學(xué)習(xí)記憶能力,免疫組化技術(shù)檢測各組海馬CA1區(qū)SYN、BDNF和TrkB蛋白的定性表達,Western blot技術(shù)檢測各組海馬區(qū)SYN、BDNF和TrkB蛋白的定量表達。結(jié)果 造模后,模型組和電項針組大鼠逃避潛伏期較大平臺對照組明顯延長(P<0.05),經(jīng)針刺治療后,電項針組逃避潛伏期較模型組顯著縮短(P<0.05)。免疫組化和Western blot結(jié)果顯示,與大平臺對照組相比,模型組大鼠海馬SYN、BDNF和TrkB蛋白表達均明顯減少(P<0.05);與模型組相比,電項針組大鼠海馬SYN、BDNF和TrkB蛋白表達升高(P<0.05)。與大平臺對照組大鼠相比,電項針組TrkB表達升高(P<0.05),SYN和BDNF表達差異無統(tǒng)計學(xué)意義(P>0.05)。結(jié)論 電項針能顯著上調(diào)CSD輕度認知障礙大鼠海馬區(qū)SYN、BDNF和TrkB蛋白的表達,增強海馬突觸可塑性。
〔關(guān)鍵詞〕 慢性睡眠剝奪;輕度認知障礙;電項針;學(xué)習(xí)記憶;突觸可塑性
〔中圖分類號〕R245? ? ? ?〔文獻標(biāo)志碼〕A? ? ? ?〔文章編號〕doi:10.3969/j.issn.1674-070X.2021.03.009
〔Abstract〕 Objective To observe the influence of electro-nape-acupuncture on protein expression of synaptophysin (SYN), brain-derived neurotrophic factor (BDNF) and tyrosine kinase receptor B (TrkB) in hippocampus in mild cognitive dysfunction rats with chronic sleep deprivation (CSD). In order to explore the mechanism of electro-nape-acupuncture in improving memory impairment of CSD. Methods 24 Wistar male rats were randomly divided into large platform control group, model group and electro-nape-acupuncture group, 8 rats in each group. Model group and electro-nape-acupuncture group of model rats were established by improved multi-platform water environment method. Platform surface is covered with fine wire mesh in the large platform control group, other conditions of which were consistent with building environment. Electro-nape-acupuncture group rats were treated by acupuncture to Fengchi (GB20) acupoint and Gong-xue acupoint on both sides. The rats of model group and large platform control group were subject to binding for an equal time with electro-nape-acupuncture group every time for 14 days. Morris water maze was applied to evaluated the learning and memory ability of rats. Immunohistochemisty was employed to detect qualitative expressions of SYN, BDNF and TrkB proteins in hippocampal CA1 area. Western blot was used to examine quantitative expressions of SYN, BDNF and TrkB proteins in hippocampus. Results After building model, the escape latency of model group and electro-nape-acupuncture group were prolonged compared with large platform control group (P<0.05). After acupuncture treatment, the escape latency of electro-nape-acupuncture group were shorted compared with model group after treatment (P<0.05). Immunohistochemisty and Western blot showed that compared with large platform control group, the protein expressions of SYN, BDNF and TrkB of hippocampus in model group were significantly decreased(P<0.05); electro-nape-acupuncture group significantly increased the expression of SYN, BDNF and TrkB compared with model group (P<0.05). Expression of TrkB protein in electro-nape-acupuncture group was increased compared with large platform control group (P<0.05). Electro-nape-acupuncture group and large platform control group showed no statistically difference in SYN and BDNF protein expressions (P>0.05). Conclusion Electro-nape-acupuncture can enhance the hippocampal synaptic plasticity of mild cognitivedysfunction rats induced by CSD by up-regulating protein expression levels of SYN, BDNF and TrkB.
〔Keywords〕 chronic sleep deprivation; mild cognitive dysfunction; electro-nape-acupuncture; learning and memory; synaptic plasticity
慢性睡眠剝奪(chronic sleep deprivation, CSD)是指機體每日獲得睡眠的時間長期少于4 h的一種狀態(tài)。睡眠有助于記憶的鞏固和優(yōu)化,參與了許多復(fù)雜的或包括情感的認知過程[1]。有研究[2-3]表明,限制睡眠或睡眠不足均能導(dǎo)致認知水平下降,還能加大患阿爾茲海默病的風(fēng)險。目前,改善認知功能的藥物主要包括膽堿酯酶抑制劑、抗氧化劑及促進腦血液循環(huán)的藥物,如多奈哌齊、腦復(fù)康和美金剛等,可暫時提高認知功能,但不能延緩疾病的進程。針灸具有開竅、醒神、益智的作用,是改善輕度認知損傷疾病的有效方法,但作用機制尚未明確[4]。突觸可塑性降低是記憶障礙的一個重要發(fā)病機制,睡眠剝奪后大腦神經(jīng)元末梢突觸蛋白合成減少,神經(jīng)遞質(zhì)的傳遞效率降低,導(dǎo)致神經(jīng)網(wǎng)絡(luò)交流減少從而出現(xiàn)記憶力下降[5]。因此,提高突觸相關(guān)蛋白表達可能是改善認知障礙的有效方法。本研究通過電針項部雙側(cè)風(fēng)池和百會穴,觀察電針對CSD輕度認知障礙大鼠海馬突觸素(synaptophysin, SYN)、腦源性神經(jīng)營養(yǎng)因子(brain-derived neurotrophic factor, BDNF)和酪氨酸激酶受體B(tyrosine kinase receptor B, TrkB)蛋白表達的影響,探討電項針改善CSD后記憶損傷的可能機制,為臨床應(yīng)用電項針防治睡眠紊亂相關(guān)的認知障礙性疾病提供科學(xué)依據(jù)。
1 材料與方法
1.1? 實驗動物與分組
健康清潔Wistar大鼠30只,體質(zhì)量為180~200 g,由黑龍江中醫(yī)藥大學(xué)實驗動物中心提供,合格證號SYXK(黑)2016004。實驗前適應(yīng)性飼養(yǎng)1周,溫度(23±1) ℃,相對濕度50%~70%,自由攝食飲水。經(jīng)負重游泳和水迷宮訓(xùn)練,剔除體力和學(xué)習(xí)成績最差的6只。采用軟件生成的隨機數(shù)字將篩選出的24只大鼠隨機分為大平臺對照組、模型組和電項針組,每組8只。
1.2? 主要儀器和試劑
微電流刺激儀(美國BioMedical Life System公司);睡眠剝奪箱(自制);Infinite M200 PRO酶標(biāo)儀(瑞士Tecan公司);EG1160型組織包埋機、RM2235切片機、DM4000B型光學(xué)顯微鏡(德國LEICA公司);1658001電泳儀、1703930轉(zhuǎn)膜儀、Gel Doc XR+凝膠成像系統(tǒng)(美國Bio-Rad公司);兔抗SYN多克隆抗體(貨號17785-1-AP)、兔抗BDNF多克隆抗體(貨號28205-1-AP)和兔抗TrkB多克隆抗體(貨號13129-1-AP)均購于美國Proteintech公司;蛋白提取試劑盒(貨號P0033)、BCA檢測試劑盒(貨號P0010)、電泳液(貨號P0014A)、轉(zhuǎn)膜液(貨號P0021A)、ECL發(fā)光液(貨號P0018S)均購于碧云天生物技術(shù)公司。
1.3? 造模方法
根據(jù)參考文獻[6-7]采用改良的多平臺水環(huán)境法制備CSD模型。正式造模前5 天將大鼠置于長寬高分別為100 cm×60 cm×60 cm的睡眠剝奪箱內(nèi)適應(yīng)環(huán)境,每日1次,每次2 h。具體方法為:在睡眠剝奪箱內(nèi)底部固定2排共計8個直徑為6.5 cm的圓形平臺,平臺之間相距15 cm,高度8 cm,每日注入自來水至圓形平臺下約1.0 cm處,距平臺上方15 cm處用細鐵絲網(wǎng)遮蓋,并放置食物和水瓶以保證大鼠正常進食,每日16時至次日10時進行睡眠剝奪18 h,夜間給予日光燈照射,然后恢復(fù)睡眠6 h,連續(xù)21 d。造模成功標(biāo)準(zhǔn)為:大鼠持續(xù)表現(xiàn)為活動量少,反應(yīng)慢,脫毛及食欲減退的癥狀,水迷宮檢測逃避潛伏期成倍的延長,而穿越平臺次數(shù)成倍的減少。大平臺對照組置于睡眠剝奪箱內(nèi)后,在平臺上方鋪一張細密的鐵絲網(wǎng)對照,大鼠可自由活動和睡眠,以消除水環(huán)境對動物的影響。
1.4? 干預(yù)方法
造模成功后,電項針組參照大鼠穴位圖和項部腧穴的神經(jīng)解剖結(jié)構(gòu)選取雙側(cè)風(fēng)池和供血進行針刺[8]。風(fēng)池位于大鼠枕骨頂嵴后枕寰關(guān)節(jié)背凹陷處旁約2 mm,供血位于第4頸椎棘突旁約2 mm。具體操作方法:從項部向鼻尖方向刺入3~4 mm,不進行手法刺激,連接電針儀,一側(cè)的風(fēng)池和供血連接一組導(dǎo)線,正極在上,負極在下。電流強度0.5 mA,疏波,頻率2 Hz,以大鼠不嘶叫、項部肌肉輕微收縮為宜。每日上午治療1次,每次20 min,連續(xù)14 d。大平臺對照組和模型組不進行治療,僅給予相同時間和方式的捆綁固定。
1.5? 取材方法
實驗結(jié)束后,大鼠深度麻醉,快速斷頭取腦,用手術(shù)鉗分離顱骨,暴露腦組織,將大腦縱向切開后,將左側(cè)大腦置于4%的多聚甲醛固定,用于免疫組化染色,右側(cè)大腦則需在冰盤上快速掀起頂葉,剝離出海馬后置于液氮中速凍,用Western blot蛋白檢測。
1.6? 檢測指標(biāo)
1.6.1? Morris水迷宮測試? 將直徑1.5 m的圓形水池注入溫水,平臺在睡眠下2~3 cm,平臺固定于第Ⅳ象限。測試前將大鼠置于平臺上進行30 s強化提示,然后依次從4個象限固定一點放入水池,記錄每次找到水下平臺的時間為逃避潛伏期。若大鼠90 s內(nèi)找不到平臺,則引導(dǎo)大鼠至平臺上放并停留10 s,如此訓(xùn)練4 d。分別在造模第1天,造模第21天和干預(yù)第14天測試記錄大鼠的逃避潛伏期。
1.6.2? 免疫組織化學(xué)技術(shù)檢測海馬CA1區(qū)突觸蛋白表達? 將組織在4%的多聚甲醛內(nèi)固定24~48 h,經(jīng)脫水、透明、包埋后,切取4 μm的冠狀切片,依次經(jīng)過脫蠟水化、抗原修復(fù)、封閉、一抗二抗孵育、DAB染色、蘇木精染核、流水沖洗、脫水、透明后用中性樹脂封片,每樣于400倍光鏡下隨機選取3個未重疊的視野進行拍攝。采用Image J圖像分析軟件在同一參數(shù)狀態(tài)下分析SYN、BDNF和TrkB蛋白陽性表達進行分析,計算平均光密度(mean optical density, MOD)。
1.6.3? Western blot檢測海馬內(nèi)突觸蛋白表達? 將海馬組織用蛋白提取試劑盒提取總蛋白并用酶標(biāo)儀測定濃度,樣本配平后加入上樣緩沖液,高溫煮沸、晾涼備用。用快速制膠試劑盒制備10%濃度的膠后上樣,電泳條件為濃縮膠電壓80 V,分離膠110 V。轉(zhuǎn)膜條件為300 mA、70 min。用脫脂奶粉室溫1.5 h封閉,一抗4 ℃孵育過夜、二抗室溫孵育45min。滴加ECL化學(xué)發(fā)光液后曝光。用Image J分析軟件將條帶灰度值數(shù)字化,取目的蛋白與內(nèi)參比值作為相對表達量。
1.7? 統(tǒng)計學(xué)方法
用SPSS 24.0軟件統(tǒng)計數(shù)據(jù),計量資料用“x±s”表示。符合正態(tài)分布且方差齊時多組間比較采用單因素方差分析,組間兩兩比較用LSD檢驗;方差不齊時采用Tamhane's T2檢驗。以P<0.05表示差異有統(tǒng)計學(xué)意義。
2 結(jié)果
2.1? 各組大鼠逃避潛伏期比較
正式實驗前1天,各組大鼠水迷宮測試逃避潛伏期差異無統(tǒng)計學(xué)意義(P>0.05)。在造模后第21天,模型組和電項針組的潛伏期較大平臺對照組明顯延長,差異有統(tǒng)計學(xué)意義(P<0.05)。干預(yù)第14 天,模型組的逃避潛伏期較大平臺對照組延長(P<0.05),電項針組逃避潛伏期則較模型組明顯縮短(P<0.05)。見表1。
2.2? 各組大鼠海馬CA1區(qū)蛋白陽性表達比較
大平臺對照組大鼠海馬CA1區(qū)可見SYN、BDNF和TrkB蛋白有明顯的陽性表達,陽性表達的細胞數(shù)量較多,棕黃色染色較深;而模型組SYN、BDNF和TrkB蛋白陽性表達細胞數(shù)目相對減少,顏色較淺,MOD值較大平臺對照組顯著降低,差異有顯著統(tǒng)計學(xué)意義(P<0.05);電項針組海馬區(qū)SYN、BDNF和TrkB陽性細胞表達明顯增多,與模型組比較,MOD值顯著升高,差異有統(tǒng)計學(xué)意義(P<0.05),與大平臺對照組比較,SYN和BDNF表達水平無差異,TrkB表達有統(tǒng)計學(xué)意義(P<0.05)。見表2和圖1。
2.3? 各組大鼠海馬CA1區(qū)SYN、BDNF和TrkB蛋白表達比較
Western blot結(jié)果顯示,造模21 d后,模型組大鼠海馬區(qū)SYN、BDNF和TrkB蛋白相對表達量較大平臺對照組明顯下降,差異有統(tǒng)計學(xué)意義(P<0.05)。電項針組SYN和BDNF蛋白表達與大平臺對照組比較差異無統(tǒng)計學(xué)意義,TrkB蛋白表達明顯升高(P<0.05)。與模型組比較,經(jīng)電針治療后,電項針組大鼠海馬區(qū)的SYN、BDNF和TrkB蛋白相對表達量均明顯升高,差異有統(tǒng)計學(xué)意義(P<0.05)。見圖2。
3 討論
長期睡眠不足是誘發(fā)糖尿病、高血壓、肥胖及心腦血管疾病的重要危險因素,嚴重威脅著人類的健康。研究[9-10]表明,充足睡眠能提高學(xué)習(xí)效率,增強記憶力,限制睡眠則會干擾知識獲取和記憶存儲過程,導(dǎo)致認知水平下降。一項臨床研究[11]顯示,睡眠剝奪后青少年完成簡單記憶任務(wù)的效率明顯降低,且對復(fù)雜和抽象任務(wù)完成效率影響更為顯著。Hagewoud等[12]發(fā)現(xiàn)學(xué)習(xí)前剝奪睡眠影響記憶的形成,學(xué)習(xí)后睡眠剝奪則損害記憶鞏固和再提取過程。
睡眠剝奪屬于中醫(yī)學(xué)“不寐”的范疇,多因情志、飲食失常導(dǎo)致陽不入陰、營衛(wèi)不和而出現(xiàn)夜不能寐。長久不寐則腦內(nèi)元神受擾、神機失用而出現(xiàn)善忘、反應(yīng)遲鈍、神情冷漠等呆病的臨床表現(xiàn)。風(fēng)池穴是足少陽與陽維脈、陽蹺脈的交會穴,少陽經(jīng)“主樞”,樞機暢,營衛(wèi)和;陽維脈維絡(luò)一身之陽,使陰陽自相維;陽蹺脈司眼瞼開合,針刺本穴疏通經(jīng)氣則陰陽和、營衛(wèi)調(diào),從而恢復(fù)“晝精夜暝”的狀態(tài),此外,3條經(jīng)脈均上行入腦,根據(jù)“經(jīng)脈所過,主治所及”的原則,刺激本穴又可達利頭目、醒腦神之功。供血穴是高維濱教授提出的治療腦源性疾病經(jīng)驗穴,位于風(fēng)池穴下1.5寸,無明確歸經(jīng),與督脈、足太陽經(jīng)和足少陽經(jīng)聯(lián)系密切,針刺本穴具有活血通絡(luò)、調(diào)神益智的作用。兩穴合用則具有疏通經(jīng)絡(luò)、醒腦開竅、調(diào)神益智的功效。故本研究采用電針項部風(fēng)池和供血穴用于改善CSD后認知功能損害。
海馬是學(xué)習(xí)記憶的關(guān)鍵部位,極易受到睡眠的影響。研究[13-14]表明,睡眠剝奪后引發(fā)認知障礙的機制可能與神經(jīng)發(fā)生受損、神經(jīng)炎癥、氧化應(yīng)激、遞質(zhì)分泌失衡、突觸傳遞紊亂等導(dǎo)致突觸可塑性下降等有關(guān)。SYN是突觸囊泡膜上的一種糖蛋白,主要參與軸突末梢神經(jīng)遞質(zhì)存儲和釋放、突觸囊泡再循環(huán)、突觸發(fā)育和重塑功能,其分布和含量可反映突觸的密度和傳遞效率[15]。研究[16]表明,SYN可作為膜融合蛋白在囊泡膜和質(zhì)膜上形成縫管樣的融合孔,在鈣離子的作用下融合孔開啟從而引起神經(jīng)遞質(zhì)釋放。此外,SYN也能調(diào)節(jié)神經(jīng)元突起的生長和分化、調(diào)節(jié)長時程增強等影響突觸可塑性,反映學(xué)習(xí)記憶能力的改變。BDNF是促進神經(jīng)元生長發(fā)育、分化,調(diào)控突觸傳遞效率,增強突觸可塑性的關(guān)鍵因子之一,其生物學(xué)效應(yīng)的發(fā)揮需要與TrkB受體結(jié)合才能完成。Luine等[17]發(fā)現(xiàn)BDNF激活TrkB后能增加樹突的數(shù)量和長度,促進新突觸的形成。Lu等[18]總結(jié)出BDNF可通過TrkB誘導(dǎo)LTP的形成和維持,促進突觸修復(fù)而改善認知功能。有學(xué)者報道[19]稱BDNF/TrkB通路也可介導(dǎo)細胞外調(diào)節(jié)蛋白激酶Erk1/2調(diào)控SYN蛋白表達影響從記憶功能。與Zagaar等[20]報道一致,本研究發(fā)現(xiàn),模型組大鼠逃避潛伏期較大平臺對照組顯著延長(P<0.01),海馬SYN、BDNF和TrkB蛋白表達較大平臺對照組明顯下降(P<0.01),說明CSD導(dǎo)致的學(xué)習(xí)記憶障礙可能與海馬SYN、BDNF和TrkB含量下降有關(guān)。Barham等[21]通過薈萃分析發(fā)現(xiàn)電刺激有助于陳述性記憶的鞏固,本研究也發(fā)現(xiàn),治療后,電項針組大鼠逃避潛伏期較模型組明顯縮短(P<0.01),海馬SYN、BDNF和TrkB蛋白表達較模型組明顯上升(P<0.01),說明CSD后認知功能的修復(fù)可能與電項針增加SYN、BDNF和TrkB蛋白表達有關(guān),但SYN的表達是否與BDNF/TrkB信號通路有直接聯(lián)系還需實驗的進一步證明。
綜上所述,電項針可以有效的改善慢性睡眠剝奪后的輕度認知障礙,其機制可能與調(diào)節(jié)SYN、BNDF、TrkB等突觸相關(guān)蛋白表達,減輕海馬神經(jīng)元損傷,提高突觸可塑性有關(guān)。
參考文獻
[1] 張曉雯,黃惠敏,潘曉黎.睡眠影響記憶鞏固功能的研究進展[J].中華臨床醫(yī)師雜志(電子版),2016,10(7):1021-1024.
[2] CEDERNAES J, OSORIO R S, VARGA A W, et al. Candidate mechanisms underlying the association between sleep-wake disruptions and Alzheimer's disease[J]. Sleep Medicine Reviews, 2017, 31: 102-111.
[3] ZHAO B Y, LIU P, WEI M, et al. Chronic sleep restriction induces aβ accumulation by disrupting the balance of aβ production and clearance in rats[J]. Neurochemical Research, 2019, 44(4): 859-873.
[4] 李? 全,邢春玥,孫忠人,等.近10年針灸治療輕度認知功能障礙的臨床研究及作用機制進展[J].中醫(yī)藥學(xué)報,2020,48(7):72-77.
[5] CIRELLI C, TONONI G. Linking the need to sleep with synaptic function[J]. Science, 2019, 366(6462): 189-190.
[6] HAVEKES R, MEERLO P, ABEL T. Animal studies on the role of sleep in memory: From behavioral performance to molecular mech?anisms[J]. Current Topics in Behavioral Neurosciences, 2015, 25: 183-206.
[7] 榮? 霏,程? 濱,溫曉颯,等.慢性睡眠剝奪對大鼠學(xué)習(xí)記憶功能及不同腦區(qū)5-羥色胺1A受體蛋白表達的影響[J].上海醫(yī)學(xué),2012, 35(5):425-429.
[8] 徐東升,趙? 碩,崔晶晶,等.繪制實驗大鼠腧穴圖譜的新嘗試[J]. 針刺研究,2019,44(1):62-65,79.
[9] TOBALDINI E, COSTANTINO G, SOLBIATI M, et al. Sleep, sleep deprivation, autonomic nervous system and cardiovascular diseases[J]. Neuroscience & Biobehavioral Reviews, 2017, 74: 321-329.
[10] BOYCE R, WILLIAMS S, ADAMANTIDIS A. REM sleep and memory[J]. Current Opinion in Neurobiology, 2017, 44: 167-177.
[11] BEEBE D W, POWERS S W, SLATTERY E W, et al. Short sleep and adolescents' performance on a concussion assessment battery: An experimental sleep manipulation study[J]. Clinical Journal of Sport Medicine, 2018, 28(4): 395-397.
[12] HAGEWOUD R, WHITCOMB S N, HEERINGA A N, et al. A time for learning and a time for sleep: The effect of sleep deprivation on contextual fear conditioning at different times of the day[J]. Sleep, 2010, 33(10): 1315-1322.
[13] 屈杜潔,郇? 宇,趙又誼,等.Wnt/β-catenin信號介導(dǎo)的小鼠海馬神經(jīng)元發(fā)生參與睡眠剝奪引起的學(xué)習(xí)記憶下降[J].神經(jīng)解剖學(xué)雜志,2019,35(2):134-140.
[14] NABAEE E, KESMATI M, SHAHRIARI A, et al. Cognitive and Hippocampus biochemical changes following sleep deprivation in the adult male rat[J]. Biomedecine & Pharmacotherapie, 2018, 104: 69-76.
[15] KOLOS Y A, GRIGORIYEV I P, KORZHEVSKYI D E. A synaptic marker synaptophysin[J]. Morfologiia (Saint Petersburg, Russia), 2015, 147(1): 78-82.
[16] KOKOTOS A C, HARPER C B, MARLAND J R K, et al. Synaptophysin sustains presynaptic performance by preserving vesicular synaptobrevin-II levels[J]. Journal of Neurochemistry, 2019, 151(1): 28-37.
[17] LUINE V, FRANKFURT M. Interactions between estradiol, BDNF and dendritic spines in promoting memory[J]. Neuroscience, 2013, 239: 34-45.
[18] LU B, NAGAPPAN G, GUAN X M, et al. BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative dis?eases[J]. Nature Reviews Neuroscience, 2013, 14(6): 401-416.
[19] CHEN J W, NIU Q, XIA T, et al. ERK1/2-mediated disruption of BDNF-TrkB signaling causes synaptic impairment contributing to fluoride-induced developmental neurotoxicity[J]. Toxicology, 2018, 410: 222-230.
[20] ZAGAAR M A, DAO A T, ALHAIDER I A, et al. Prevention by regular exercise of acute sleep deprivation-induced impairment of late phase LTP and related signaling molecules in the dentate gyrus[J]. Molecular Neurobiology, 2016, 53(5): 2900-2910.
[21] BARHAM M P, ENTICOTT P G, CONDUIT R, et al. Transcranial electrical stimulation during sleep enhances declarative (but not procedural) memory consolidation: Evidence from a meta-analysis[J]. Neuroscience and Biobehavioral Reviews, 2016, 63: 65-77.