劉琳營 蘇曉俊 閔玲
摘要:長鏈非編碼RNA(long non-coding RNA,簡稱lncRNA),通常定義為長度超過200 nt的非編碼RNA,是幾乎不具有編碼能力或具有弱編碼能力的RNA轉(zhuǎn)錄本。早期的研究質(zhì)疑lncRNA的重要性,因?yàn)榕cmRNA相比,lncRNA具有低表達(dá)和低序列保守性的特點(diǎn),認(rèn)為它是RNA聚合酶Ⅱ轉(zhuǎn)錄的副產(chǎn)物,故將其存在歸因于轉(zhuǎn)錄噪聲。近年來,隨著對(duì)非編碼RNA的深入研究,lncRNA獨(dú)特的生物學(xué)特性和功能被陸續(xù)鑒定,多數(shù)研究學(xué)者認(rèn)為lncRNA是一種在生物體中普遍存在且參與基因調(diào)控的重要組分。本文主要對(duì)植物中發(fā)現(xiàn)的lncRNA的種類、發(fā)揮功能的分子機(jī)制、參與的生物學(xué)過程及研究策略等進(jìn)行綜述,為在植物領(lǐng)域進(jìn)一步研究lncRNA提供依據(jù)和參考。
關(guān)鍵詞:長鏈非編碼RNA;植物;功能;分子機(jī)制;研究策略
中圖分類號(hào): S184文獻(xiàn)標(biāo)志碼: A
文章編號(hào):1002-1302(2021)12-0012-08
收稿日期:2020-11-07
基金項(xiàng)目:國家重點(diǎn)研發(fā)計(jì)劃(編號(hào):2016YFD0101402)。
作者簡介:劉琳營(1994—),女,山東濟(jì)寧人,碩士研究生,研究方向?yàn)閘ncRNA與棉花花藥發(fā)育及高溫響應(yīng)。E-mail:linyingliu_257@webmail.hazu.edu.cn。
通信作者:閔 玲,博士,副教授,主要從事棉花生殖發(fā)育、環(huán)境與生殖發(fā)育互作研究。E-mail:lingmin@mail.hazu.cn。
近年來,生物技術(shù)的快速發(fā)展使研究者證實(shí)真核生物的基因組中并非全部序列都可以編碼蛋白質(zhì),其中大多數(shù)是非編碼序列 [1]。在以往對(duì)于非編碼RNA的研究中,備受重視的是一系列短鏈非編碼RNA,如siRNA、miRNA、snRNA等,自1991年科學(xué)家證實(shí)Xist參與X染色體失活的調(diào)控后[2],不斷有研究表明,長鏈非編碼RNA(long non-coding RNA,簡稱lncRNA)在調(diào)控真核生物的生命活動(dòng)中具有重要的作用。
大多數(shù)的lncRNA與mRNA一樣,能夠被RNA Pol Ⅱ轉(zhuǎn)錄,具有5′端帽子、3′端poly(A)尾以及選擇性剪接位點(diǎn)等結(jié)構(gòu)特點(diǎn)[3-4],一些lncRNA可被RNA Pol Ⅲ轉(zhuǎn)錄,植物中也有少數(shù)lncRNA是由植物特異性RNA Pol Ⅳ和Ⅴ轉(zhuǎn)錄產(chǎn)生的[5-7]。一般來說,真核生物編碼蛋白質(zhì)的序列相對(duì)保守,同源性很高,而lncRNA是一類在不同物種中具有低序列保守性的轉(zhuǎn)錄本,由此推測(cè),個(gè)體和物種間存在差異的原因可能是由于非編碼序列差異導(dǎo)致[8-9]。隨著高通量轉(zhuǎn)錄組測(cè)序和表達(dá)譜分析技術(shù)的快速發(fā)展,越來越多的研究表明lncRNA在真核生物的生長發(fā)育過程中扮演著十分重要的角色[10]。相比于動(dòng)物中l(wèi)ncRNA的研究,植物lncRNA的探索仍處于初級(jí)階段,研究主要集中在擬南芥、蒺藜苜蓿、番茄和水稻等植物中(表1)。本文主要對(duì)植物lncRNA的分類、分子機(jī)制研究進(jìn)行綜述,總結(jié)了lncRNA參與植物生長發(fā)育和逆境脅迫中的重要調(diào)控機(jī)制,并對(duì)植物中l(wèi)ncRNA的研究策略進(jìn)行概述,為深入研究植物中l(wèi)ncRNA的功能和分子機(jī)制提供科學(xué)依據(jù)。
1 lncRNA的來源和種類
1.1 lncRNA的來源
在真核生物中,編碼蛋白質(zhì)的基因幾乎是通過部分或整體復(fù)制以及隨后的序列分化而產(chǎn)生的,由于大多數(shù)非編碼RNA受到較低程度的進(jìn)化限制,所以只有很少一部分在不同物種之間表現(xiàn)出序列保守性,因此研究者推測(cè)lncRNA可能來自以下幾種途徑:(1)閱讀框插入蛋白質(zhì)編碼基因的內(nèi)含子之間,插入的閱讀框與先前的編碼序列重新整合形成功能性lncRNA;(2)染色體重排,將2個(gè)分開的非轉(zhuǎn)錄區(qū)連接在一起而產(chǎn)生有多外顯子的lncRNA;(3)非編碼基因進(jìn)行逆轉(zhuǎn)座復(fù)制形成功能性逆基因或非功能性假基因;(4)局部重復(fù)序列串聯(lián)產(chǎn)生相鄰重復(fù)的lncRNA;(5)轉(zhuǎn)座因子插入產(chǎn)生功能性lncRNA[11]。
1.2 lncRNA的種類
1.2.1 基于所在基因組位置進(jìn)行分類
根據(jù)lncRNA在基因組中與蛋白編碼基因的相對(duì)位置,可將其分為正義lncRNA(sense long non-coding RNA)、反義lncRNA(antisense long non-coding RNA)、雙向lncRNA(bidirectional long non-coding RNA)、基因內(nèi)lncRNA(intronic long non-coding RNA)、基因間lncRNA(intergenic long non-coding RNA)5類,其中基因間lncRNA也被稱為大型介入性非編碼RNA,即lincRNA(large intervening noncoding RNA)[30-31]。
1.2.2 基于分子機(jī)制進(jìn)行分類
大多數(shù)lncRNA具有功能,前期研究者發(fā)現(xiàn)lncRNA可按分子功能進(jìn)行以下分類[32-33]。
信號(hào)分子:lncRNA可作為信號(hào)分子調(diào)控鄰近基因表達(dá)。例如在雌性動(dòng)物發(fā)育過程中,Xist誘導(dǎo)X染色體的失活,該lncRNA在一條X染色體上表達(dá)會(huì)導(dǎo)致整個(gè)染色體沉默[34]。而在植物發(fā)育調(diào)控中,DOG1(delay of germination 1)基因調(diào)控?cái)M南芥種子休眠,as-DOG1(antisense delay of germination 1) lncRNA會(huì)抑制DOG1基因的表達(dá),打破種子休眠[11]。
誘餌分子:lncRNA可以作為誘餌,通過招募RNA結(jié)合蛋白(RNA binging protein,簡稱RBP),例如:轉(zhuǎn)錄因子、染色質(zhì)修飾物或者其他調(diào)控因子間接調(diào)節(jié)蛋白質(zhì)編碼基因的表達(dá)[32]。此外,lncRNA作為誘餌可以結(jié)合miRNAs,阻斷miRNAs與其特異性的靶基因互作,這個(gè)過程被稱為內(nèi)源模擬靶標(biāo)(endogenous target mimicry,簡稱eTM)[33]。在擬南芥中,miR399及其靶基因PHO2(PHOSPHATE 2,編碼泛素結(jié)合酶相關(guān)蛋白的基因)在維持磷酸鹽穩(wěn)態(tài)中發(fā)揮作用[35]。lncRNA IPS1(INDUCED BY PHOSPHATE STARVATION1)和At4都會(huì)競爭性地與miR399結(jié)合,導(dǎo)致PHO2上調(diào)表達(dá) [12-13,24]。
引導(dǎo)分子:lncRNA可以引導(dǎo)RNA結(jié)合蛋白復(fù)合體定位到特定位置或招募染色質(zhì)修飾酶到靶基因,順式(cis)或反式(trans)作用于靶基因[32]。例如,在蒺藜苜蓿中發(fā)現(xiàn)lncRNA Enod40可直接與根瘤中的MtRBP1(medicago truncatula RNA binding protein 1)蛋白結(jié)合,將MtRBP1從植物細(xì)胞的核斑點(diǎn)重新定位到細(xì)胞質(zhì)顆粒中發(fā)揮重要的作用[14]。在擬南芥中發(fā)現(xiàn)lncRNA COLDAIR與植物PRC2(polycomb repressive complex 2)蛋白復(fù)合體中的亞基CLF(CURLY LEAF)特異結(jié)合,指導(dǎo)PRC2復(fù)合體到達(dá)FLC(FLOWERING LOCUS C)位點(diǎn),PRC2通過組蛋白H3K27甲基化改變FLC位點(diǎn)的染色質(zhì)結(jié)構(gòu),從而抑制FLC的表達(dá),調(diào)控開花時(shí)間[15-16],這一過程中COLDAIR作為引導(dǎo)分子進(jìn)行反式調(diào)節(jié)。最近研究發(fā)現(xiàn)lncRNA MAS可以與COMPASS-like復(fù)合物中的WDR5a(WD40-REPEAT 5a)結(jié)合并將其引導(dǎo)到MAF4(MADS AFFECTING FLOWERING4)位點(diǎn),從而促進(jìn)H3K4的甲基轉(zhuǎn)移酶活性并激活MAF4的表達(dá),進(jìn)而微調(diào)開花時(shí)間[17]。
支架分子:lncRNA可以作為支架分子行使分子功能。以往有研究認(rèn)為很多復(fù)合物都是用蛋白質(zhì)作為支架[36]。但近年來研究表明,lncRNA有多種不同的結(jié)合功能域,可以與不同的蛋白復(fù)合體或效應(yīng)分子結(jié)合,這對(duì)復(fù)雜的生物信息傳遞、分子間的相互作用以及對(duì)信號(hào)本身特異性的精準(zhǔn)調(diào)控非常重要[37-38]。植物中特有的Pol V可以產(chǎn)生siRNA和相關(guān)蛋白,識(shí)別其靶基因所需的支架轉(zhuǎn)錄本,通過RNA介導(dǎo)的DNA甲基化(RNA directed DNA methylation,簡稱RdDM)途經(jīng)進(jìn)行染色質(zhì)修飾[39]。RdDM途經(jīng)主要依賴2種核心蛋白DICER-LIKE 3(DCL3)和ARGONAUTE 4(AGO4),前者切割長雙鏈RNA產(chǎn)生小干擾RNAs(small interfering RNAs,簡稱siRNAs),這些siRNAs與AGO蛋白結(jié)合,形成AGO-siRNAs復(fù)合物,Pol V產(chǎn)生的lncRNA作為支架將AGO-siRNAs復(fù)合物轉(zhuǎn)運(yùn)到染色質(zhì)的目標(biāo)位點(diǎn)[40-42]。例如,lincRNA APOLO(AUXIN REGULATED PROMOTER LOOP RNA)作為支架RNA參與染色質(zhì)環(huán)的形成[18]。
lncRNA除以上4種分子機(jī)制,還是小RNA(siRNA和miRNA)生物合成的前體,如植物中特有的Pol Ⅳ產(chǎn)生的lncRNA,可以由DCL蛋白切割產(chǎn)生siRNA[43];也可能是miRNA的靶標(biāo),如miRNA可通過靶向切割lncRNA生成phasiRNA的方式參與植物對(duì)長日照脅迫的響應(yīng)[44]。由于lncRNA在植物中的研究尚處于早期階段,導(dǎo)致植物中缺乏系統(tǒng)和一致的lncRNA調(diào)控機(jī)制,隨著研究的不斷深入,對(duì)lncRNA的分子功能劃分將更加完善。
2 lncRNA在植物中參與的生物學(xué)過程
2.1 lncRNA參與植物生長發(fā)育
對(duì)lncRNA參與植物生長發(fā)育的研究主要集中在生長素運(yùn)輸和信號(hào)轉(zhuǎn)導(dǎo)方面。lncRNA ENOD40和lnc351被稱為ASCO-RNA(alternative splicing competitor RNA),可以與核斑RNA結(jié)合蛋白(nuclear speckle RNA-binding proteins,簡稱NSRs)相互作用,進(jìn)而調(diào)節(jié)基因選擇性剪切。在擬南芥中ASCO-RNA能與mRNA競爭性結(jié)合NSRs,干擾下游生長素應(yīng)答基因的選擇性剪接,進(jìn)而影響側(cè)根的生長[45]。此外,ENOD40能參與調(diào)節(jié)細(xì)菌或真菌與豆科植物的共生關(guān)系,在共生相互作用中,根瘤菌迅速誘導(dǎo)根瘤菌原基中ENOD40的表達(dá)。雖然潛在的分子機(jī)制尚不清楚,但ENOD40可以在運(yùn)輸非共生植物細(xì)胞生長所必需的代謝物方面發(fā)揮作用[46-47]。最近研究表明,生長素調(diào)控啟動(dòng)子環(huán)APOLO(auxin egulated promoter loop)可以動(dòng)態(tài)調(diào)節(jié)下游基因PID(PINOID)啟動(dòng)子的環(huán)化過程,從而影響PID啟動(dòng)子的活性。PID是植物生長素極性轉(zhuǎn)運(yùn)的重要調(diào)節(jié)因子,生長素激活RDD(ROS1、DML2、DML3)介導(dǎo)的DNA去甲基化,促進(jìn)覆蓋PID啟動(dòng)子區(qū)域的環(huán)打開[18,48]。HID1(HIDDEN TREASURE 1)是長度為236 nt的lncRNA,在擬南芥中,HID1受持續(xù)紅光調(diào)控,抑制了光敏色素互作因子PIF3(phytochrome-interacting factor 3)的轉(zhuǎn)錄,促進(jìn)了幼苗的光形態(tài)發(fā)生[49]。在水稻中,LAIR(LRK antisense inetrgenic RNA)是由鄰近基因LRK(leucine-rich repeat receptor kinase)的反義鏈轉(zhuǎn)錄而來,LAIR可以結(jié)合染色質(zhì)修飾蛋白OsMOF和OsWDR5,并共同定位于LRK1基因組位點(diǎn),從而激活LRK1轉(zhuǎn)錄,提高水稻產(chǎn)量[19]。此外,在水稻中發(fā)現(xiàn)的另一個(gè)lncRNA TL(TWISTED LEAF)可以通過調(diào)控R2R3-MYB基因的表達(dá),維持水稻葉片的平展度[20]。
2.2 lncRNA參與植物的開花調(diào)控及生殖發(fā)育
有大量研究報(bào)道,在植物生殖發(fā)育過程中,lncRNA也起到了非常重要的調(diào)控作用。在擬南芥中發(fā)現(xiàn)lncRNA COLDAIR可以調(diào)控FLC(FLOWERING LOCUS)染色質(zhì)區(qū)域的組蛋白甲基化,COLDAIR由FLC的第1個(gè)內(nèi)含子轉(zhuǎn)錄而來,春化期間可以與多梳組蛋白復(fù)合體PRC2(Polycomb Repressive Complex 2)中的CLF(CURLY LEAF)直接相互作用,指導(dǎo)PRC2復(fù)合體到FLC基因位點(diǎn),PRC2具有H3K27甲基轉(zhuǎn)移酶的作用,通過使H3K27me3富集來抑制FLC基因表達(dá),促進(jìn)擬南芥正常開花[15,50-51]。近年來,有研究者在擬南芥中發(fā)現(xiàn)了一個(gè)天然反義轉(zhuǎn)錄長鏈非編碼RNA(natural antisense transcript-lncRNAs,簡稱NAT-lncRNAs),命名為MAS(one NAT-lncRNA,NAT-lncRNA_2962),可結(jié)合組蛋白甲基轉(zhuǎn)移酶的關(guān)鍵組分WDR5a(WD40 containing repeat 5a),將其招募到MAF4(MADS AFFECTING FLOWERING4)的基因位點(diǎn),增強(qiáng)H3K4me3并激活MAF4的表達(dá)[17],從而調(diào)控?cái)M南芥的開花時(shí)間。
除了調(diào)節(jié)植物開花,lncRNA也會(huì)影響花粉發(fā)育過程。與水稻光敏雄性不育相關(guān)的lncRNA被稱為長日照特異性雄性不育相關(guān)RNA(long-day-specific male-fertility-associated RNA,簡稱LDMAR),在長日照環(huán)境下,花粉正常發(fā)育需要LDMAR的表達(dá),而突變產(chǎn)生的單核苷酸多態(tài)性(SNP)改變了LDMAR 的二級(jí)結(jié)構(gòu),導(dǎo)致LDMAR的啟動(dòng)子區(qū)域中甲基化作用增強(qiáng),降低了LDMAR的轉(zhuǎn)錄,導(dǎo)致發(fā)育中的花粉過早發(fā)生細(xì)胞程序性死亡,這是造成水稻光敏不育系敗育的重要原因[21]。在大白菜中,研究人員基于花粉特異性克隆了一個(gè)全長828 bp的cDNA,命名為BcMF11(Brassica campestris male fertility gene 11),是一種全新的非編碼RNA,其沒有明顯的開放閱讀框或編碼能力,當(dāng)BcMF11的表達(dá)降低時(shí)會(huì)產(chǎn)生花藥絨氈層降解推遲、小孢子分離不同步、花粉粒發(fā)育中斷等異常現(xiàn)象[22-23],最終導(dǎo)致花粉粒不正常發(fā)育,出現(xiàn)敗育表型。
隨著高通量轉(zhuǎn)錄組測(cè)序的快速發(fā)展,在很多物種中鑒定出與生殖發(fā)育有關(guān)的lncRNA。有研究表明,在蕪菁的花粉發(fā)育過程中,lncRNA可以作為內(nèi)源模擬靶標(biāo)調(diào)節(jié)miRNA的功能,其中bra-eTM160-1和 bra-eTM160-2這2個(gè)lncRNAs預(yù)測(cè)是bra-miR160-5p的eTM,研究證實(shí)轉(zhuǎn)基因植株的花器官形狀雖然正常,但花藥中有一半的花粉粒具有小且皺縮、無活力、沒有細(xì)胞核或花粉內(nèi)壁缺失的敗育表型[24]。在水稻中,同源四倍體水稻在遺傳進(jìn)化方面比二倍體水稻具有更大的優(yōu)勢(shì),但常伴有育性低及種子結(jié)實(shí)不良等特點(diǎn),研究人員利用高通量測(cè)序發(fā)現(xiàn),與轉(zhuǎn)座因子和減數(shù)分裂調(diào)控靶點(diǎn)相關(guān)的lncRNA可能是花粉和胚囊發(fā)育的內(nèi)源調(diào)控因子,其差異表達(dá)導(dǎo)致同源四倍體水稻的育性降低[52]。在棉花中,研究人員對(duì)棉花的RNA-seq數(shù)據(jù)分析表明,在花藥組織中優(yōu)勢(shì)表達(dá)的lncRNA較其他組織多,共鑒定到3 925個(gè)在花藥中高表達(dá)的lincRNAs[53]。為了進(jìn)一步研究lncRNA在棉花花藥中的作用,Zhang等對(duì)三系雜交棉(胞質(zhì)不育系、保持系、恢復(fù)系)的花藥發(fā)育過程進(jìn)行了轉(zhuǎn)錄組測(cè)序,共鑒定到80 695個(gè)參與胞質(zhì)雄性不育和生育力恢復(fù)的候選lncRNAs,隨后分別對(duì)不育系-保持系和不育系-恢復(fù)系差異表達(dá)的lncRNA進(jìn)行GO分析,分析結(jié)果顯示不育系-保持系在細(xì)胞激素代謝過程和氧化還原反應(yīng)過程中存在明顯差異,而不育系-恢復(fù)系的差異主要在于棉花育性恢復(fù)過程中調(diào)控細(xì)胞形態(tài)形成的功能基因[54]。研究人員對(duì)不育系-保持系的花粉母細(xì)胞時(shí)期、四分體時(shí)期和小孢子時(shí)期的差異lncRNAs和mRNAs分析時(shí)發(fā)現(xiàn),這些差異lncRNAs和mRNAs可能參與了絨氈層細(xì)胞降解、小孢子發(fā)育、花粉發(fā)育以及棉花花藥細(xì)胞壁的分化、增殖和凋亡等生殖發(fā)育過程,進(jìn)一步的GO和KEGG分析顯示它們分別參與植物氧化磷酸化、類黃酮生物合成、戊糖和葡萄糖酸相互轉(zhuǎn)化、脂肪酸生物合成和MAPK信號(hào)通路,由于代謝途經(jīng)異常導(dǎo)致花藥敗育,最終造成雄性不育[55]。
2.3 lncRNA參與植物的逆境脅迫響應(yīng)
植物在生長過程中往往會(huì)經(jīng)歷高溫、干旱、鹽堿等非生物脅迫及細(xì)菌、真菌、病毒等生物脅迫。由于植物的固著生長,只能通過調(diào)節(jié)基因表達(dá)及代謝物的改變來應(yīng)對(duì)不斷變化的環(huán)境條件,其中l(wèi)ncRNA在植物響應(yīng)非生物脅迫中發(fā)揮重要的角色。lncRNA DRIR(drought induced RNA)在干旱、鹽脅迫和脫落酸處理后被激活,調(diào)控植物中ABA信號(hào)轉(zhuǎn)導(dǎo)、水運(yùn)輸?shù)软憫?yīng)非生物脅迫相關(guān)基因的表達(dá)[25]。此外,Li等對(duì)水稻進(jìn)行全轉(zhuǎn)錄組鏈特異性測(cè)序,分析發(fā)現(xiàn)lncRNA可以參與短期干旱“記憶”反應(yīng)[56]。近年來,有研究對(duì)耐旱甘藍(lán)型油菜及敏旱甘藍(lán)型油菜在干旱和復(fù)水條件下進(jìn)行轉(zhuǎn)錄組分析,構(gòu)建了lncRNA-mRNA共表達(dá)網(wǎng)絡(luò),進(jìn)而篩選出了在干旱中參與植物激素信號(hào)轉(zhuǎn)導(dǎo)的lncRNA,并且驗(yàn)證了這些lncRNA在油菜中可以正調(diào)控靶基因的表達(dá),從而對(duì)干旱脅迫作出響應(yīng)[57]。在低磷脅迫下,擬南芥中的lncRNA IPS1(induced by phosphate starvation1)和玉米中的lncRNA PILNCR1(Pi-deficiency-induced long-noncoding RNA1)都可以模擬miR399的靶標(biāo),競爭性地與miR399結(jié)合,從而增加miR399靶標(biāo)基因PHO2的表達(dá),維持植株在低磷脅迫下的正常生長[12,58]。在蒺藜苜蓿中,lncRNA PDIL1(Phosphate Deficiency-Induced lncRNA 1)作為miR399的模擬靶標(biāo)競爭性地抑制MtPHO2轉(zhuǎn)錄本,MtPHO2通過泛素化途經(jīng)參與Pi轉(zhuǎn)運(yùn)蛋白的降解[26],表明PDIL1通過間接控制MtPHO2對(duì)Pi的轉(zhuǎn)運(yùn)來保持植物體中相對(duì)穩(wěn)定的磷濃度。
此外,lncRNA在植物響應(yīng)生物脅迫的過程中也具有關(guān)鍵調(diào)控作用。在擬南芥中,RNA Pol Ⅲ轉(zhuǎn)錄的lncRNA AtR8在擬南芥根中特異性表達(dá),對(duì)野生型和atr8突變體的微陣列分析表明AtR8與防御反應(yīng)存在較強(qiáng)的關(guān)聯(lián),在擬南芥處于發(fā)育早期、低水楊酸條件或感染紫丁香假單胞菌時(shí),AtR8的積累與2個(gè)WRKY基因(WRKY53/WRKY70)的積累呈負(fù)相關(guān),由NPR1(nonexpressor of pathogenesis-related gene 1)協(xié)同調(diào)控植物的防御反應(yīng)及根系伸長[27,59]。在番茄中,lncRNA33732沉默會(huì)導(dǎo)致RBOH基因的表達(dá)降低,減少H2O2的含量,導(dǎo)致番茄對(duì)番茄疫霉根腐病的敏感性增強(qiáng),而番茄lncRNA16397可激活SlGRX表達(dá),降低細(xì)胞內(nèi)ROS含量積累,使細(xì)胞膜不易損傷,從而增強(qiáng)番茄對(duì)致病疫霉的抗性[28-29]。同時(shí),番茄黃化曲葉病毒(tomato yellow leaf curl virus,簡稱TYLCV)也是番茄作物的毀滅性病害,對(duì)番茄的生產(chǎn)具有重要威脅,最新的研究發(fā)現(xiàn)易感番茄的lncRNA SILNR1可與TYLCV的小干擾RNA (small-interfering RNAs,簡稱siRNAs)互作,為TYLCV誘導(dǎo)疾病及宿主抗病毒免疫提供了合理的模型[60]。在棉花中,lncRNAs Ghlnc NAT-ANX 2(L2)和Ghlnc NAT-RLP 7(L3)在棉花對(duì)黃萎病菌和灰霉病菌的抗性中發(fā)揮重要作用,研究發(fā)現(xiàn)對(duì)L2和L3進(jìn)行沉默后會(huì)上調(diào)其鄰近蛋白質(zhì)編碼基因的表達(dá),從而增強(qiáng)棉花的抗病性[61]。
3 植物中l(wèi)ncRNA的研究策略
在真核基因組中非編碼序列雖沒有蛋白質(zhì)編碼能力,但在調(diào)控個(gè)體的生命過程中扮演著重要的角色,目前對(duì)非編碼RNA研究占主導(dǎo)地位的是長度小于200 nt的小RNA(如microRNAs、siRNA、與Piwi蛋白互作的piRNA),其分類和功能機(jī)制研究的較為透徹[62]。由于lncRNA在不同物種間具有保守性差、易降解、表達(dá)豐度低等特點(diǎn)[5],早期沒有引起研究者的重視,隨著現(xiàn)代生物測(cè)序技術(shù)的不斷發(fā)展,更多的lncRNA被鑒定出來,成為科研領(lǐng)域的熱點(diǎn)。
目前對(duì)lncRNA的研究一般集中在動(dòng)物和醫(yī)學(xué)領(lǐng)域,研究的基本策略主要分為:(1)lncRNA的篩選與鑒定。隨著鏈特異性建庫的廣泛應(yīng)用,lncRNA預(yù)測(cè)算法的不斷發(fā)展,在擬南芥[17,63]、桑樹[64]、甘藍(lán)[65]和棉花[54-55]等植物中篩選和鑒定了大量潛在的lncRNAs。近年來,以單分子測(cè)序?yàn)樘攸c(diǎn)的第三代測(cè)序技術(shù)的快速發(fā)展,可實(shí)現(xiàn)RNA的直接測(cè)序以及RNA上修飾的檢測(cè)[66],從擬南芥[67]、水稻[68]、澳洲棉[69]等物種中鑒定了大量lncRNAs。(2)lncRNA的表達(dá)和定位。通過高通量測(cè)序篩選的lncRNA需要運(yùn)用成熟的技術(shù)驗(yàn)證其表達(dá)水平及定位,包括Northern印記、實(shí)時(shí)熒光定量PCR(qRT-PCR)、RNA熒光原位雜交(fluorescence in situ hybridization,簡稱FISH)和瞬時(shí)表達(dá)等。(3)lncRNA的功能和機(jī)制研究。通過高效穩(wěn)定的植物遺傳轉(zhuǎn)化系統(tǒng)可以進(jìn)一步揭示候選lncRNA的生物學(xué)功能。基本策略主要包含功能獲得性研究和功能缺失性研究。功能獲得性研究主要是通過導(dǎo)入過表達(dá)載體實(shí)現(xiàn),功能缺失性研究主要采用CRISPR/Cas9基因敲除和RNAi干涉等方法進(jìn)行研究。在水稻中,通過對(duì)病原體敏感的lncRNA轉(zhuǎn)錄組分析發(fā)現(xiàn),過表達(dá)ALEX1可以激活茉莉酸途經(jīng)和對(duì)白葉枯病的抗性[70];在番茄中,利用CRISPR/Cas9編輯技術(shù)獲得lncRNA1459缺失突變體,其果實(shí)表現(xiàn)出明顯的成熟延遲[71];在番茄中超表達(dá)和干涉lncRNA33732可以影響番茄對(duì)致病疫霉的抗性[29]。此外,lncRNA與蛋白質(zhì)的互作研究常用RNA-pull down技術(shù)、RNA結(jié)合蛋白免疫沉淀(RNA binding protein immunoprecipitation,簡稱RIP)、RNA純化的染色質(zhì)分離(chromatin isolation by RNA purification,簡稱ChIRP)、目標(biāo)RNA的捕捉雜交分析(capture hybridization analysis of RNA targets,簡稱CHART)和交聯(lián)免疫沉淀(crosslinking-immunopurification,簡稱CLIP)。因此依據(jù)前人研究結(jié)果,總結(jié)出在植物中可以實(shí)現(xiàn)的lncRNA的研究策略(圖1)。
4 展望
隨著高通量測(cè)序技術(shù)與生物信息學(xué)的飛速發(fā)展,越來越多的lncRNA被發(fā)現(xiàn),研究顯示,lncRNA并不是之前所認(rèn)識(shí)的“垃圾序列”,而是可以在各種層面上調(diào)控基因的表達(dá),如表觀遺傳[15,17,72]、轉(zhuǎn)錄調(diào)控[73-74]及轉(zhuǎn)錄后調(diào)控[12,43,75]。雖然目前對(duì)lncRNA的研究取得了一些成果,但研究者所面臨的問題仍然很多,如:許多l(xiāng)ncRNA的生物學(xué)功能未得到闡明;判斷非編碼轉(zhuǎn)錄物是否有功能依然困難;lncRNA作用機(jī)制復(fù)雜多樣,不同的lncRNA研究結(jié)果之間的借鑒意義不高。面對(duì)這些問題,可以從新的技術(shù)策略和思路入手:(1)納米孔測(cè)序技術(shù)可以直接對(duì)RNA進(jìn)行測(cè)序,并可擴(kuò)展到lncRNA的全長繪制[67]。(2)單細(xì)胞的轉(zhuǎn)錄和表觀基因組的同時(shí)分析可以建立lncRNA與染色質(zhì)之間的功能聯(lián)系[76]。(3)對(duì)已獲得的差異lncRNAs實(shí)行靶基因預(yù)測(cè)、與差異mRNA的共表達(dá)分析及轉(zhuǎn)錄因子預(yù)測(cè)。(4)CRISPR/Cas9基因編輯技術(shù)可應(yīng)用在多種植物基因工程中,雖然目前CRISPR基因編輯技術(shù)
發(fā)展較快,且編輯精度日益提高,為研究重要的植物生長和發(fā)育特征提供了有力的支持,但對(duì)lncRNA的編輯則需要更特異的sgRNA靶標(biāo)來確保敲除全長。隨著研究技術(shù)的逐漸成熟,研究領(lǐng)域的逐漸深入,相信對(duì)植物中l(wèi)ncRNA功能的挖掘和調(diào)控機(jī)制的了解會(huì)更加透徹,對(duì)探索其在植物生命活動(dòng)及發(fā)育過程中的作用具有十分重要的意義。
參考文獻(xiàn):
[1]張玉嬋,陳月琴.長鏈非編碼RNA在植物生殖發(fā)育中的調(diào)控作用[J]. 生命科學(xué),2016,28(6):640-644.
[2]Borsani G,Tonlorenzi R,Simmler M C,et al. Characterization of a murine gene expressed from the inactive X chromosome[J]. Nature,1991,351(6324):325-329.
[3]Mercer T R,Dinger M E,Mattick J S. Long non-coding RNAs:insights into functions[J]. Nature Reviews Genetics,2009,10(3):155-159.
[4]Zhang J,Mujahid H,Hou Y,et al. Plant long ncRNAs:a new frontier for gene regulatory control[J]. American Journal of Plant Sciences,2013,4(5):8.
[5]Wierzbicki A T,Haag J R,Pikaard C S. Noncoding transcription by RNA polymerase Pol Ⅳb/Pol Ⅴ mediates transcriptional silencing of overlapping and adjacent genes[J]. Cell,2008,135(4):635-648.
[6]Li L,Eichten S R,Shimizu R,et al. Genome-wide discovery and characterization of maize long non-coding RNAs[J]. Genome Biology,2014,15(2):R40.
[7]Matzke M,Mosher R A. RNA-directed DNA methylation:an epigenetic pathway of increasing complexity[J]. Nature Reviews Genetics,2014,15(6):394-408.
[8]Mattick J S. Non-coding RNAs:the architects of eukaryotic complexity[J]. EMBO Reports,2001,2(11):986-991.
[9]Jin J,Liu J,Wang H,et al. PLncDB:plant long non-coding RNA database[J]. Bioinformatics,2013,29(8):1068-1071.
[10]Sun X,Zheng H,Sui N. Regulation mechanism of long non-coding RNA in plant response to stress[J]. Biochemical and Biophysical Research Communications,2018,503(2):402-407.
[11]Fedak H,Palusinska M,Krzyczmonik K,et al. Control of seed dormancy in Arabidopsis by a cis-acting noncoding antisense transcript[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(48):E7846-E7855.
[12]Franco-Zorrilla J M,Valli A,Todesco M,et al. Target mimicry provides a new mechanism for regulation of microRNA activity[J]. Nature Genetics,2007,39(8):1033-1037.
[13]Shin H,Shin H S,Chen R,et al. Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation[J]. Plant Journal,2006,45(5):712-726.
[14]Campalans A,Kondorosi A,Crespi M. Enod40,a short open reading frame-containing mRNA,induces cytoplasmic localization of a nuclear RNA binding protein in Medicago truncatula[J]. Plant Cell,2004,16(4):1047-1059.
[15]Heo J B,Sung S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA[J]. Science,2011,331(613):76-79.
[16]Yamaguchi A,Abe M. Regulation of reproductive development by non-coding RNA in Arabidopsis:to flower or not to flower[J]. Journal of Plant Research,2012,125(6):693-704.
[17]Zhao X,Li J,Lian B,et al. Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA[J]. Nature Communications,2018,9(1):5056.
[18]Ariel F,Jegu T,Latrasse D,et al. Noncoding transcription by alternative RNA polymerases dynamically regulates an auxin-driven chromatin loop[J]. Molecular Cell,2014,55(3):383-396.
[19]Wang Y,Luo X,Sun F,et al. Overexpressing lncRNA LAIR increases grain yield and regulates neighbouring gene cluster expression in rice[J]. Nature Communications,2018,9(1):3516.
[20]Liu X,Li D,Zhang D,et al. A novel antisense long noncoding RNA,TWISTED LEAF,maintains leaf blade flattening by regulating its associated sense R2R3-MYB gene in rice[J]. New Phytologist,2018,218(2):774-788.
[21]Ding J,Lu Q,Ouyang Y,et al. A long noncoding RNA regulates photoperiod-sensitive male sterility,an essential component of hybrid rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(7):2654-2659.
[22]Song J H,Cao J S,Yu X L,et al. BcMF11,a putative pollen-specific non-coding RNA from Brassica campestris ssp. chinensis[J]. Journal of Plant Physiology,2007,164(8):1097-1100.
[23]Song J H,Cao J S,Wang C G. BcMF11,a novel non-coding RNA gene from Brassica campestris,is required for pollen development and male fertility[J]. Plant Cell Reports,2013,32(1):21-30.
[24]Huang L,Dong H,Zhou D,et al. Systematic identification of long non-coding RNAs during pollen development and fertilization in Brassica rapa[J]. The Plant Journal:for Cell and Molecular Biology,2018,96(1):203-222.
[25]Qin T,Zhao H,Cui P,et al. A nucleus-localized long non-coding RNA enhances drought and salt stress tolerance[J]. Plant Physiology,2017,175(3):1321-1336.
[26]Wang T,Zhao M,Zhang X,et al. Novel phosphate deficiency-responsive long non-coding RNAs in the legume model plant Medicago truncatula[J]. Journal of Experimental Botany,2017,68(21/22):5937-5948.
[27]Li S,Nayar S,Jia H,et al. The Arabidopsis hypoxia inducible AtR8 long non-coding RNA also contributes to plant defense and root elongation coordinating with WRKY genes under low levels of salicylic acid[J]. Non-coding RNA,2020,6(1):8.
[28]Cui J,Jiang N,Meng J,et al. LncRNA33732-respiratory burst oxidase module associated with WRKY1 in tomato-Phytophthora infestans interactions[J]. Plant Journal,2019,97(5):933-946.
[29]Cui J,Luan Y S,Jiang N,et al. Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance to Phytophthora infestans by co-expressing glutaredoxin[J]. Plant Journal,2017,89(3):577-589.
[30]Ponting C P,Oliver P L,Reik W. Evolution and functions of long noncoding RNAs[J]. Cell,2009,136(4):629-641.
[31]Wu L,Liu S,Qi H,et al. Research progress on plant long non-Coding RNA[J]. Plants,2020,9(4):408.
[32]Wang K C,Chang H Y. Molecular mechanisms of long noncoding RNAs[J]. Molecular Cell,2011,43(6):904-914.
[33]Rai M I,Alam M,Lightfoot D,et al. Classification and experimental identification of plant long non-coding RNAs[J]. Genomics,2019,111(5):997-1005.
[34]Pontier D B,Gribnau J. Xist regulation and function explored[J]. Human Genetics,2011,130(2):223-236.
[35]Chiou T J,Aung K,Lin S I,et al. Regulation of phosphate homeostasis by MicroRNA in Arabidopsis[J]. Plant Cell,2006,18(2):412-421.
[36]Good M C,Zalatan J G,Lim W A. Scaffold proteins:hubs for controlling the flow of cellular information[J]. Science,2011,332(630):680-686.
[37]Rinn J L,Kertesz M,Wang J K,et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs[J]. Cell,2007,129(7):1311-1323.
[38]Spitale R C,Tsai M C,Chang H Y. RNA templating the epigenome:long noncoding RNAs as molecular scaffolds[J]. Epigenetics,2011,6(5):539-543.
[39]Wierzbicki A T. The role of long non-coding RNA in transcriptional gene silencing[J]. Current Opinion in Plant Biology,2012,15(5):517-522.
[40]Daxinger L,Kanno T,Bucher E,et al. A stepwise pathway for biogenesis of 24-nt secondary siRNAs and spreading of DNA methylation[J]. EMBO Journal,2009,28(1):48-57.
[41]Xie Z,Johansen L K,Gustafson A M,et al. Genetic and functional diversification of small RNA pathways in plants[J]. PLoS Biology,2004,2(5):104.
[42]Zheng Q,Rowley M J,Bhmdorfer G,et al. RNA polymerase V targets transcriptional silencing components to promoters of protein-coding genes[J]. Plant Journal,2013,73(2):179-189.
[43]Onodera Y,Haag J R,Ream T,et al. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation[J]. Cell,2005,120(5):613-622.
[44]Fan Y,Yang J,Mathioni S M,et al. PMS1T,producing phased small-interfering RNAs,regulates photoperiod-sensitive male sterility in rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(52):15144-15149.
[45]Bardou F,Ariel F,Simpson C G,et al. Long noncoding RNA modulates alternative splicing regulators in Arabidopsis[J]. Developmental Cell,2014,30(2):166-176.
[46]Kouchi H,Takane K,So R B,et al. Rice ENOD40:isolation and expression analysis in rice and transgenic soybean root nodules[J]. The Plant Journal:for Cell and Molecular Biology,1999,18(2):121-129.
[47]Compaan B,Yang W C,Bisseling T,et al. ENOD40 expression in the pericycle precedes cortical cell division in Rhizobium-legume interaction and the highly conserved internal region of the gene does not encode a peptide[J]. Plant and Soil,2001,230(1):1-8.
[48]Kakar K,Zhang H,Scheres B,et al. CLASP-mediated cortical microtubule organization guides PIN polarization axis[J]. Nature,2013,495(7442):529-533.
[49]Wang Y,F(xiàn)an X,Lin F,et al. Arabidopsis noncoding RNA mediates control of photomorphogenesis by red light[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(28):10359-10364.
[50]Chekanova J A. Long non-coding RNAs and their functions in plants[J]. Current Opinion in Plant Biology,2015,27:207-216.
[51]Kim D H,Xi Y,Sung S. Modular function of long noncoding RNA,COLDAIR,in the vernalization response[J]. PLoS Genetics,2017,13(7):e1006939.
[52]Li X,Shahid M Q,Wen M,et al. Global identification and analysis revealed differentially expressed lncRNAs associated with meiosis and low fertility in autotetraploid rice[J]. BMC Plant Biology,2020,20(1):82.
[53]Wang M,Yuan D,Tu L,et al. Long non-coding RNAs and their proposed functions in fibre development of cotton (Gossypium spp.)[J]. New Phytologist,2015,207(4):1181-1197.
[54]Zhang B,Zhang X,Zhang M,et al. Transcriptome analysis implicates involvement of long noncoding RNAs in cytoplasmic male sterility and fertility restoration in cotton[J]. International Journal of Molecular Sciences,2019,20(22):5530.
[55]Li Y,Qin T,Dong N,et al. Integrative analysis of the lncRNA and mRNA transcriptome revealed genes and pathways potentially involved in the anther abortion of cotton (Gossypium hirsutum L.)[J]. Genes,2019,10(12):947.
[56]Li P,Yang H,Wang L,et al. Physiological and transcriptome analyses reveal Short-Term responses and formation of memory under drought stress in rice[J]. Frontiers in Genetics,2019,10:55.
[57]Tan X,Li S,Hu L,et al. Genome-wide analysis of long non-coding RNAs (lncRNAs) in two contrasting rapeseed (Brassica napus L.) genotypes subjected to drought stress and re-watering[J]. BMC Plant Biology,2020,20(1):81.
[58]Du Q,Wang K,Zou C,et al. The PILNCR1-miR399 regulatory module is important for low phosphate tolerance in maize[J]. Plant Physiology,2018,177(4):1743-1753.
[59]Wu J,Okada T,F(xiàn)ukushima T,et al. A novel hypoxic stress-responsive long non-coding RNA transcribed by RNA polymerase Ⅲ in Arabidopsis[J]. RNA Biology,2012,9(3):302-313.
[60]Yang Y,Liu T,Shen D,et al. Tomato yellow leaf curl virus intergenic siRNAs target a host long noncoding RNA to modulate disease symptoms[J]. PLoS Pathogens,2019,15(1):e1007534.
[61]Zhang L,Wang M J,Li N N,et al. Long noncoding RNAs involve in resistance to Verticillium dahliae,a fungal disease in cotton[J]. Plant Biotechnology Journal,2018,16(6):1172-1185.
[62]Mattick J S,Makunin I V. Non-coding RNA[J]. Human Molecular Genetics,2006,15(1):R17-R29.
[63]Li S,Liberman L M,Mukherjee N,et al. Integrated detection of natural antisense transcripts using strand-specific RNA sequencing data[J]. Genome Research,2013,23(10):1730-1739.
[64]Song X,Sun L,Luo H,et al. Genome-wide identification and characterization of long non-coding RNAs from mulberry (Morus notabilis) RNA-seq data[J]. Genes,2016,7(3):11.
[65]Shen E,Zhu X,Hua S,et al. Genome-wide identification of oil biosynthesis-related long non-coding RNAs in allopolyploid Brassica napus[J]. BMC Genomics,2018,19(1):745.
[66]Rhoads A,Au K F. PacBio sequencing and its applications[J]. Genomics,Proteomics & Bioinformatics,2015,13(5):278-289.
[67]Cui J Shen N,Lu Z,et al. Analysis and comprehensive comparison of PacBio and nanopore-based RNA sequencing of the Arabidopsis transcriptome [J]. Plant Methods,2020,16:85.
[68]Zhang G,Sun M,Wang J,et al. PacBio full-length cDNA sequencing integrated with RNA-seq reads drastically improves the discovery of splicing transcripts in rice[J]. The Plant Journal:for Cell and Molecular Biology,2019,97(2):296-305.
[69]Feng S,Xu M,Liu F,et al. Reconstruction of the full-length transcriptome Atlas using PacBio Iso-Seq provides insight into the alternative splicing in Gossypium australe[J]. BMC Plant Biology,2019,19(1):365.
[70]Yu Y,Yf Z,F(xiàn)eng Y Z,et al. Transcriptional landscape of pathogen-responsive lncRNAs in rice unveils the role of ALEX1 in jasmonate pathway and disease resistance[J]. Plant Biotechnology Journal,2020,18(3):679-690.
[71]Li R,F(xiàn)u D,Zhu B,et al. CRISPR/Cas9-mediated mutagenesis of lncRNA1459 alters tomato fruit ripening[J]. The Plant Journal,2018,94(3):513-524.
[72]Bhmdorfer G,Rowley M J,Kuciński J,et al. RNA-directed DNA methylation requires stepwise binding of silencing factors to long non-coding RNA[J]. The Plant Journal,2014,79(2):181-191.
[73]Seo J S,Diloknawarit P,Park B S,et al. ELF18-INDUCED LONG NONCODING RNA 1 evicts fibrillarin from mediator subunit to enhance PATHOGENESIS-RELATED GENE 1 (PR1) expression[J]. New Phytologist,2019,221(4):2067-2079.
[74]Kindgren P,Ard R,Lvanov M,et al. Transcriptional read-through of the long non-coding RNA SVALKA governs plant cold acclimation[J]. Nature Communication,2018,9(1):4561.
[75]Gai Y P,Yuan S S,Zhao Y N,et al. A novel LncRNA,MuLnc1,associated with environmental stress in mulberry (Morus multicaulis)[J]. Frontiers in Plant Science,2018,9:669.
[76]Cao H,Wahlestedt C,Kapranov P. Strategies to annotate and characterize long non-coding RNAs:advantages and pitfalls[J]. Trends in Genetics,2018,34(9):704-721.