李春秀 李勛蘭 孫海艷 梁國魯 向素瓊 韓國輝
摘要:柑橘果實的色澤和香氣品質(zhì)主要由果實中的萜類色素和揮發(fā)物的種類和含量決定。2-C-甲基-D-赤蘚醇-4-磷酸(MEP)和甲羥戊酸(MVA)途徑合成共同前體異戊烯焦磷酸和二甲基丙烯焦磷酸,經(jīng)八氫番茄紅素合成酶和萜類合成酶的作用分別進入萜類色素和揮發(fā)物的合成代謝。本文介紹了柑橘果實萜類色素的組成及呈色特點、萜類揮發(fā)物的組成及香氣特點,綜述了萜類色素和揮發(fā)物的生物合成途徑及關(guān)鍵基因、主要的轉(zhuǎn)錄調(diào)控因子和環(huán)境調(diào)控因子的研究現(xiàn)狀,對該領(lǐng)域未來的研究方向提出了展望,為改善柑橘果實色澤和香氣品質(zhì)提供了參考。
關(guān)鍵詞:柑橘;果實;類胡蘿卜素;萜類揮發(fā)物;萜類色素
中圖分類號:S666.01 文獻標(biāo)志碼: A
文章編號:1002-1302(2021)12-0020-09
收稿日期:2020-10-17
基金項目:重慶市技術(shù)創(chuàng)新與應(yīng)用發(fā)展專項(編號:cstc2019jscx-msxmX0371);重慶市農(nóng)業(yè)發(fā)展專項(NKY-2019AB006、NKY-2020AC006);重慶市基礎(chǔ)與前沿創(chuàng)新專項(編號:cstc2016jcyjA0046);重慶市特色水果產(chǎn)業(yè)技術(shù)體系項目[編號:2020(3)03]。
作者簡介:李春秀(1996—),女,重慶人,碩士研究生,主要從事果樹遺傳育種與生物技術(shù)研究。E-mail:li1378602852@163.com。
通信作者:韓國輝,男,博士,副研究員,主要從事果樹遺傳育種與生物技術(shù)研究,E-mail:hghui2007@126.com;向素瓊,女,博士,研究員,主要從事果樹遺傳育種與生物技術(shù)研究,E-mail:xiangsq@swu.edu.cn。
柑橘包括寬皮柑橘(Citrus reticulata)、甜橙(C. sinensis)、檸檬(C. limon)、柚(C. grandis)和葡萄柚(C. paradisi)等主要栽培類型[1]。柑橘是世界第一大水果,截至2018年,全世界柑橘栽培面積已經(jīng)達(dá)到1 114.39萬 hm2,產(chǎn)量達(dá)到15 244.88萬t,我國柑橘栽培面積達(dá)274.96萬hm2,產(chǎn)量達(dá)到4 190.55萬t,均居世界第1位。色澤和香氣是決定消費者偏好的重要果實品質(zhì)因素,柑橘果實具有獨特的色香味,色澤由果實中的色素決定,香味取決于大量揮發(fā)物質(zhì)的互作[2]。柑橘果實中的色素有水溶性的酚類色素和脂溶性的萜類色素,酚類色素中除花青素外大多為無色,而花青素僅存在于血橙和紫柚果實中,萜類色素是柑橘果實中主要的呈色色素,使柑橘果實產(chǎn)生從淡黃、橙、粉到深紅的顏色特征變化[3-6]。柑橘果實中的揮發(fā)物質(zhì)有萜、醇、醛、酸、酯和烷烴類等,其中萜類揮發(fā)物種類和含量最多,是柑橘果實香氣的主要貢獻者[7-11]。隨著物質(zhì)提取分析技術(shù)、基因組學(xué)和轉(zhuǎn)錄組學(xué)的發(fā)展,柑橘果實萜類色素和揮發(fā)物在生化與分子方面取得較多進展。本文對柑橘果實中2種物質(zhì)的組成、合成途徑及關(guān)鍵基因、主要調(diào)控因素進行綜述,以期為柑橘果實色澤和香氣品質(zhì)相關(guān)研究提供參考。
1 柑橘果實萜類色素和揮發(fā)物
柑橘果實中的萜類色素主要為類胡蘿卜素,可以分為胡蘿卜素和葉黃素2類,胡蘿卜素為碳?xì)浠衔?,葉黃素中含有多以羥基或環(huán)氧基形式存在的氧原子,柑橘果實中胡蘿卜素主要有八氫番茄紅素、ζ-胡蘿卜素、番茄紅素、α-胡蘿卜素和β-胡蘿卜素,葉黃素主要有葉黃質(zhì)、β-隱黃質(zhì)、玉米黃素、β-檸烏素和紫黃質(zhì)[12-14]。除β-檸烏素為C30分子外,其余類胡蘿卜素均為8個異戊二烯單位聚合而成的C40分子。在幼果中,類胡蘿卜素的顏色被葉綠素掩蓋,果實發(fā)育后期類胡蘿卜素的顏色才開始顯現(xiàn)[15]。柑橘成熟果實中積累的類胡蘿卜素總量和不同顏色類胡蘿卜素成分比例差異使柑橘果實呈現(xiàn)不同色澤[16]。類胡蘿卜素的顏色是由于分子中共軛雙鍵系統(tǒng)的出現(xiàn),其共軛雙鍵數(shù)目越多,主要吸光波長越長,共軛雙鍵數(shù)多于7時才可呈現(xiàn)顏色,共軛雙鍵的順反異構(gòu)也影響類胡蘿卜素的顏色,全-反式類胡蘿卜素顏色最深,增加順式雙鍵數(shù)量使顏色逐漸變淺,光、熱和酸是使反式雙鍵轉(zhuǎn)換為順式雙鍵的因素[17]。
柑橘果實中的萜類揮發(fā)物主要包括單萜烯、倍半萜烯及其含氧衍生物(醛、醇、酮、酯)[18]。檸檬烯、月桂烯、γ-萜品烯和β-蒎烯是主要的單萜烯,石竹烯、大根香葉烯、蓽澄茄烯、β-欖香烯和瓦倫烯是主要的倍半萜烯,萜烯類約占柑橘果實揮發(fā)物總量的90%[11,19]。萜烯類含量雖多,但閾值較高,對柑橘果實香氣的直接影響較小,通常只起背景香氣的作用,對柑橘果實香氣起關(guān)鍵作用的主要是萜類的含氧衍生物[20-22]。含氧衍生物中,萜醛主要是香葉醛和橙花醛,具有柑橘和檸檬香味,是柑橘風(fēng)味的主要形成物質(zhì)[23-24];萜醇主要包括芳樟醇、萜品醇、橙花醇和香葉醇,萜酮主要包括香芹酮和圓柚酮,萜醇和萜酮可促進柑橘產(chǎn)生花香、果香和薄荷香味[9];萜酯主要是乙酸橙花酯和乙酸香葉酯,對柑橘的果香和玫瑰香味貢獻較大[25]。降異戊二烯是由類胡蘿卜素降解的C9~C13的揮發(fā)物,也屬于萜類,包括β-紫羅蘭酮、β-大馬酮、香葉基丙酮和β-環(huán)檸檬醛等,這些物質(zhì)濃度通常很低,但閾值也極低,對果實整體香氣的感知有強烈的影響(表1)[26-27]。
2 柑橘果實萜類色素和揮發(fā)物的合成
2.1 柑橘果實萜類色素和揮發(fā)物的合成途徑
類胡蘿卜素和萜類揮發(fā)物合成的前體物質(zhì)均為異戊烯焦磷酸(IPP)及其烯丙基異構(gòu)體二甲基丙烯焦磷酸(DMAPP),IPP和DMAPP可由2個獨立的途徑合成,即細(xì)胞質(zhì)內(nèi)的甲羥戊酸(MVA)途徑和質(zhì)體內(nèi)的2-C-甲基-D-赤蘚醇-4-磷酸(MEP)途徑[31-32]。由圖1可知,在細(xì)胞質(zhì)中IPP由乙酰輔酶A經(jīng)MVA途徑合成,在質(zhì)體中IPP由丙酮酸和3-磷酸甘油醛經(jīng)MEP途徑合成,2個途徑合成的IPP可以交換,主要由質(zhì)體向細(xì)胞質(zhì)轉(zhuǎn)移[27,32-34]。
類胡蘿卜素的合成是利用質(zhì)體中的IPP和DMAPP,IPP和DMAPP經(jīng)牻牛兒基牻牛兒基焦磷酸合酶(GGPPS)的縮合作用產(chǎn)生牻牛兒基牻牛兒基焦磷酸(GGPP),2分子GGPP和八氫番茄紅素合成酶(PSY)作用產(chǎn)生第1個類胡蘿卜素產(chǎn)物八氫番茄紅素,后經(jīng)去飽和酶和異構(gòu)酶(PDS、ZDS、Z-ISO、CRTISO)的催化發(fā)生一系列去飽和異構(gòu)反應(yīng)產(chǎn)生番茄紅素,番茄紅素被番茄紅素ε-環(huán)化酶(LCYe)或β-環(huán)化酶(LCYb)環(huán)化產(chǎn)生α-胡蘿卜素和β-胡蘿卜素,分別代表α和β分支途徑,α-胡蘿卜素和β-胡蘿卜素在非血紅素羥化酶(BCH)和血紅素羥化酶(CYP97A、CYP97C)的作用下在α分支產(chǎn)生葉黃素,在β分支產(chǎn)生玉米黃素[33]。玉米黃素經(jīng)玉米黃素環(huán)氧化酶(ZEP)的連續(xù)2次作用,2個β環(huán)發(fā)生環(huán)氧化產(chǎn)生紫黃質(zhì),紫黃質(zhì)在新黃質(zhì)合酶的作用下產(chǎn)生新黃質(zhì)[34]。類胡蘿卜素在類胡蘿卜素裂解雙氧合酶(CCD)作用下降解產(chǎn)生脫輔基類胡蘿卜素包括β-檸烏素、植物激素和降異戊二烯。
萜類揮發(fā)物中,單萜和二萜的合成在質(zhì)體中進行,倍半萜的合成在細(xì)胞質(zhì)中進行,在質(zhì)體內(nèi)1分子IPP 和1分子DMAPP在牻牛兒基焦磷酸合酶(GPPS)的作用下縮合產(chǎn)生單萜的前體牻牛兒基焦磷酸(GPP),3分子IPP和1分子DMAPP在GGPPS 的作用下縮合產(chǎn)生二萜的前體GGPP,在細(xì)胞質(zhì)內(nèi)2分子IPP 和1分子DMAPP在法尼基焦磷酸合酶(FPPS)的作用下縮合產(chǎn)生倍半萜的前體法尼基焦磷酸(FPP)[35]。GPP、GGPP、FPP隨后在萜類合成酶(TPS)的作用下分別產(chǎn)生單萜、二萜、倍半萜。TPS是導(dǎo)致萜類揮發(fā)物質(zhì)種類多樣的重要原因,首先TPS成員眾多,如甜橙TPS基因家族成員有95個[36],其次1種TPS不僅可以1種底物產(chǎn)生多種萜類,而且可以識別多個底物合成多種萜類,1種 TPS可以產(chǎn)生的產(chǎn)物最多可達(dá)20種[31]。
2.2 柑橘果實萜類色素和揮發(fā)物合成關(guān)鍵基因
2.2.1 類胡蘿卜素合成關(guān)鍵基因
PSY是類胡蘿卜素生物合成途徑的第1個酶,甜瓜中有1個PSY基因,葡萄中有2個PSY基因,番茄和柑橘中有3個PSY基因[37],CitPSY1在柑橘果實發(fā)育早期表達(dá)水平較低,隨果實成熟逐漸積累,和類胡蘿卜素的積累量平行變化,表明CitPSY1在柑橘類胡蘿卜素積累中起著重要作用,而CitPSY2和CitPSY3的表達(dá)水平較低,其在類胡蘿卜素積累中的作用有待進一步研究[38-39]。PDS和ZDS催化八氫番茄紅素的脫氫經(jīng)Z-ISO和CRTISO異構(gòu)化后形成番茄紅素,PDS和ZDS是結(jié)合氧化還原活性輔因子的膜結(jié)合電子受體,醌類是PDS和ZDS去飽和反應(yīng)的電子接受體,植物PDS突變體通常產(chǎn)生白化表型[34]。PDS基因首先從大豆中被分離鑒定[40],隨后辣椒[41]、番茄[42]、玉米[43]中也分離到PDS基因。Kita 等從溫州蜜柑中分離到首個柑橘PDS基因[44]。檸檬果實發(fā)育后期,CitPDS轉(zhuǎn)錄水平降低導(dǎo)致檸檬果實中積累大量無色的八氫番茄紅素,同時β,β-葉黃素的積累受到限制[12]。Cara Cara(卡拉卡拉)是臍橙的1個紅色果肉芽變,果實發(fā)育早期Cara Cara果肉PDS表達(dá)較臍橙增強,番茄紅素在發(fā)育早期大量積累[45]。Z-ISO 催化9,15,9′-tri-cis-ζ-胡蘿卜素轉(zhuǎn)化為9,9′-di-cis-ζ-胡蘿卜素,Z-ISO突變導(dǎo)致類胡蘿卜素合成途徑受阻,使果實中上游胡蘿卜素和β,β-葉黃素含量失衡,突變臍橙果實變?yōu)辄S色[46]。
LCYb和LCYe使番茄紅素末端環(huán)化形成有2個β環(huán)的β-胡蘿卜素及有1個β環(huán)和1個ε環(huán)的α-胡蘿卜素。在玉米[47]和水稻[48]中,LCYb由單基因編碼,而在番茄[49]、獼猴桃[50]、番木瓜[51]和枇杷[52]中有2個LCYb基因。在柑橘中,Alquézar等從甜橙中分離到2個LCYb基因,果實成熟過程中CitLCYb1表達(dá)水平恒定且較低,而CitLCYb2在有色體中特異表達(dá)并隨果實成熟增加,在紅葡萄柚果實成熟過程中CitLCYb2表達(dá)較甜橙大量減少,且從紅葡萄柚中分離到CitLCYb2的2個等位基因,b基因編碼無環(huán)化活性的酶,紅葡萄柚主要表達(dá)無功能的CitLCY2b[53]。在植物中LCYe通常為單拷貝,與LCYb有37%~40%的同源性[54]。CitLCYe與CitLCYb1或CitLCYb2共表達(dá)時均可以產(chǎn)生α-胡蘿卜素[55],在柑橘果實成熟過程中CitLCYe的轉(zhuǎn)錄水平逐漸下降直至消失[56]。
BCH和CYP97催化α-胡蘿卜素和β-胡蘿卜素的末端環(huán)羥基化形成葉黃素,BCH定位于質(zhì)體被膜和類囊體膜上,而CYP97僅定位于葉綠體被膜上[57]。Ma等研究了4個胡蘿卜素羥化酶基因在柑橘果實葉黃素形成中的作用,發(fā)現(xiàn)CitBCH表達(dá)隨果實成熟逐漸增加,與β分支葉黃素積累一致,CitCYP97A和CitCYP97C表達(dá)在9月達(dá)到峰值,與α分支葉黃素積累一致,CitCYP97B表達(dá)水平較低;功能分析表明,CitBCH催化α-胡蘿卜素和β-胡蘿卜素β環(huán)的羥化反應(yīng),而CitCYP97C為ε環(huán)羥化酶,與CitBCH共同表達(dá)時可催化α-胡蘿卜素形成葉黃素[58]。ZEP催化葉黃素環(huán)氧化產(chǎn)生紫黃質(zhì),目前柑橘果實中僅鑒定表達(dá)出1個ZEP基因,在汁囊大量積累β-隱黃質(zhì)的溫州蜜柑中CitBCH和CitZEP的表達(dá)水平遠(yuǎn)低于以紫黃質(zhì)積累為主的甜橙[12]。由此可以看出類胡蘿卜素合成途徑基因?qū)麑嶎惡}卜素積累起著關(guān)鍵作用,其合成途徑基因表達(dá)量改變和基因突變導(dǎo)致類胡蘿卜素積累改變,另外果實類胡蘿卜素積累量還受類胡蘿卜素降解的影響,合成與降解的平衡決定了果實類胡蘿卜素最終積累量。
2.2.2 脫輔基類胡蘿卜素合成的關(guān)鍵基因
CCD催化類胡蘿卜素裂解產(chǎn)生脫輔基類胡蘿卜素,CCD對底物的選擇性較混雜,但對裂解的雙鍵具有特異性[59]。首個CCD基因從玉米中克隆得到[60],根據(jù)裂解位點不同植物CCD可分為5個亞家族,即NCED、CCD1、CCD4、CCD7和CCD8[61]。NCED、CCD7和CCD8裂解類胡蘿卜素通常產(chǎn)生植物激素前體[34]。NCED影響柑橘果實類胡蘿卜素組成,Kato等發(fā)現(xiàn)在9-cis-紫黃質(zhì)含量低的檸檬果皮、汁囊和溫州蜜柑汁囊中CitNCED2基因高度表達(dá),而在9-cis-紫黃質(zhì)含量高的甜橙果皮、汁囊和溫州蜜柑果皮中CitNCED2基因表達(dá)水平較低[62]。CCD1裂解類胡蘿卜素產(chǎn)生降異戊二烯,但在不同果實中CCD1對類胡蘿卜素含量的調(diào)節(jié)作用不同。在柑橘果實中CCD1可以裂解β-隱黃質(zhì)、玉米黃質(zhì)和紫黃質(zhì)產(chǎn)生降異戊二烯,CCD1的表達(dá)不影響類胡蘿卜素的積累[62],同樣在番茄果實中降低CCD1的表達(dá),β-紫羅蘭酮和香葉基丙酮的含量顯著降低,類胡蘿卜素的含量并不改變[63];然而在草莓和杏果實中,隨著CCD1表達(dá)的增加,脫輔基類胡蘿卜素類香氣物質(zhì)含量顯著增加,但類胡蘿卜素積累顯著減少[64-65]。CCD4裂解類胡蘿卜素的產(chǎn)物因果實種類而不同,在蘋果和桃果實中CCD4和類胡蘿卜素起源的香氣揮發(fā)物的產(chǎn)生有關(guān)[66-67];而在柑橘果實中CCD4是β-檸烏素生物合成的關(guān)鍵基因,可以裂解β-隱黃質(zhì)和玉米黃質(zhì)產(chǎn)生β-檸烏素,在積累β-檸烏素的溫州蜜柑成熟過程中大量表達(dá),而在缺少β-檸烏素的溫州蜜柑中表達(dá)水平極低[68]。Zheng等發(fā)現(xiàn)紅色柑橘品種CCD4b基因啟動子區(qū)域含有微小反向重復(fù)轉(zhuǎn)座子的2個單核苷酸多態(tài)性的G堿基(SNP2G),順式調(diào)節(jié)CCD4b表達(dá)量增強,促使紅色C30脫輔基類胡蘿卜素的合成增加[68]。因此,CCD是控制果實色澤和香氣的關(guān)鍵基因,在CCD的作用下類胡蘿卜素可轉(zhuǎn)化為脫輔基類胡蘿卜素類揮發(fā)物質(zhì),除作為脫輔基類胡蘿卜素類揮發(fā)物質(zhì)合成的前體外,類胡蘿卜素還與單萜和倍半萜揮發(fā)物具有相同的初始前體。
2.2.3 萜類揮發(fā)物合成的關(guān)鍵基因
TPS是單萜和倍半萜類揮發(fā)物合成的關(guān)鍵酶。植物TPS基因大多成簇排列在染色體上,數(shù)量通常為19~152個[36,69]。根據(jù)序列差異植物TPS基因可分為a~h 8類,其中b、g類TPS基因包含大多數(shù)單萜合成酶編碼基因,a類TPS基因包含大多數(shù)倍半萜合成酶編碼基因[70]。柑橘TPS是最大的被子植物TPS家族之一,但目前克隆到的柑橘TPS基因僅占少數(shù)[36]。在柑橘單萜合成酶基因方面,Lücker等從檸檬幼果中分離到4個TPS基因,將其在大腸桿菌(E.coli)中表達(dá)產(chǎn)生相應(yīng)的酶蛋白,加入GGP(牻牛兒基焦磷酸)為底物時其主要產(chǎn)物分別為檸檬烯合成酶1、檸檬烯合成酶2、β-蒎烯合成酶和γ-松油烯[71]。隨后Shimada等從溫州蜜柑果實中鑒定到CitMTSL1和CitMTSL4,分別編碼1,8-桉樹腦合酶和E-β-羅勒烯合酶,2個基因均在果實發(fā)育早期表達(dá),隨果實發(fā)育逐漸降低,和單萜的生物合成一致[72]。Shimada等從溫州蜜柑中鑒定到3個芳樟醇合酶基因,CuSTS3-1和CuSTS3-2僅以GPP為底物合成芳樟醇,而CuSTS4以GPP和FPP為底物分別合成芳樟醇和橙花叔醇,CuSTS3-1、CuSTS3-2和CuSTS4分別在幼果、花和葉中大量表達(dá)[73]。Li等發(fā)現(xiàn)甜橙CitTPS16在體外可催化E-香葉醇的合成,體內(nèi)過表達(dá)CitTPS16導(dǎo)致果實和葉片中積累 E- 香葉醇[74]。
在柑橘倍半萜類合成基因研究方面,Sharon-Asa等從甜橙中分離到瓦倫烯合酶基因Cstps1,Cstps1的重組蛋白可以FPP為底物合成瓦倫烯,從果實發(fā)育到成熟過程中Cstps1的轉(zhuǎn)錄水平逐漸增加,和果實中瓦倫烯的變化一致,采后乙烯處理可以增加果實中Cstps1的表達(dá)和瓦倫烯的含量[75]。與Temple雜柑相比,Murcott雜柑果實發(fā)育過程中Cstps1大量減少,Murcott果實中缺少瓦倫烯,脫輔基類胡蘿卜素類揮發(fā)物質(zhì)也減少,但類胡蘿卜素積累量增加[76]。隨后研究發(fā)現(xiàn)Murcott雜柑Cstps1啟動子區(qū)域12個核苷酸的缺失是導(dǎo)致其果實不能合成瓦倫烯的原因[77]。
3 柑橘果實萜類色素和揮發(fā)物生物合成調(diào)控
3.1 轉(zhuǎn)錄因子調(diào)控
盡管柑橘果實類胡蘿卜素積累差異大多是由類胡蘿卜素合成途徑基因差異表達(dá)導(dǎo)致,但目前調(diào)控類胡蘿卜素合成基因表達(dá)的轉(zhuǎn)錄因子報道較少,在柑橘中僅鑒定到MYB和MADS轉(zhuǎn)錄因子對類胡蘿卜素合成基因起調(diào)控作用。甜橙CsMADS6隨著果實發(fā)育和轉(zhuǎn)色協(xié)調(diào)表達(dá),CsMADS6多靶點調(diào)控類胡蘿卜素代謝,CsMADS6不僅可與類胡蘿卜素合成途徑基因LCYb1、PSY和PDS的啟動子序列直接結(jié)合,并激活其表達(dá),而且可直接結(jié)合CCD1的啟動子使其表達(dá)上調(diào),在柑橘愈傷組織中過表達(dá)CsMADS6可增加類胡蘿卜素的含量[78]。青甌柑CrMYB68可與BCH2和NCED5的啟動子結(jié)合并抑制其表達(dá),延緩α-胡蘿卜素、β-胡蘿卜素向葉黃素轉(zhuǎn)化,導(dǎo)致其成熟期果實依然保持綠色[79]。
對萜類揮發(fā)物合成關(guān)鍵基因TPS起調(diào)控作用的僅鑒定到AP2/ERF轉(zhuǎn)錄因子。甜橙CitAP2.10可激活瓦倫烯合酶基因CsTPS1的表達(dá),在甜橙中瞬時過表達(dá)CitAP2.10可啟動果實瓦倫烯生物合成[80]。甜橙CitERF71可與萜類合酶基因CitTPS16的啟動子ACCCGCC和GGCGGG序列直接結(jié)合,從而激活CitTPS16基因的啟動子,調(diào)控CitTPS16轉(zhuǎn)錄和果實中香葉醇的產(chǎn)生[81]。
3.2 環(huán)境因素調(diào)控
3.2.1 溫度
溫度對柑橘果實類胡蘿卜素的積累有顯著影響。在Navelina、Valencia、Satsuma、Ponkan、Palmer Navel、Lisbon等多個柑橘品種中研究發(fā)現(xiàn),10~15 ℃是果實類胡蘿卜素積累的適宜溫度[82-84],在10~15 ℃下類胡蘿卜素合成基因CitPSY、CitPDS、CitZDS、CitLCYe、CitHYb、CitLCYb1、CitLCYb2、CitBCH、CitZEP及β-檸烏素合成基因 CitCCD4b1表達(dá)上調(diào),類胡蘿卜素分解代謝基因CitNCED2 和CitNCED3表達(dá)下調(diào),類胡蘿卜素積累總量增加[85-86]。但在一些紅葡萄柚品種中,30 ℃以上高溫可促進果實積累更多番茄紅素,與 30 ℃ 抑制CitLCYb的表達(dá)有關(guān)[18]。Cara Cara橙果實中主要含有線性胡蘿卜素[87],Lu等研究了不同產(chǎn)區(qū)Cara Cara橙類胡蘿卜素含量變化,發(fā)現(xiàn)Cara Cara橙果實類胡蘿卜素含量差異和溫度直接相關(guān),高溫能顯著增加類胡蘿卜素的積累[88]。關(guān)于溫度對柑橘果實萜類揮發(fā)物影響的報道還較少,Lado等研究表明,葡萄柚果實采后12 ℃與2 ℃貯藏相比果皮顏色和類胡蘿卜素含量增加,而揮發(fā)物總量和單萜類揮發(fā)物(檸檬烯、芳樟醇、α-萜品醇)釋放減少[89]。
3.2.2 光照
光是影響柑橘果實類胡蘿卜素生物合成的關(guān)鍵環(huán)境因素。光照度對果實類胡蘿卜素積累的影響取決于柑橘種類。在甜橙和寬皮柑橘中,遮光會降低果實類胡蘿卜素的積累[3,18],遮光后CitPSY、CitPDS、CitZDS、CitLCY2a、CitLCY2b、CitHYb基因的表達(dá)下調(diào)[90]。但在紅葡萄柚和柚中遮光有利于類胡蘿卜素積累,Lado等報道套袋后完全遮光的紅葡萄柚果實番茄紅素較正常光照增加49倍,遮光果實中類胡蘿卜素合成基因下調(diào),有色體分化相關(guān)基因上調(diào)[91]。姜啟航也報道套袋能增加馬家柚果實番茄紅素的積累,同時套袋降低了果實萜類揮發(fā)性物質(zhì)含量,套袋后馬家柚果實中諾卡酮、D-檸檬烯、α-蒎烯、β-月桂烯和β-水芹烯含量顯著減少[92]。光質(zhì)對柑橘果皮和果肉類胡蘿卜素積累具有不同影響,Ma等發(fā)現(xiàn)紅光誘導(dǎo)柑橘果皮類胡蘿卜素積累和類胡蘿卜素合成途徑基因CitPSY、CitPDS、CitZDS、CitLCYb1、CitLCYb2、CitHYb、CitZEP表達(dá),而藍(lán)光則無誘導(dǎo)作用,紅光處理后溫州蜜柑果皮β-隱黃質(zhì)、全反紫黃質(zhì)、9-順-紫黃質(zhì)、葉黃素含量和類胡蘿卜素積累總量增加[93-94]。與果皮相反,Zhang等發(fā)現(xiàn)藍(lán)光誘導(dǎo)柑橘果實汁囊類胡蘿卜素的積累,而紅光不影響類胡蘿卜素積累,CitPSY基因的表達(dá)受藍(lán)光上調(diào),而不受紅光影響[95]。光質(zhì)對柑橘果皮和果肉萜類揮發(fā)物的影響還未見報道。
4 展望
近年來,柑橘果實中類胡蘿卜素和萜類揮發(fā)物的組成被廣泛研究,關(guān)于類胡蘿卜素合成關(guān)鍵基因的研究也取得較多進展,但是,目前報道已驗證功能的柑橘TPS基因還相對較少。柑橘果實中萜類揮發(fā)物種類繁多,TPS基因家族成員眾多,對柑橘TPS基因進行克隆、鑒定和功能驗證是今后的研究重點。此外,結(jié)構(gòu)基因表達(dá)受轉(zhuǎn)錄因子調(diào)控,轉(zhuǎn)錄因子對柑橘果實類胡蘿卜素和萜類揮發(fā)物的合成關(guān)鍵基因調(diào)控的報道還較少,有待深入研究。
果實中類胡蘿卜素和萜類揮發(fā)物的生物合成途徑相互聯(lián)系,二者都以IPP和DMAPP作為合成前體,且一些類胡蘿卜素在CCD的作用下可以產(chǎn)生脫輔基類胡蘿卜素類揮發(fā)物質(zhì)。在其他果實中已經(jīng)證實TPS基因的表達(dá)能同時影響類胡蘿卜素和萜類揮發(fā)物的含量,如表達(dá)1個單萜合酶基因的轉(zhuǎn)基因番茄果實單萜積累增加,香氣和風(fēng)味更濃,但番茄紅素的積累減少,果實顏色變淡[96],在柑橘果實中TPS基因表達(dá)對類胡蘿卜素的影響還未知,有待進一步驗證。在番茄和柑橘中研究表明,CCD1的表達(dá)不影響果實類胡蘿卜素的積累,說明在柑橘中可以通過增加CCD1的表達(dá)或類胡蘿卜素的積累,在不降低果實類胡蘿卜素含量的同時提高脫輔基類胡蘿卜素?fù)]發(fā)物的含量,即獲得兼具色澤和香氣的品種,但類胡蘿卜素合成途徑基因表達(dá)對萜類揮發(fā)物的影響未知,須要進一步研究。
柑橘果實天然色澤突變體較多,最近一些研究發(fā)現(xiàn)柑橘果實類胡蘿卜素發(fā)生變化的色澤突變體中,萜類揮發(fā)物也發(fā)生改變。Li 等報道Niurouhong(NRH,果肉牛肉紅色)是Zhuhongju (ZHJ,果肉橙紅色)的天然色澤突變體,具有與ZHJ不同的風(fēng)味,NRH的色澤變化是由于β-隱黃素和β-胡蘿卜素的過量積累,而NRH的風(fēng)味變化是由于萜類揮發(fā)物較ZHJ增加1.27倍[74]。rohde red valencia(RRV)是valencia(VAL)的深橙色突變,RRV中β-隱黃質(zhì)和α-檸檬醛、β-檸檬醛、1,4-萜品醇、α-紫羅蘭酮和β-紫羅蘭酮含量高于VAL[22]。Liu等發(fā)現(xiàn)突變型紅肉琯溪蜜柚和紅暗柳橙果實類胡蘿卜素總量和單萜揮發(fā)物含量較對應(yīng)野生型琯溪蜜柚和暗柳橙高[97],須要進一步對這些色澤突變體的突變機制開展深入研究,以便更好地解析柑橘果實色澤、香氣變化規(guī)律和控制因子,為培育色香味更佳的柑橘優(yōu)新品種提供理論和技術(shù)支持。
參考文獻:
[1]丁曉波,張 華,劉世堯,等. 柑橘果品營養(yǎng)學(xué)研究現(xiàn)狀[J]. 園藝學(xué)報,2012,39(9):1687-1702.
[2]Zheng H W,Zhang Q W,Quan J P,et al. Determination of sugars,organic acids,aroma components,and carotenoids in grapefruit pulps[J]. Food Chemistry,2016,205:112-121.
[3]Rodrigo M J,Alquézar B,Alós E,et al. Biochemical bases and molecular regulation of pigmentation in the peel of Citrus fruit[J]. Scientia Horticulturae,2013,163:46-62.
[4]Alquezar B,Rodrigo M J,Lado J,et al. A comparative physiological and transcriptional study of carotenoid biosynthesis in white and red grapefruit (Citrus paradisi Macf.)[J]. Tree Genetics & Genomes,2013,9(5):1257-1269.
[5]Chen C X. Pigments in fruits and vegetables[M]. New York:Springer,2015.
[6]Wei X,Hu H,Tong H R,et al. Profiles of gene family members related to carotenoid accumulation in Citrus genus[J]. Journal of Plant Biology,2017,60(1):1-10.
[7]Sawamura M,Kuriyama T. Quantitative determination of volatile constituents in the pummelo (Citrus grandis Osbeck forma Tosa-buntan)[J]. Journal of Agricultural and Food Chemistry,1988,36(3):567-569.
[8]Lota M L,Serra D D,Tomi F,et al. Volatile components of peel and leaf oils of lemon and lime species[J]. Journal of Agricultural and Food Chemistry,2002,50(4):796-805.
[9]Hgnadóttir A,Rouseff R L. Identification of aroma active compounds in orange essence oil using gas chromatography-olfactometry and gas chromatography-mass spectrometry[J]. Journal of Chromatography A,2003,998(1/2):201-211.
[10]Miyazaki T,Plotto A,Baldwin E A,et al. Aroma characterization of tangerine hybrids by gas-chromatography-olfactometry and sensory evaluation[J]. Journal of the Science of Food and Agriculture,2012,92(4):727-735.
[11]Zhang H P,Xie Y X,Liu C H,et al. Comprehensive comparative analysis of volatile compounds in citrus fruits of different species[J]. Food Chemistry,2017,230:316-326.
[12]Kato M,Ikoma Y,Matsumoto H,et al. Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit[J]. Plant Physiology,2004,134(2):824-837.
[13]Fanciullino A L,Dhuique-Mayer C,Luro F,et al. Carotenoid diversity in cultivated citrus is highly influenced by genetic factors[J]. Journal of Agricultural and Food Chemistry,2006,54(12):4397-4406.
[14]Agócs A,Nagy V,Szabó Z,et al. Comparative study on the carotenoid composition of the peel and the pulp of different citrus species[J]. Innovative Food Science & Emerging Technologies,2007,8(3):390-394.
[15]Bartley G,Scolnik P A. Plant carotenoids:pigments for photoprotection,visual attraction,and human health[J]. The Plant Cell,1995,7(7):1027-1038.
[16]陶 俊. 柑橘果實類胡蘿卜素形成及調(diào)控的生理機制研究[D]. 杭州:浙江大學(xué),2002.
[17]Finley J W,de Man J M,Lee C Y. Color and food colorants[M]//Principles of Food Chemistry. Berlin:Springer,2018.
[18]Lado J,Gambetta G,Zacarias L. Key determinants of citrus fruit quality:metabolites and main changes during maturation[J]. Scientia Horticulturae,2018,233:238-248.
[19]Allegrone G,Belliardo F,Cabella P. Comparison of volatile concentrations in hand-squeezed juices of four different lemon varieties[J]. Journal of Agricultural and Food Chemistry,2006,54(5):1844-1848.
[20]Rouseff R L,Ruiz Perez-Cacho P,Jabalpurwala F. Historical review of citrus flavor research during the past 100 years[J]. Journal of Agricultural and Food Chemistry,2009,57(18):8115-8124.
[21]Liu Y Q,Heying E,Tanumihardjo S A. History,global distribution,and nutritional importance of citrus fruits[J]. Comprehensive Reviews in Food Science and Food Safety,2012,11(6):530-545.
[22]Wei X,Song M,Chen C X,et al. Juice volatile composition differences between Valencia orange and its mutant Rohde Red Valencia are associated with carotenoid profile differences[J]. Food Chemistry,2018,245:223-232.
[23]Perez-Cacho P R,Rouseff R. Processing and storage effects on orange juice aroma:a review[J]. Journal of Agricultural and Food Chemistry,2008,56(21):9785-9796.
[24]Cheong M W,Liu S Q,Yeo J,et al. Identification of aroma-active compounds in Malaysian pomelo[Citrus grandis (L.) Osbeck]peel by gas chromatography-olfactometry[J]. Journal of Essential Oil Research,2011,23(6):34-42.
[25]何朝飛,冉 玥,曾林芳,等. 檸檬果皮香氣成分的GC-MS分析[J]. 食品科學(xué),2013,34(6):175-179.
[26]Mahattanatawee K,Rouseff R,Valim M F,et al. Identification and aroma impact of norisoprenoids in orange juice[J]. Journal of Agricultural and Food Chemistry,2005,53(2):393-397.
[27]El H A,Zhang F J,Wu F F,et al. Advances in fruit aroma volatile research[J]. Molecules,2013,18(7):8200-8229.
[28]Liu C H,Cheng Y J,Zhang H Y,et al. Volatile constituents of wild citrus Mangshanyegan (Citrus nobilis Lauriro) peel oil[J]. Journal of Agricultural and Food Chemistry,2012,60(10):2617-2628.
[29]Zhang W L,Chen T T,Tang J M,et al. Tracing the production area of citrus fruits using aroma-active compounds and their quality evaluation models[J]. Journal of the Science of Food and Agriculture,2020,100(2):517-526.
[30]Goff S,Klee H J. Plant volatile compounds:sensory cues for health and nutritional value?[J]. Science,2006,311(5762):815-819.
[31]Baldwin I T. Plant volatiles[J]. Current Biology,2010,20(9):392-397.
[32]Pulido P,Perello C,Rodriguez-Concepcion M. New insights into plant isoprenoid metabolism[J]. Molecular Plant,2012,5(5):964-967.
[33]Sun T H,Yuan H,Cao H B,et al. Carotenoid metabolism in plants:the role of plastids[J]. Molecular Plant,2018,11(1):58-74.
[34]Nisar N,Li L,Lu S,et al. Carotenoid metabolism in plants[J]. Molecular Plant,2015,8(1):68-82.
[35]Qualley A,Dudareva N. Plant volatiles[EB/OL]. (2010-09-15)[2020-09-17]. https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470015902.a0000910.pub2.
[36]Alquézar B,Rodríguez A,de la Pea M,et al. Genomic analysis of terpene synthase family and functional characterization of seven sesquiterpene synthases from Citrus sinensis[J]. Frontiers in Plant Science,2017,8:1481.
[37]Young P R,Lashbrooke J G,Alexandersson E,et al. The genes and enzymes of the carotenoid metabolic pathway in Vitis vinifera L.[J]. BMC Genomics,2012,13(1):1-17.
[38]Ikoma Y,Komatsu A,Kita M,et al. Expression of a phytoene synthase gene and characteristic carotenoid accumulation during citrus fruit development[J]. Physiologia Plantarum,2001,111(2):232-238.
[39]Peng G,Wang C Y,Song S,et al. The role of 1-deoxy-d-xylulose-5-phosphate synthase and phytoene synthase gene family in citrus carotenoid accumulation[J]. Plant Physiology and Biochemistry,2013,71:67-76.
[40]Bartley G,Viitanen P V,Pecker I,et al. Molecular cloning and expression in photosynthetic bacteria of a soybean cDNA coding for phytoenedesaturase,an enzyme of the carotenoid biosynthesis pathway[J]. Proceedings of the National Academy of Sciences of the United States of America,1991,88(15):6532-6536.
[41]Hugueney P,Rmer S,Kuntz M,et al. Characterization and molecular cloning of a flavoprotein catalyzing the synthesis of phytofluene and ζ-carotene in Capsicum chromoplasts[J]. European Journal of Biochemistry,1992,209(1):399-407.
[42]Giuliano G,Bartley G,Scolnik P A. Regulation of carotenoid biosynthesis during tomato development[J]. The Plant Cell,1993,5(4):379-387.
[43]Li Z H,Matthews P D,Burr B,et al. Cloning and characterization of a maize cDNA encoding phytoenedesaturase,an enzyme of the carotenoid biosynthetic pathway[J]. Plant Molecular Biology,1996,30(2):269-279.
[44]Kita M,Komatsu A,Omura M,et al. Cloning and expression of CitPDS1,a gene encoding phytoenedesaturase in citrus[J]. Bioscience Biotechnology and Biochemistry,2001,65(6):1424-1428.
[45]Alquezar B,Rodrigo M J,Zacarías L. Regulation of carotenoid biosynthesis during fruit maturation in the red-fleshed orange mutant Cara Cara[J]. Phytochemistry,2008,69(10):1997-2007.
[46]Rodrigo M J,Lado J,Alós E,et al. A mutant allele of ζ-carotene isomerase (Z-ISO) is associated with the yellow pigmentation of the “Pinalate” sweet orange mutant and reveals new insights into its role in fruit carotenogenesis[J]. BMC Plant Biology,2019,19(1):1-16.
[47]Bai L,Kim E H,Dellapenna D,et al. Novel lycopene epsilon cyclase activities in maize revealed through perturbation of carotenoid biosynthesis[J]. The Plant Journal,2009,59(4):588-599.
[48]Chaudhary N,Nijhawan A,Khurana J P,et al. Carotenoid biosynthesis genes in rice:structural analysis,genome-wide expression profiling and phylogenetic analysis[J]. Molecular Genetics and Genomics,2010,283(1):13-33.
[49]Bramley P M. Regulation of carotenoid formation during tomato fruit ripening and development[J]. Journal of Experimental Botany,2002,53(377):2107-2113.
[50]Ampomah-Dwamena C,Mcghie T,Wibisono R,et al. The kiwifruit lycopene β-cyclase plays a significant role in carotenoid accumulation in fruit[J]. Journal of Experimental Botany,2009,60(13):3765-3779.
[51]Blas A L,Ming R,Liu Z,et al. Cloning of the papaya chromoplast-specific lycopene β-cyclase,CpCYC-b,controlling fruit flesh color reveals conserved microsynteny and a recombination hot spot[J]. Plant Physiology,2010,152(4):2013-2022.
[52]Fu X M,Kong W B,Peng G,et al. Plastid structure and carotenogenic gene expression in red-and white-fleshed loquat (Eriobotrya japonica) fruits[J]. Journal of Experimental Botany,2012,63(1):341-354.
[53]Alquézar B,Zacarías L,Rodrigo M J. Molecular and functional characterization of a novel chromoplast-specific lycopene β-cyclase from citrus and its relation to lycopene accumulation[J]. Journal of Experimental Botany,2009,60(6):1783-1797.
[54]徐昌杰,張上隆. 柑橘類胡蘿卜素合成關(guān)鍵基因研究進展[J]. 園藝學(xué)報,2002,29(增刊1):619-623.
[55]Zhang L C,Ma G,Shirai Y,et al. Expression and functional analysis of two lycopene β-cyclases from citrus fruits[J]. Planta,2012,236(4):1315-1325.
[56]Wei X,Chen C X,Yu Q B,et al. Novel expression patterns of carotenoid pathway-related genes in citrus leaves and maturing fruits[J]. Tree Genetics & Genomes,2014,10(3):439-448.
[57]Joyard J,F(xiàn)erro M,Masselon C,et al. Chloroplast proteomics and the compartmentation of plastidialisoprenoid biosynthetic pathways[J]. Molecular Plant,2009,2(6):1154-1180.
[58]Ma G,Zhang L C,Yungyuen W,et al. Expression and functional analysis of citrus carotene hydroxylases:unravelling the xanthophyll biosynthesis in citrus fruits[J]. BMC Plant Biology,2016,16(1):1-12.
[59]Auldridge M E,Mccarty D R,Klee H J. Plant carotenoid cleavage oxygenases and their apocarotenoid products[J]. Current Opinion in Plant Biology,2006,9(3):315-321.
[60]Schwartz S H,Tan B C,Da G G,et al. Specific oxidative cleavage of carotenoids by VP14 of maize[J]. Science,1997,276(5320):1872-1874.
[61]Rodrigo M J,Alquézar B,Alós E,et al. A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments[J]. Journal of Experimental Botany,2013,64(14):4461-4478.
[62]Kato M,Matsumoto H,Ikoma Y,et al. The role of carotenoid cleavage dioxygenases in the regulation of carotenoid profiles during maturation in citrus fruit[J]. Journal of Experimental Botany,2006,57(10):2153-2164.
[63]Simkin A J,Schwartz S H,Auldridge M,et al. The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles β-ionone,pseudoionone,and geranylacetone[J]. The Plant Journal,2004,40(6):882-892.
[64]García-Limones C,Schnbele K,Blanco-Portales R,et al. Functional characterization of FaCCD1:a carotenoid cleavage dioxygenase from strawberry involved in lutein degradation during fruit ripening[J]. Journal of Agricultural and Food Chemistry,2008,56(19):9277-9285.
[65]劉盛雨,章世奎,盧娟芳,等. 杏香氣形成特異基因PaCCD1的克隆與功能分析[J]. 園藝學(xué)報,2018,45(3):471-481.
[66]Huang F C,Molnár P,Schwab W. Cloning and functional characterization of carotenoid cleavage dioxygenase 4 genes[J]. Journal of Experimental Botany,2009,60(11):3011-3022.
[67]Ma G,Zhang L C,Matsuta A,et al. Enzymatic formation of β-citraurin from β-cryptoxanthin and Zeaxanthin by carotenoid cleavage dioxygenase4 in the flavedo of citrus fruit[J]. Plant Physiology,2013,163(2):682-695.
[68]Zheng X J,Zhu K J,Sun Q,et al. Natural variation in CCD4 promoter underpins species-specific evolution of red coloration in citrus peel[J]. Molecular Plant,2019,12(9):1294-1307.
[69]Nieuwenhuizen N J,Green S A,Chen X,et al. Functional genomics reveals that a compact terpene synthase gene family can account for terpene volatile production in apple[J]. Plant Physiology,2013,161(2):787-804.
[70]Falara V,Akhtar T A,Nguyen T T,et al. The tomato terpene synthase gene family[J]. Plant Physiology,2011,157(2):770-789.
[71]Lücker J,El Tamer M K,Schwab W,et al. Monoterpene biosynthesis in lemon (Citrus limon) cDNA isolation and functional analysis of four monoterpene synthases[J]. European Journal of Biochemistry,2002,269(13):3160-3171.
[72]Shimada T,Endo T,F(xiàn)ujii H,et al. Isolation and characterization of (E)-β-ocimene and 1,8 cineole synthases in Citrus unshiu Marc[J]. Plant Science,2005,168(4):987-995.
[73]Shimada T,Endo T,F(xiàn)ujii H,et al. Characterization of three linalool synthase genes from Citrus unshiu Marc. and analysis of linalool-mediated resistance against Xanthomonas citri subsp. citri and Peniciliumitalicum in citrus leaves and fruits[J]. Plant Science,2014,229:154-166.
[74]Li W Y,Liu C H,He M,et al. Largely different contents of terpenoids in beef red-flesh tangerine and its wild type[J]. BMC Plant Biology,2017,17(1):1-12.
[75]Sharon-Asa L,Shalit M,F(xiàn)rydman A,et al. Citrus fruit flavor and aroma biosynthesis:isolation,functional characterization,and developmental regulation of Cstps1,a key gene in the production of the sesquiterpene aroma compound valencene[J]. The Plant Journal,2003,36(5):664-674.
[76]Yu Q B,Plotto A,Baldwin E A,et al. Proteomic and metabolomic analyses provide insight into production of volatile and non-volatile flavor components in mandarin hybrid fruit[J]. BMC Plant Biology,2015,15(1):76.
[77]Yu Q B,Huang M,Jia H G,et al. Deficiency of valencene in mandarin hybrids is associated with a deletion in the promoter region of the valencene synthase gene[J]. BMC Plant Biology,2019,19(1):101.
[78]Lu S,Zhang Y,Zhu K,et al. The citrus transcription factor CsMADS6 modulates carotenoid metabolism by directly regulating carotenogenic genes[J]. Plant Physiology,2018,176(4):2657-2676.
[79]Zhu F,Luo T,Liu C Y,et al. An R2R3-MYB transcription factor represses the transformation of α-and β-branch carotenoids by negatively regulating expression of CrBCH2 and CrNCED5 in flavedo of Citrus reticulate[J]. The New Phytologist,2017,216(1):178-192.
[80]Shen S L,Yin X R,Zhang B,et al. CitAP2.10 activation of the terpene synthase CsTPS1 is associated with the synthesis of (+)-valencene in ‘Newhall orange[J]. Journal of Experimental Botany,2016,67(14):4105-4115.
[81]Li X,Xu Y Y,Shen S L,et al. Transcription factor CitERF71 activates the terpene synthase gene CitTPS16 involved in the synthesis of E-geraniol in sweet orange fruit[J]. Journal of Experimental Botany,2017,68(17):4929-4938.
[82]van Wyk A A,Huysamer M,Barry G H. Extended low-temperature shipping adversely affects rind colour of ‘Palmer Navelsweet orange[Citrus sinensis (L.) Osb.]due to carotenoid degradation but can partially be mitigated by optimising post-shipping holding temperature[J]. Postharvest Biology and Technology,2009,53(3):109-116.
[83]Zhou J Y,Sun C D,Zhang L L,et al. Preferential accumulation of orange-colored carotenoids in Ponkan (Citrus reticulata) fruit peel following postharvest application of ethylene or ethephon[J]. Scientia Horticulturae,2010,126(2):229-235.
[84]Carmona L,Zacarías L,Rodrigo M J. Stimulation of coloration and carotenoid biosynthesis during postharvest storage of ‘Navelina orange fruit at 12 ℃[J]. Postharvest Biology and Technology,2012,74:108-117.
[85]Yungyuen W,Ma G,Zhang L C,et al. Regulation of carotenoid metabolism in response to different temperatures in Citrus juice sacs in vitro[J]. Scientia Horticulturae,2018,238:384-390.
[86]Luan Y T,Wang S S,Wang R Q,et al. Accumulation of red apocarotenoid β-citraurin in peel of a spontaneous mutant of huyou (Citrus changshanensis) and the effects of storage temperature and ethylene application[J]. Food Chemistry,2020,309:125705.
[87]Tao N G,Wang C F,Xu J,et al. Carotenoid accumulation in postharvest “Cara Cara” navel orange (Citrus sinensis Osbeck) fruits stored at different temperatures was transcriptionally regulated in a tissue-dependent manner[J]. Plant Cell Reports,2012,31(9):1667-1676.
[88]Lu Q,Huang X J,Lv S Y,et al. Carotenoid profiling of red navel orange “Cara Cara” harvested from five regions in China[J]. Food Chemistry,2017,232:788-798.
[89]Lado J,Gurrea A,Zacarías L,et al. Influence of the storage temperature on volatile emission,carotenoid content and chilling injury development in Star Ruby red grapefruit[J]. Food Chemistry,2019,295:72-81.
[90]Lado J,Alós E,Manzi M,et al. Light regulation of carotenoid biosynthesis in the peel of Mandarin and sweet orange fruits[J]. Frontiers in Plant Science,2019,10:1288.
[91]Lado J,Cronje P,Alquézar B,et al. Fruit shading enhances peel color,carotenes accumulation and chromoplast differentiation in red grapefruit[J]. Physiologia Plantarum,2015,154(4):469-484.
[92]姜啟航. 套袋對柚果實類胡蘿卜素代謝和品質(zhì)的影響[D]. 武漢:華中農(nóng)業(yè)大學(xué),2019.
[93]Ma G,Zhang L C,Kato M,et al. Effect of blue and red LED light irradiation on β-cryptoxanthin accumulation in the flavedo of citrus fruits[J]. Journal of Agricultural and Food Chemistry,2012,60(1):197-201.
[94]Ma G,Zhang L C,Kato M,et al. Effect of the combination of ethylene and red LED light irradiation on carotenoid accumulation and carotenogenic gene expression in the flavedo of citrus fruit[J]. Postharvest Biology and Technology,2015,99:99-104.
[95]Zhang L C,Ma G,Kato M,et al. Regulation of carotenoid accumulation and the expression of carotenoid metabolic genes in citrus juice sacs in vitro[J]. Journal of Experimental Botany,2012,63(2):871-886.
[96]Davidovich-Rikanati R,Sitrit Y,Tadmor Y,et al. Enrichment of tomato flavor by diversion of the early plastidial terpenoid pathway[J]. Nature Biotechnology,2007,25(8):899-901.
[97]Liu C H,He M,Wang Z,et al. Integrative analysis of terpenoid profiles and hormones from fruits of red-flesh citrus mutants and their wild types[J]. Molecules,2019,24(19):3456.