吳志東,房俊龍,巴文革,吳 爽,李海濤,蔡有杰,程渠林
冬季采暖保育豬舍送排風(fēng)管道組合換氣系統(tǒng)設(shè)計(jì)與評(píng)價(jià)
吳志東1,2,3,房俊龍1※,巴文革1,吳 爽1,李海濤4,蔡有杰2,程渠林2
(1. 東北農(nóng)業(yè)大學(xué)電氣與信息學(xué)院,哈爾濱 150030;2. 齊齊哈爾大學(xué)機(jī)電工程學(xué)院,齊齊哈爾 161006;3. 黑龍江省智能制造裝備產(chǎn)業(yè)化協(xié)同創(chuàng)新中心,齊齊哈爾 161006;4. 黑龍江省農(nóng)業(yè)機(jī)械工程科學(xué)研究院齊齊哈爾農(nóng)業(yè)機(jī)械化研究所,齊齊哈爾 161006)
為實(shí)現(xiàn)保育豬舍內(nèi)局部環(huán)境通風(fēng)調(diào)控,該研究設(shè)計(jì)一種垂直送排風(fēng)管道組合換氣系統(tǒng)。采用CFD(Computational Fluid Dynamics)技術(shù)對(duì)垂直管道通風(fēng)模式下舍內(nèi)的空氣流場(chǎng)進(jìn)行模擬,并以相對(duì)濕度和CO2濃度作為輸入變量建立通風(fēng)模糊控制系統(tǒng)。模擬結(jié)果顯示保育豬所在水泥地板區(qū)域風(fēng)速保持在0.1~0.2 m/s。參照模擬結(jié)果,以豬欄為通風(fēng)單元對(duì)保育豬舍通風(fēng)系統(tǒng)進(jìn)行改造,舍內(nèi)氣流不均勻性系數(shù)在0.1以下,表明采用該換氣系統(tǒng)的保育豬舍通風(fēng)均勻性較好;豬舍溫度在21~25 ℃,相對(duì)濕度小于70%,NH3濃度小于5 mg/m3,CO2濃度小于1 200 mg/m3,舍內(nèi)各項(xiàng)環(huán)境參數(shù)適宜保育豬健康生長(zhǎng)。系統(tǒng)運(yùn)行功耗為270~1 150 W?,F(xiàn)場(chǎng)測(cè)試與分析結(jié)果表明,該垂直送排風(fēng)管道組合換氣系統(tǒng),可以精確控制豬舍環(huán)境,兼顧冬季豬舍通風(fēng)與保溫問題。
溫度;濕度;環(huán)境調(diào)控;保育豬舍;管道通風(fēng);CFD;模糊控制;性能評(píng)價(jià)
通風(fēng)換氣是維持豬舍內(nèi)環(huán)境質(zhì)量的技術(shù)手段。目前,橫向或縱向通風(fēng)模式即豬舍兩側(cè)橫向或者縱向墻上安裝風(fēng)機(jī)進(jìn)行機(jī)械通風(fēng)的模式,在豬舍通風(fēng)中應(yīng)用較為廣泛,但在北方寒冷冬季,上述2種通風(fēng)模式均無法實(shí)現(xiàn)密閉豬舍局部環(huán)境調(diào)控,以及解決豬舍通風(fēng)不均勻問題[1]。相比橫向或縱向通風(fēng)模式,采用管道均勻開口送風(fēng),其結(jié)構(gòu)簡(jiǎn)單,同時(shí)能增大通風(fēng)面積和空氣的均勻性,可避免賊風(fēng)或通風(fēng)死角的出現(xiàn)[2-3]。
CFD技術(shù)常用于模擬畜舍在機(jī)械通風(fēng)條件下室內(nèi)溫度和氣流的分布規(guī)律[4-5]。Hoff等[6]較早利用湍流模型模擬了豬舍內(nèi)氣流和溫度場(chǎng)的分布。Bjerg等[7]利用CFD技術(shù)對(duì)豬舍結(jié)構(gòu)改變后的舍內(nèi)氣流分布進(jìn)行研究,通過模擬和現(xiàn)場(chǎng)監(jiān)測(cè)數(shù)據(jù)分析,發(fā)現(xiàn)結(jié)構(gòu)的改變對(duì)舍內(nèi)氣體分布影響較大。賀城等[8]采用CFD技術(shù)對(duì)豬舍氣流場(chǎng)和溫度場(chǎng)進(jìn)行模擬和研究,氣流運(yùn)動(dòng)組織可以清晰呈現(xiàn),為豬舍環(huán)境調(diào)控提供數(shù)據(jù)支撐。Mossad等[9]利用CFD技術(shù)模擬豬舍內(nèi)空氣流場(chǎng)和溫度場(chǎng),從而優(yōu)化設(shè)計(jì)豬舍通風(fēng)結(jié)構(gòu)。以負(fù)壓通風(fēng)和水泡糞的保育豬舍為研究對(duì)象,應(yīng)用CFD技術(shù)對(duì)舍內(nèi)空氣流場(chǎng)進(jìn)行模擬,可以通過模擬結(jié)果掌握保育豬和工作人員呼吸帶所在高度的風(fēng)速、溫度和相對(duì)濕度等數(shù)據(jù),為通風(fēng)結(jié)構(gòu)優(yōu)化提供基礎(chǔ)數(shù)據(jù)[10]。Seo等[11]對(duì)豬舍模型進(jìn)行簡(jiǎn)化,有效模擬了豬舍內(nèi)的氣流和溫度,并分析送風(fēng)口面積對(duì)氣流場(chǎng)均勻性影響較大。以上的研究多是以橫向或縱向模式為基礎(chǔ)進(jìn)行優(yōu)化,未能對(duì)通風(fēng)結(jié)構(gòu)進(jìn)行創(chuàng)新與改造,所以,并未有效解決通風(fēng)不均勻性問題。合理的垂直通風(fēng)模式可以更好的保證通風(fēng)的均勻性和穩(wěn)定性,換氣效率高,便于豬舍小環(huán)境精確控制[12-13]。保育豬對(duì)生長(zhǎng)環(huán)境的要求更為嚴(yán)格,所以,針對(duì)保育豬舍通風(fēng)模式進(jìn)行深入研究更具有代表性。借鑒以上研究方法,采用CFD技術(shù)對(duì)送排風(fēng)管道組合通風(fēng)換氣模式下保育豬舍內(nèi)空氣流場(chǎng)進(jìn)行模擬,并對(duì)模擬結(jié)果分析,驗(yàn)證該通風(fēng)模式的可行性,為現(xiàn)場(chǎng)改造提供參考數(shù)據(jù)。
豬只不同生長(zhǎng)階段對(duì)環(huán)境的要求也不相同,而保育階段豬只生長(zhǎng)較快,生長(zhǎng)環(huán)境需要實(shí)時(shí)調(diào)控。模糊控制則作為智能調(diào)控方法,廣泛應(yīng)用在豬舍環(huán)境調(diào)控系統(tǒng)中,為自動(dòng)化、智能化養(yǎng)殖提供技術(shù)保障[14-15]?;谀:刂评碚摻⒇i舍多環(huán)境因子調(diào)控系統(tǒng),能夠根據(jù)溫度、相對(duì)濕度以及各氣體濃度的變化對(duì)豬舍環(huán)境進(jìn)行實(shí)時(shí)調(diào)控[16]。李立峰等[17]在Kingview開發(fā)平臺(tái)上,綜合考慮分娩母豬舍溫、濕度和NH3濃度對(duì)環(huán)境的影響,采用模糊控制技術(shù)和解耦控制技術(shù),可以同時(shí)對(duì)通風(fēng)和水暖系統(tǒng)進(jìn)行調(diào)控。謝秋菊等[18]針對(duì)不同季節(jié)提出模糊控制策略,以溫度、相對(duì)濕度、NH3等參數(shù)為輸入變量,建立和優(yōu)化豬舍通風(fēng)調(diào)控系統(tǒng),現(xiàn)場(chǎng)數(shù)據(jù)分析證明基于多環(huán)境因子的調(diào)控策略能夠較好的滿足豬舍環(huán)境控制需求。Ma等[19]綜合豬舍環(huán)境參數(shù)、生豬生長(zhǎng)信息和系統(tǒng)控制設(shè)備的狀態(tài),利用遺傳算法確定豬舍環(huán)境調(diào)控最優(yōu)解,可以有效地對(duì)調(diào)控策略進(jìn)行優(yōu)化,但算法較為復(fù)雜,對(duì)調(diào)控系統(tǒng)硬件要求較高。
該設(shè)計(jì)為實(shí)現(xiàn)寒區(qū)冬季保育豬舍環(huán)境精確調(diào)控,研究針對(duì)保育豬舍的送排風(fēng)垂直管道換氣系統(tǒng),并選用對(duì)豬舍實(shí)際環(huán)境調(diào)控起決定性的因素作為控制變量,探究易于滿足局部小環(huán)境實(shí)時(shí)調(diào)控需求的方法,對(duì)寒地保育豬健康養(yǎng)殖具有重要意義。
試驗(yàn)豬舍位于黑龍江省齊齊哈爾市建華區(qū),占地面積約為15 000 m2,年出欄量可達(dá)5 000頭,具有6個(gè)保育豬舍,每間豬舍共12個(gè)圍欄,每欄面積約8.75 m2,養(yǎng)殖10~12頭保育豬,圍欄地面由漏糞地板和水泥地板暖炕組成,漏糞地板縫隙寬度為15 mm,距舍內(nèi)水泥地面高度為0.5 m,中間過道下方為糞槽,舍內(nèi)地面距棚頂3 m,取暖方式以水泥地板暖炕為主,燈暖為輔。如圖1所示,單間保育豬舍面積為170 m2,南側(cè)墻體設(shè)置4個(gè)窗戶,并配有2臺(tái)定速風(fēng)機(jī),功率均為370 W,1臺(tái)變速風(fēng)機(jī),功率為320 W;北側(cè)墻體設(shè)置1個(gè)門,2個(gè)窗戶,冬季開門和窗進(jìn)行通風(fēng)。
2019年12月至2020年1月,對(duì)未改造前保育豬舍環(huán)境監(jiān)測(cè),利用泵吸式氣體檢測(cè)儀(型號(hào):HD5S+,分辨率:0.1 mg/m3,誤差:±3% F.S)對(duì)舍內(nèi)氣體檢測(cè),發(fā)現(xiàn)濕度和CO2濃度嚴(yán)重超標(biāo),存在少量NH3,無其他氣體。原因分析:糞便由漏糞地板通過糞槽排到舍外,清糞較為及時(shí),所以產(chǎn)生NH3與H2S等有害氣體較少;但為使舍內(nèi)保溫,通風(fēng)較少,CO2和濕氣無法排除。多點(diǎn)布置傳感器,采用溫濕度傳感器模塊(型號(hào):SHT30,溫度分辨率:0.01 ℃,誤差:±0.2 ℃;濕度分辨率:0.01% RH,誤差:±0.2 ℃),監(jiān)測(cè)溫度、濕度、NH3和CO2濃度,圖1中A、B、C、D、E、F為傳感器節(jié)點(diǎn)所在位置,高度為滲漏地板上方0.2 m(保育豬呼吸高度)處,其中,2020年1月5日部分監(jiān)測(cè)數(shù)據(jù)如圖2所示。
通過圖2各曲線變化可知,近窗一側(cè)各項(xiàng)數(shù)值相對(duì)較低,豬舍中間區(qū)域圍欄相對(duì)其他位置圍欄各項(xiàng)數(shù)值較大;午間光照較強(qiáng)即溫度較高時(shí)間段內(nèi),CO2和NH3濃度明顯提升。比對(duì)國(guó)家標(biāo)準(zhǔn)[20],溫度始終處于適宜范圍內(nèi),NH3濃度符合標(biāo)準(zhǔn)要求,但相對(duì)濕度和CO2濃度超標(biāo)。以CO2濃度和空氣濕度作為環(huán)境調(diào)控輸入變量,提高換氣次數(shù),可以更有效調(diào)節(jié)豬舍內(nèi)環(huán)境。
豬舍等比例建模如圖3所示,未通風(fēng)狀態(tài)下,豬舍視為密閉環(huán)境,為了簡(jiǎn)化模型,忽略食槽、通風(fēng)管道和風(fēng)機(jī)等對(duì)舍內(nèi)氣流的影響,網(wǎng)格劃分?jǐn)?shù)量為645 436個(gè)。各圍欄水泥地板正上方為送風(fēng)口,距離水泥地板0.9 m,中間過道處為排風(fēng)口,距離地面0.4 m,水泥地板表面溫度為33 ℃。送風(fēng)管道直徑為0.3 m,送風(fēng)口設(shè)置為速度入口,速度為0.5 m/s;排風(fēng)管道直徑為0.3 m,排風(fēng)口設(shè)置為速度出口,速度為1 m/s[21]。
利用Fluent軟件數(shù)值求解,選用收斂性較好、誤差較小的標(biāo)準(zhǔn)湍流模型,舍內(nèi)氣流場(chǎng)流線如圖4所示。
圖4中送風(fēng)口和排風(fēng)口處均呈現(xiàn)綠色,對(duì)照?qǐng)D中左側(cè)比色柱,表明此處風(fēng)速最大,且最大風(fēng)速可達(dá)0.9 m/s。圖4a中,除送風(fēng)口和排風(fēng)口處,其他區(qū)域風(fēng)速在0.1~0.2 m/s范圍內(nèi),且氣流場(chǎng)流線密度較為均勻,表明垂直平面通風(fēng)較為均勻;同時(shí),中間過道即糞槽處氣流線密集,且風(fēng)速較大,有利于糞便帶來的污濁氣體和濕氣快速排出。圖4b中,單圍欄內(nèi)送風(fēng)口和排風(fēng)口之間氣流場(chǎng)流線形成循環(huán),且圍欄交界處氣流場(chǎng)流線稀疏,表明單圍欄實(shí)現(xiàn)局部通風(fēng);同時(shí),單圍欄內(nèi)氣流場(chǎng)流線密度較為均勻,表明各圍欄水平平面通風(fēng)均勻。氣流模擬結(jié)果說明以圍欄為單元進(jìn)行送排風(fēng)垂直管道的組合通風(fēng)模式,通風(fēng)氣流均勻,局部小環(huán)境可以實(shí)現(xiàn)循環(huán)通風(fēng),通風(fēng)路徑短,可以提高換氣效率,避免污濁氣體交叉流動(dòng)。
如圖5所示,控制系統(tǒng)硬件采用模塊化設(shè)計(jì),由傳感器節(jié)點(diǎn)和控制終端組成,便于維護(hù)。考慮到相鄰圍欄之間空氣流動(dòng)的影響,同時(shí)為降低成本,分別在東2和5號(hào)圍欄,西2和5號(hào)圍欄配置傳感器節(jié)點(diǎn),共計(jì)配置4傳感器節(jié)點(diǎn),每個(gè)節(jié)點(diǎn)同時(shí)控制3個(gè)圍欄通風(fēng)單元啟停。各節(jié)點(diǎn)由傳感器集成模塊(包括:溫度、相對(duì)濕度、NH3以及CO2濃度檢測(cè)功能)和驅(qū)動(dòng)模塊組成。傳感器節(jié)點(diǎn)與控制終端采用串口通信,實(shí)現(xiàn)各圍欄局部通風(fēng)與進(jìn)排風(fēng)口處主風(fēng)機(jī)聯(lián)動(dòng)??刂平K端采用STM32微控制器,同時(shí)配置液晶顯示、按鍵以及驅(qū)動(dòng)模塊,控制各主風(fēng)機(jī)。
針對(duì)保育豬舍環(huán)境受多變量因素影響、實(shí)時(shí)變化和非線性的特點(diǎn),控制系統(tǒng)采用模糊控制方法。根據(jù)采集數(shù)據(jù)分析,試驗(yàn)豬舍主要超標(biāo)因素為相對(duì)濕度和CO2濃度,選取相對(duì)濕度監(jiān)測(cè)值與預(yù)設(shè)值之差Δ,以及CO2濃度監(jiān)測(cè)值與預(yù)設(shè)值之差Δ作為模糊輸入變量,以風(fēng)機(jī)啟停模式作為輸出量,模糊控制模型如圖6所示。
根據(jù)規(guī)模豬場(chǎng)環(huán)境參數(shù)及環(huán)境管理國(guó)家標(biāo)準(zhǔn),相對(duì)濕度保持在60%~70%,CO2濃度不能大于1 200 mg/m3為適宜范圍。本文以65%為最適宜濕度的預(yù)設(shè)值,基本論域?yàn)閇-6%, 6%],語言論域∈[-3, 3];以600 mg/m3為CO2濃度預(yù)設(shè)值,基本論域?yàn)閇-600, 600],語言論域[-300, 300],為方便系統(tǒng)集成,此論域倍數(shù)減小100,相對(duì)濕度語言論域保持一致。模糊集合為[負(fù)大,負(fù)中,負(fù)小,零,正小,中,正大],即[NB, NM, NS, ZO, PS, PM, PB],輸入變量量化因子K=0.5,K=0.5。
為降低能耗,實(shí)現(xiàn)變速、變量通風(fēng)調(diào)控,根據(jù)各圍欄通風(fēng)風(fēng)機(jī)啟動(dòng)數(shù)量,對(duì)舍外送風(fēng)口和排風(fēng)口風(fēng)機(jī)進(jìn)行變速調(diào)控,包括停機(jī)(0)、低速(0<≤2)、中速(2<≤4)、高速(4<≤6)4種模式,論域?yàn)閇0, 3],模糊集合為[停機(jī), 低速, 中速, 高速],即[ST, LS, MS, HS],輸出量化因子K=1。輸入變量和輸出量隸屬函數(shù)如圖7所示。
利用MATLAB simulink建立如圖8所示通風(fēng)模糊控制系統(tǒng)模型,其中,F(xiàn)uzzy Logic Controller為雙變量輸入模糊邏輯控制器,通風(fēng)啟停模式即調(diào)速等級(jí)作為輸出量,通過示波器Scop監(jiān)視調(diào)控模式輸出曲線,如圖9所示。
圖9中,0、1、2、3分別代表停機(jī)、低速、中速、高速四種主風(fēng)機(jī)通風(fēng)調(diào)速狀態(tài)。6點(diǎn)前,未設(shè)置通風(fēng),處于停機(jī)狀態(tài),主要原因是舍外溫度較低,加之保育豬活動(dòng)量和排便量較少,豬舍環(huán)境一般符合要求;早晨8點(diǎn)時(shí),因舍內(nèi)一夜未通風(fēng),加之保育豬開始活動(dòng)和排便,舍內(nèi)濕度和CO2濃度升高,中速通風(fēng);上午10時(shí)開始,舍內(nèi)外溫度均升高,同時(shí)保育豬活動(dòng)和排便量增多,舍內(nèi)相對(duì)濕度和個(gè)氣體濃度增大,系統(tǒng)進(jìn)行高速通風(fēng)??刂葡到y(tǒng)根據(jù)舍內(nèi)環(huán)境變化,實(shí)現(xiàn)逐級(jí)切換,滿足變量、變速調(diào)控需求。
圖10為通風(fēng)系統(tǒng)改造試驗(yàn)保育豬舍,新鮮空氣由舍外送風(fēng)口主風(fēng)機(jī)進(jìn)入送風(fēng)管道;舍內(nèi)污濁空氣由舍外排風(fēng)口主風(fēng)機(jī)排出。舍內(nèi)對(duì)應(yīng)每個(gè)圍欄,分別設(shè)置1個(gè)舍內(nèi)送風(fēng)口和1個(gè)舍內(nèi)排風(fēng)口,共計(jì)12組,舍內(nèi)送風(fēng)口安裝管道風(fēng)機(jī),功率為35 W,最大風(fēng)量為220 m3/h。舍外送風(fēng)口主風(fēng)機(jī)共2個(gè),獨(dú)立啟動(dòng),均選用變速管道軸流風(fēng)機(jī),功率均為185 W,最大風(fēng)量為1 600 m3/h。舍外排風(fēng)口主風(fēng)機(jī)1個(gè),選用變速管道軸流風(fēng)機(jī),功率為360 W,最大風(fēng)量為3 200 m3/h。舍內(nèi)送風(fēng)口加裝風(fēng)帽,便于調(diào)節(jié)通風(fēng)角度。
根據(jù)文獻(xiàn)[22],并參照民用建筑氣流分布性能評(píng)價(jià)標(biāo)準(zhǔn)[23],利用氣流不均勻性系數(shù)J作為保育舍內(nèi)通風(fēng)氣流均勻性評(píng)價(jià)指標(biāo),J越小表明舍內(nèi)通風(fēng)均勻性越好。
式中J表示舍內(nèi)高度為平面的氣流均勻性系數(shù),無量綱;v表示高度為平面的平均氣流速度,m/s;v表示第個(gè)監(jiān)測(cè)點(diǎn)氣流速度,m/s;表示監(jiān)測(cè)點(diǎn)數(shù)量。
1.主風(fēng)機(jī)(舍外送風(fēng)口) 2.送風(fēng)管道 3.管道風(fēng)機(jī) 4.舍內(nèi)送風(fēng)口 5.主風(fēng)機(jī)(舍外排風(fēng)口) 6.排風(fēng)管道 7.舍內(nèi)排風(fēng)口
通風(fēng)系統(tǒng)啟動(dòng),取0.4 m高度即保育豬高度為監(jiān)測(cè)點(diǎn)高度,利用熱敏式風(fēng)量計(jì)(型號(hào):GM8911,解析度:0.01,誤差:±3%)監(jiān)測(cè),每個(gè)豬欄均勻分散監(jiān)測(cè)10個(gè)點(diǎn)氣流速度,表1為計(jì)算后各豬欄J數(shù)值。
表1 各豬欄不均勻性系數(shù)
根據(jù)表1數(shù)據(jù)可知,6號(hào)圍欄不均勻系數(shù)較高,其原因是距離窗戶較近,舍外冷風(fēng)通過縫隙進(jìn)入,通過密封可以有效縮小不均系數(shù),避免賊風(fēng);其次,1號(hào)圍欄系數(shù)較高,其原因是距離連廊門和窗戶較近,連廊內(nèi)冷風(fēng)通過縫隙進(jìn)入舍內(nèi),通過豬欄一側(cè)固定隔風(fēng)板可以縮小不均勻系數(shù)。通過進(jìn)一步改造,舍內(nèi)氣流不均勻系數(shù)可保持0.1以下,表明送排風(fēng)管道組合換氣通風(fēng)模式下的保育豬通風(fēng)均勻性較好。
豬舍改造后,每欄投放10~12只保育豬進(jìn)行養(yǎng)殖。通風(fēng)會(huì)影響豬舍內(nèi)溫度,利用紅外線熱成像儀(型號(hào):Fluke TiS60+,分辨率:320 x 240像素,熱靈敏度:≤ 0.045 ℃)對(duì)舍內(nèi)各圍欄溫度進(jìn)行實(shí)測(cè)。食料槽長(zhǎng)時(shí)間放置于豬欄內(nèi),其溫度可以視為保育豬所在區(qū)域溫度,取保育豬高度0.4 m處食料槽為參考面,圖11為部分圍欄溫度實(shí)測(cè)圖像。
通過圖11可知,以食槽為參考面,西圍欄1環(huán)境溫度為24.1 ℃,東圍欄6環(huán)境溫度為22.9 ℃,高溫顯示為保育豬體溫。豬舍其他圍欄環(huán)境實(shí)測(cè)溫度均保持在21~25 ℃之間,表明送排風(fēng)管道組合通風(fēng)換氣狀態(tài)下,保育豬舍環(huán)境實(shí)測(cè)溫度均在保育豬健康生長(zhǎng)需求范圍內(nèi)。
通過多點(diǎn)布置傳感器集成模塊實(shí)時(shí)監(jiān)測(cè)NH3、CO2、溫度和濕度,并利用泵吸式氣體檢測(cè)儀隨機(jī)檢測(cè)舍內(nèi)各區(qū)域環(huán)境數(shù)據(jù),各項(xiàng)參數(shù)均在保育豬適宜生長(zhǎng)范圍內(nèi),相對(duì)濕度小于70%,NH3濃度小于5 mg/m3,CO2濃度小于1 200 mg/m3。
換氣系統(tǒng)運(yùn)行總功率總包括由各風(fēng)機(jī)運(yùn)行總功率,總表示為
總=管道風(fēng)機(jī)+送+排(3)
式中管道風(fēng)機(jī)為各圍欄送風(fēng)口管道風(fēng)機(jī)運(yùn)行時(shí)所用總功率,W;送為舍外送風(fēng)口主風(fēng)機(jī)運(yùn)行所用總功率,W;排為舍外排風(fēng)口主風(fēng)機(jī)運(yùn)行所用功率,W。
總最大值為1 150 W,即為所有風(fēng)機(jī)都運(yùn)行時(shí),其功率大于未改造前通風(fēng)系統(tǒng)運(yùn)行總功率1 060 W,但送排風(fēng)管道組合換氣系統(tǒng)是以各圍欄為單位進(jìn)行通風(fēng),同時(shí)舍外送風(fēng)口和排風(fēng)口的主風(fēng)機(jī)可變速控制,通風(fēng)系統(tǒng)運(yùn)行功耗并非固定不變。單傳感器節(jié)點(diǎn)控制通風(fēng)即為功耗最小時(shí),約為270 W,所以系統(tǒng)功耗范圍為270~1 150 W。變量、變速的通風(fēng)模式可有效降低系統(tǒng)功耗;同時(shí),以試驗(yàn)豬舍12個(gè)圍欄為例計(jì)算通風(fēng)熱損耗,則最小通風(fēng)熱損耗即單圍欄局部通風(fēng)時(shí)產(chǎn)生的熱損耗,為改造前整體豬舍通風(fēng)熱損耗的1/12。
1)利用CFD技術(shù)對(duì)保育豬舍送排風(fēng)垂直管道組合換氣狀態(tài)下的保育豬舍空氣流場(chǎng)進(jìn)行模擬,氣流場(chǎng)流線和空氣流場(chǎng)分布均勻,風(fēng)速保持在0.1~0.2 m/s,適宜保育豬生長(zhǎng)。
2)通過豬舍現(xiàn)場(chǎng)改造與實(shí)測(cè),溫度、濕度、CO2和NH3濃度均在保育豬適宜生長(zhǎng)范圍內(nèi);對(duì)舍內(nèi)氣流均勻性計(jì)算與分析,氣流不均勻性均可保持在0.1以下。
3)采用模糊控制方法,雙變量輸入控制,四種通風(fēng)模式可以逐級(jí)切換;同時(shí),保育豬圍欄為通風(fēng)單元進(jìn)行局部通風(fēng)調(diào)控,保證豬舍實(shí)現(xiàn)局部環(huán)境精細(xì)調(diào)控,系統(tǒng)運(yùn)行功耗控制在270~1 150 W,最小通風(fēng)熱損耗為改造前整體豬舍通風(fēng)熱損耗的1/12。
[1] 王德福,黃會(huì)男,張洪建,等. 生豬養(yǎng)殖設(shè)施工程技術(shù)研究現(xiàn)狀與發(fā)展分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(11):1-14.
Wang Defu, Huang Huinan, Zhang Hongjian, et al. Analysis of research status and development on engineering technology of swine farming facilities[J]. Transactions of the Chinese Society of Agricultural Machinery, 2018, 49(11): 1-14. (in Chinese with English abstract)
[2] Caputo Antonio C, Pelagagge Pacifico M. Upgrading mixed ventilation systems in industrial conditioning[J]. Applied Thermal Engineering, 2010, 29(14): 3204-3211.
[3] Nielsen P V, Topp C, Sonnichsen M, et al. Air distribution in rooms generated by a textile terminal-comparison with mixing and displacement ventilation[J]. ASHRAE Transactions, 2005, 111(1): 733-739.
[4] Rojano F, Bournet P E, Hassouna M, et al. Modelling heat and mass transfer of a broiler house using computational fluid dynamic[J]. Biosystems Engineering, 2015, 136(7): 51-68.
[5] Gebremedhin K G, Wu B. Simulation of flow field of a ventilated and occupied animal space with different inlet and outlet conditions[J]. Journal of Thermal Biology, 2005, 30(5): 343-353.
[6] Hoff S J, Janni K A, Jacobson L D. Three-dimensional buoyant turbulent flows in a scaled model, slot-ventilated, livestock confinement facility[J]. Transactions of the ASAE, 1992, 35(2): 671-686.
[7] Bjerg B, Svidt K, Zhang G, et al. SE-Structures and Environment: The effects of pen partitions and thermal pig simulators on airflow in a livestock test room[J]. Journal of Agricultural Engineering Research, 2000, 77(3): 317-326.
[8] 賀城,牛智有,齊德生. 豬舍溫度場(chǎng)和氣流場(chǎng)的CFD 模擬比較分析[J]. 湖北農(nóng)業(yè)科學(xué),2010,49(1):134-136.
He Cheng, Niu Zhiyou, Qi Desheng. CFD simulation and comparative analysis about air temperature and airflow in the piggery[J]. HuBei Agricultural Science, 2010, 49(1): 134-136. (in Chinese with English abstract)
[9] Mossad R R. Numerical predictions of air temperature and velocity distribution to assist in the design of natural ventilation piggery buildings[J]. Australian Journal of Multi-Disciplinary Engineering, 2011, 8(2): 181-187.
[10] 汪開英,李開泰,李王林娟,等. 保育舍冬季濕熱環(huán)境與顆粒物CFD模擬研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(9):270-278.
Wang Kaiying, Li Kaitai, Liwang Linjuan, et al. CFD simulation of indoor hygrothermal environment and particle matter of weaned pig building[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 270-278. (in Chinese with English abstract)
[11] Seo I H, Lee I B, Moon O K, et al. Modelling of internal environmental conditions in a full-scale commercial pig house containing animals[J]. Biosystems Engineering, 2012, 111(1): 91-106.
[12] Zong C, Feng Y, Zhang G Q, et al. Effects of different air inlets on indoor air quality and ammonia emission from two experimental fattening pig rooms with partial pit ventilation system--Summer condition[J]. Biosystems Engineering, 2014, 122(3): 163-173.
[13] 吳中紅,陳澤鵬,臧建軍,等. 濕簾冷風(fēng)機(jī)-纖維風(fēng)管通風(fēng)系統(tǒng)對(duì)妊娠豬豬舍的降溫效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(18):268-276.
Wu Zhonghong, Cheng Zepeng, Zang Jianjun, et al. Cooling performance of wet curtain fan-fabric duct ventilation system in house of pregnant sows[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 268-276. (in Chinese with English abstract)
[14] 馮江,林升峰,王鵬宇,等. 基于自適應(yīng)模糊PID控制的豬舍溫濕度控制系統(tǒng)研究[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2018,49(2):73-86.
Feng Jiang, Lin Shengfeng, Wang Pengyu, et al. Piggery temperature and humidity control system based on adaptive fuzzy PID control[J]. Journal of Northeast Agricultural University, 2018, 49(2): 73-86. (in Chinese with English abstract)
[15] 黃俊仕,熊愛華,董釗,等. 生豬養(yǎng)殖環(huán)境智能監(jiān)控系統(tǒng)設(shè)計(jì)[J]. 黑龍江畜牧獸醫(yī),2021(1):12-18,23.
Huang Junshi, Xiong Aihua, Dong Zhao, et al. Design of intelligent monitoring system for the environment of pig farming[J]. Heilongjiang Animal Science and Veterinary Medicine, 2021(1): 12-18, 23. (in Chinese with English abstract)
[16] 謝秋菊. 基于模糊理論的豬舍環(huán)境適應(yīng)性評(píng)價(jià)及調(diào)控模型研究[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2015.
Xie Qiuju. Environmental Suitability Assessment and Control Model Development for a Swine House Based on Fuzzy Theory[D]. Harbin: Northeast Agricultural University, 2015. (in Chinese with English abstract)
[17] 李立峰,武佩,麻碩士,等. 基于組態(tài)軟件和模糊控制的分娩母豬舍環(huán)境監(jiān)控系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(6):231-236.
Li Lifeng, Wu Pei, Ma Shuoshi, et al. Monitoring and controlling system for delivery sow house environment based on configuration software and fuzzy control[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(6): 231-236. (in Chinese with English abstract)
[18] 謝秋菊,蘇中濱,Ni Jiqin,等. 密閉式豬舍多環(huán)境因子調(diào)控系統(tǒng)設(shè)計(jì)及調(diào)控策略[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(6):163-170.
Xie Qiuju, Su Zhongbin, Ni Jiqin, et al. Control system design and control strategy of multiple environmental factors in confined swine building[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(6): 163-170. (in Chinese with English abstract)
[19] Ma C, D Zhao, Wei N, et al. Intelligent controlling system of pig growth environment[C]// Intelligent Computation Technology and Automation (ICICTA), 2010 International Conference on. IEEE, 2010.
[20] 中華人民共和國(guó)農(nóng)業(yè)部. GB-T 17824. 3-2008 規(guī)模豬場(chǎng)環(huán)境參數(shù)及環(huán)境管理[S]. 北京: 中國(guó)標(biāo)準(zhǔn)出版社, 2008.
[21] 高云,陳震撼,王瑜,等. 多環(huán)境參數(shù)控制的豬養(yǎng)殖箱設(shè)計(jì)及箱內(nèi)氣流場(chǎng)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(2):203-212.
Gao Yun, Chen Zhenhan, Wang Yu, et al. Design for pig breeding chamber under multiple environment variable control and analysis of internal flow field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(2): 203-212. (in Chinese with English abstract)
[22] 鄧書輝,施正香,李保明,等. 低屋面橫向通風(fēng)牛舍空氣流場(chǎng)CFD模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(6):139-146.
Deng Shuhui, Shi Zhengxiang, Li Baoming, et al. CFD simulation of airflow distribution in low profile cross ventilated dairy cattle barn[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(6): 139-146. (in Chinese with English abstract)
[23] 趙榮義,范存養(yǎng),薛殿華,等. 空氣調(diào)節(jié)[M]. 第4版. 北京:中國(guó)建筑工業(yè)出版社,2009.
Design and evaluation of combined ventilation system with air supply and exhaust ducts for a nursery heating piggery in winter
Wu Zhidong1,2,3, Fang Junlong1※, Ba Wenge1, Wu Shuang1, Li Haitao4, Cai Youjie2, Cheng Qulin2
(1.,,150030,; 2.,,161006,; 3.,161006,; 4.,161006,)
Current ventilation mode needs to be updated in a nursery piggery, due mainly to the uneven distribution of airflow derived from the great contradiction between ventilation and heat preservation under the relatively low temperature of the cold region in winter. The previous investigation on data collection found that the relative humidity and the concentration of CO2generally exceeded the standard value in a nursery piggery. Therefore, the main challenge was how to efficiently supply fresh air. In this study, computational fluid dynamics (CFD) was used to simulate the airflow field in the nursery piggery under the combined ventilation system of air supply and exhaust ducts. The diameter of the duct was 0.3 m. The wind speeds of air supply and exhaust were set at 0.5 m/s and 1 m/s, respectively. The results revealed that the circulation ventilation was formed between the air supply inlet and exhaust outlet. The wind speed was maintained between 0.1 m/s and 0.2 m/s in the cement floor area where the piglets live. An even distribution of air flow was achieved to shorten the ventilation path for the diffusion of dirty gas, while improving the ventilation efficiency. A facile control system was specifically designed to consist of each control node in a modular approach. LoRa wireless communication was used to transmit data between control nodes. At the same time, fuzzy control was applied in the control system. Relative humidity and CO2concentration were used as input variables, whereas, the speed control mode of main fans was used as an output variable. The quantization factors of input variablesKandKwere both 0.5, while, the quantization factor of output was 1. A general platform of MATLAB Simulink was selected to establish the model of the fuzzy control system. The simulation results showed that the proposed system responded quickly, while switched step by step in the four types of ventilation modes, including downtime, low, medium and high speed. A fence was applied as the ventilation unit to transform the fresh air, considering the air flow field after simulation. A field experiment was also carried out in a large-scale pig farm in Jianhua District, Qiqihar City, Heilongjiang Province of China in December 2019. It was found that the uneven coefficient of airflow was below 0.1 in the cement floor area of piglets, indicating a better uniformity of ventilation in the nursery piggery under the combined ventilation system of air supply and exhaust ducts. An infrared thermal imager and a gas detector were used to detect the environmental data of each area in the piggery. The measuring data showed that the temperature was kept between 21 ℃ and 25 ℃, the relative humidity was less than 70%, the concentration of NH3was less than 5 mg/m3, the concentration of CO2was less than 1 200 mg/m3, indicating the overall environment without other gases was suitable for the living of piglets. The combined ventilation system of air supply and exhaust ducts can be expected to realize the on-demand ventilation. Furthermore, the power consumption of the system was relatively low, ranging from 270 to 1 550 W. Consequently, the developed ventilation system can accurately control the piggery environment and efficiently alleviate the various changes between ventilation and heat preservation in winter.
temperature; humidity; environmental regulation; nursery piggery; duct ventilation; CFD; fuzzy control; performance evaluation
10.11975/j.issn.1002-6819.2021.10.018
S817.3
A
1002-6819(2021)-10-0152-07
吳志東,房俊龍,巴文革,等. 冬季采暖保育豬舍送排風(fēng)管道組合換氣系統(tǒng)設(shè)計(jì)與評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(10):152-158.doi:10.11975/j.issn.1002-6819.2021.10.018 http://www.tcsae.org
Wu Zhidong, Fang Junlong, Ba Wenge, et al. Design and evaluation of combined ventilation system with air supply and exhaust ducts for a nursery heating piggery in winter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(10): 152-158. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.10.018 http://www.tcsae.org
2021-02-03
2021-05-13
黑龍江省教育廳省屬高等學(xué)?;究蒲袠I(yè)務(wù)費(fèi)科研項(xiàng)目(135509411,135409102);黑龍江省教育科學(xué)“十三五”規(guī)劃2020年度重點(diǎn)課題(GJB1320388);齊齊哈爾大學(xué)教育科學(xué)研究項(xiàng)目(GJZRYB202006)
吳志東,講師,博士,研究方向?yàn)檗r(nóng)業(yè)環(huán)境控制和自動(dòng)化設(shè)備。Email:wzd139446@163.com
房俊龍,教授,博士,研究方向?yàn)檗r(nóng)業(yè)自動(dòng)化。Email:jlfang@neau.edu.cn