柳賽花,陳豪宇,紀雄輝,劉昭兵,謝運河,田發(fā)祥,潘淑芳
高鎘累積水稻對鎘污染農(nóng)田的修復(fù)潛力
柳賽花,陳豪宇,紀雄輝※,劉昭兵,謝運河,田發(fā)祥,潘淑芳
(湖南省農(nóng)業(yè)環(huán)境生態(tài)研究所,湖南省農(nóng)業(yè)科學(xué)院,長沙 410125)
為探究高鎘累積水稻品種揚稻6號和玉珍香對鎘污染農(nóng)田土壤的修復(fù)潛力,通過大田小區(qū)試驗,測定6個不同生育期(返青、分蘗、孕穗、齊穗、蠟熟、完熟)5個部位(根、莖0~10 cm、莖10~20 cm 、莖20 cm以上和谷)稻草的鎘含量,開展高鎘累積水稻鎘累積規(guī)律、移除時間和移除高度研究。結(jié)果表明,水稻揚稻6號和玉珍香各部位鎘含量隨生育期的延長而增加,孕穗期增幅最大,完熟期達到最大值,在同一時期不同部位鎘含量分布隨株高呈遞減趨勢;完熟期,水稻品種揚稻6號和玉珍香的根、莖0~10 cm、莖10~20 cm、莖20 cm以上部分和谷中鎘含量分別為19.3、11.8、9.4、8.1和3.9 mg/kg與19.5、16.3、14.3、9.7和3.7 mg/kg,其對應(yīng)的鎘富集系數(shù)均大于1,對鎘表現(xiàn)出高積累特性;稻草鎘的移除含量在全育期均表現(xiàn)從大到小依次為整株收割、地上部全收割、離地10 cm 收割、離地20 cm收割,完熟期整株移除情況下,揚稻6號稻草鎘累積移除含量達1 652.11g/株,玉珍香稻草鎘累積移除含量達1 547.70g/株;一年種植一季水稻揚稻6號和玉珍香,整株移除情況下土壤鎘移除效率分別為9.1%和8.5%,地上部全移除情況下土壤鎘移除效率分別為7.2%和7.1%。因此為兼顧水稻移除修復(fù)效果和可操作性,建議稻草在完熟后按地上部全收割的方式移除。研究結(jié)果可為鎘污染稻田的植物修復(fù)治理提供新的思路。
鎘;農(nóng)田;水稻;植物修復(fù);富集
隨著經(jīng)濟的發(fā)展和城市化進程的加快,農(nóng)田土壤重金屬污染日益嚴重,稻田鎘污染已成為制約中國水稻安全生產(chǎn)和農(nóng)業(yè)可持續(xù)發(fā)展的瓶頸,嚴重威脅農(nóng)產(chǎn)品質(zhì)量安全。環(huán)境保護部和國土資源部發(fā)布全國土壤污染狀況調(diào)查公報顯示中國耕地土壤點位超標率為 19.4%,其中輕微、輕度、中度和重度污染點位比例分別為13.7%、2.8%、1.8%和1.1%,鎘更是排在主要污染物的首位,點位超標率為7.0%。Cd是一種生物蓄積性強、毒性持久、具有“三致”作用的劇毒元素,攝入過量的Cd對人體的危害極其嚴重[1]。針對目前中國稻田鎘污染現(xiàn)狀,研發(fā)出了以水稻低鎘吸收品種[2]、水分管理[3-4]、石灰施用[5]為核心,以及土壤鈍化調(diào)理[6]、葉面阻控[7-8]等技術(shù)相輔的技術(shù)模式,實現(xiàn)大面積輕度污染區(qū)水稻安全生產(chǎn),但對于重度污染稻田實現(xiàn)農(nóng)產(chǎn)品達標仍然困難,還存在土壤修復(fù)年限及效果穩(wěn)定性的問題。
在重金屬重度污染區(qū)采用植物修復(fù)方法是一種常規(guī)的原位污染土壤修復(fù)方法,具有一種低成本、環(huán)境友好、不破壞土壤的優(yōu)點[9],利用富集植物能大量吸收、固定重金屬物質(zhì)特性,通過成熟期收獲植物從而去除土壤重金屬。國內(nèi)外已發(fā)現(xiàn)遏藍菜()、東南景天()、龍葵()、寶山堇菜()等鎘富集植物[10-13],因其生物量小、生長緩慢或地域性強等特點,影響了植物修復(fù)技術(shù)的有效性和廣泛性應(yīng)用。對于低海拔地區(qū)稻田而言,巴西芥菜(.)、商陸(.)、葉用紅菾菜(.)等旱作鎘累積植物[14-16]不適合排水困難的水田,不耐高溫不耐寒,另外,稻田采用旱作植物修復(fù),需進行開溝排水降潛,長期的旱作管理將嚴重影響稻田水利設(shè)施和稻田保水性能,需要較大投入去修復(fù)灌、排及田埂等設(shè)施,從而當前的鎘富集植物并不適宜于中國絕大部分鎘污染農(nóng)田的修復(fù)治理。
因此在不改變稻田屬性和結(jié)構(gòu)情況下,本研究擬用前期篩選的高鎘累積水稻(.)品種揚稻6號(9311)和玉珍香(YZX),開展高鎘累積水稻鎘累積規(guī)律、移除時間和移除高度研究,以期明確高鎘累積水稻修復(fù)重度污染農(nóng)田的移除技術(shù),為鎘污染稻田的植物修復(fù)治理提供新的思路。
試驗在瀏陽永和鎮(zhèn)相鄰的鎘污染稻田(28o29'N,113o89'E)進行,稻田土壤理化性質(zhì)和污染程度較為一致,為沙壤土,耕層土壤pH值為5.83±0.11,土壤全量鎘含量為(1.69±0.05) mg/kg,CaCl2提取態(tài)鎘含量(0.44±0.05) mg/kg,土壤有機質(zhì)(30.0±1.05) g/kg,全氮(2.06±0.55) g/kg,有效磷(3.55±0.20) mg/kg,速效鉀(55.0±0.2) mg/kg,堿解氮(144.0±8.7) mg/kg。污染原因上游七寶山礦石開采引起下游農(nóng)田鎘砷污染。
試驗水稻品種為前期試驗篩選出的水稻品種玉珍香(YZX,湘審稻2009,常規(guī)中熟晚秈)和揚稻6號(9311,蘇審稻1997,常規(guī)遲熟中秈),每個品種設(shè)置3個小區(qū),小區(qū)面積為30 m2,周邊設(shè)置0.5 m的保護行。揚稻6號于5月24日育秧,6月15日移栽,玉珍香于6月13日育秧,7月17日移栽。并分別于兩個品種的返青期(SS)、分蘗期(TS)、孕穗期(BS)、齊穗期(FHS)、蠟熟期(RS)和完熟期(FRS)等6個不同時期取植株樣品。試驗小區(qū)間用薄膜覆蓋田埂隔開,田埂高出田面35 cm,保證各小區(qū)獨立,防止串灌串排,水分管理采取常規(guī)水分管理,且于分蘗末期和成熟期2次曬田,肥料管理按照當?shù)毓芾矸绞竭M行。
不同時期取的水稻植株樣品,植株洗凈泥土后晾干,再以去離子水潤洗2遍后晾干于105 ℃殺青2 h后,用70 ℃烘干至質(zhì)量不變后,青苗期、分蘗期和孕穗期3個時期的樣品直接分為根和地上部分(此部分為和齊穗期至完熟期的數(shù)據(jù)統(tǒng)計分析保持一致,亦標記為莖0~10 cm,齊穗期至完熟期的植株樣品分為根、稻草和谷子,其中稻草分為3段,分別為莖0~10 cm(標記為A)、莖10~20 cm(標記為B)和莖20 cm以上部分(標記為C)。不同部位的植株樣品粉碎,過0.147 mm尼龍篩。分析所用器皿均以10%稀硝酸溶液浸泡過夜。樣品中總鎘測定采用微波消解,稱取0.500 0 g植物樣品,加入5 mL HNO3和2 mL H2O2,利用微波消解儀消解,超純水定容至100 mL,用ICP-MS(iCap-Q,美國Thermo公司)測定總Cd濃度。樣品分析中所用試劑均為優(yōu)級純,并添加國家標準參比物質(zhì)(大米:GSB-22)為內(nèi)標進行質(zhì)量控制,分析器皿均以5%硝酸溶液浸泡過夜,以去離子水洗凈。稻田土壤全量鎘采用HNO3-H2O2-HF微波消解,有效態(tài)鎘以0.01 mol/L CaCl2浸提,溶液鎘含量使用ICP-MS進行測定。土壤基本理化性質(zhì)參考土壤農(nóng)業(yè)化學(xué)分析的方法進行測定。
轉(zhuǎn)運系數(shù)TF
TFA/root=A/root(1)
TFB/A=B/A(2)
TFC/B=C/B(3)
TFgrain/C=grain/C(4)
式中root、A、B、C和grain分別是根、莖0~10 cm、莖10~20 cm、莖20 cm以上和谷中鎘的含量,mg/kg。
富集系數(shù)BCF=植物中鎘含量(mg/kg)] ∕
[土壤中鎘含量(mg/kg)] (5)
土壤Cd去除率=[每公頃植物鎘累積量(mg)] ∕
[修復(fù)前每公頃土壤Cd全量(mg)]×100%(6)
試驗數(shù)據(jù)用Excel 2016和SPSS 19.0進行統(tǒng)計分析和作圖,5%水平下LSD多重比較檢驗各處理平均值之間的差異顯著性。
兩個水稻品種的水稻各部位中鎘含量隨生育期的延長而增加,孕穗期增加幅度最大。同一時期水稻不同部位鎘含量分布隨株高呈遞減趨勢從大到小依次為根、莖0~10 cm、莖10~20 cm、莖20 cm以上、谷(圖1)。返青期到完熟期,根中鎘含量從1.4增加到19.3 mg/kg,莖0~10 cm中鎘含量從0.2 mg/kg增加到11.8 mg/kg。莖10~20 cm、莖20 cm以上和谷中鎘含量亦隨生育期的延長而增加,與根和莖0~10 cm中鎘含量增長趨勢一致,在完熟期含量最高。完熟期水稻品種9311和YZX根、莖0~10 cm、莖10~20 cm、莖20 cm以上和谷中鎘含量分別為19.3、11.8、9.4、8.1和3.9 mg/kg與19.5、16.3、14.3、9.7和3.7 mg/kg。
水稻不同生育期各部位鎘轉(zhuǎn)運系數(shù)分析來看(表1),水稻品種9311中莖0~10 cm對根的轉(zhuǎn)運系數(shù)隨生育期的延長而增加,在孕穗期達到顯著水平,齊穗期至完熟期轉(zhuǎn)運系數(shù)增加但增加趨勢不顯著,從齊穗期至完熟期莖10~20 cm對莖0~10 cm、莖20 cm以上對莖10~20 cm和谷對莖20 cm以上的轉(zhuǎn)運系數(shù)與莖0~10 cm對根的轉(zhuǎn)運系數(shù)變化趨勢一致,隨生育期的增加而增加,但不顯著。而不同生育時期水稻品種YZX中不同部位的鎘的各級轉(zhuǎn)運系數(shù)變化趨勢與水稻品種9311不同,其中莖0~10 cm對根的轉(zhuǎn)運系數(shù)變化趨勢與隨生育期的延長而增加,在完熟期達到顯著水平,莖10~20 cm對莖0~10 cm、莖20 cm以上對莖10~20 cm和谷對莖20 cm以上的轉(zhuǎn)運系數(shù)在齊穗期最大,并從齊穗期至完熟期逐漸降低。
表1 水稻不同生育期各部位鎘轉(zhuǎn)運系數(shù)
注:大寫字母A、B、C分別代表莖0~10 cm、莖10~20 cm和莖20 cm以上的部分;不同小寫字母表示不同生育期水稻部位間鎘轉(zhuǎn)運系數(shù)在<0.05 水平上差異顯著。下同。
Note: Capital letters A, B, and C standed for the part of the stem 0-10 cm, the part of the stem 10-20 cm, and the part of the stem above 20 cm, respectively; Different letters indicated that cadmium transport coefficient between rice parts at different growth stages had significant difference at the level of<0.05. The same as below.
水稻不同生育期各部位鎘富集系數(shù)分析來看(表2),水稻9311和YZX各部位的鎘富集系數(shù)的表現(xiàn)趨勢較為一致,隨著生育期的延長,根、莖0~10 cm、莖10~20 cm、莖20 cm以上和谷對鎘的富集系數(shù)逐漸變大,并在完熟期期達到最大值(表2),從孕穗期開始,水稻9311和YZX根和地上部各部位對鎘的富集系數(shù)均大于1,二者的各部位富集系數(shù)從大到小依次為根、莖0~10 cm、莖10~20 cm 、莖20 cm以上、谷。在完熟期,除谷的鎘富集系數(shù)外,水稻YZX各部位鎘富集系數(shù)均大于水稻9311各部位富集系數(shù),水稻9311根、莖0~10 cm、莖10~20 cm、莖20 cm以上部分和谷對鎘的富集系數(shù)分別為11.40、7.00、5.58、4.81和2.29。
隨著生育期的延長水稻品種9311和YZX中各部位鎘累積含量逐漸增加并達到顯著增加水平,各部位鎘累積含量均在完熟期達到最大值(圖2),兩個品種均為莖20 cm以上部位稻草中鎘累積含量最高,分別為612.3和657.7g/株,莖10~20 cm中含量最低,分別為107.6和164.9g/株。在完熟期時,品種9311中各部位鎘累積含量按高到低依次為:莖20 cm以上、谷、根、莖0~10 cm和莖10~20 cm,分別為占整株鎘累積含量的37.1%、22.7%、21.3%、12.4%和6.5%;品種YZX中各部位鎘累積含量按高到低依次為:莖20 cm以上、谷、根、莖0~10 cm和莖10~20 cm,分別為占整株鎘累積含量的42.5%、18.4%、17.4%、11.0%和10.7%。
表2 水稻不同生育期各部位的鎘富集系數(shù)
注:不同字母表示不同生育期水稻同一部位間在<0.05水平上差異顯著。
Note: Different letters indicated that cadmium bioconcentration factor between rice parts at different growth stages had significant difference at the level of<0.05.
在不同收割方式下 9311和YZX稻草鎘累積移除含量差異顯著,在不同生育期從大到小依次為整株收割、地上部全收割、離地10 cm收割、離地20 cm收割(圖3),在完熟期,水稻9311的整株移除鎘累積含量為1 652.11g/株,地上部收割、離地10 cm收割和離地20 cm收割下稻草鎘累積移除含量分別為1 299.90、1 095.59和988.04g/株,分別為整株稻草鎘累積含量的78.7%、66.3%和59.8%;水稻YZX整株移除的鎘累積含量為1 547.70g/株,地上部全收割、離地10 cm收割和離地20 cm收割下稻草鎘的累積移除含量分別為1 278.33、1 107.66和942.77g/株,分別為整株稻草鎘累積含量的82.6%、71.6%和60.9%。
因各部位鎘累積含量隨生育期的延長而增加并在完熟期達到最大,水稻9311蠟熟期中整株、地上部、離地10 cm和離地20 cm稻草中鎘累積含量分別是完熟期的64.8%、63.5%、60.3%和58.9%,而水稻YZX蠟熟期中整株、地上部、離地10 cm和離地20 cm稻草中鎘累積含量分別是完熟期的73.1%、75.1%、77.7%和80.9%,因此從各部位稻草中鎘的移除量來看,完熟期是稻草鎘移除量最大時期。
很多研究表明不同水稻品種鎘積累差異顯著,在中國華南地區(qū)471個當?shù)刂髟愿弋a(chǎn)品種稻米鎘含量差異達32倍[17],四大糧食產(chǎn)區(qū)總計687個大米樣品的稻米鎘含量差異分別為0.004~1.38 mg/kg[18],課題組前期品種篩選試驗發(fā)現(xiàn)不同水稻品種稻米鎘含量為0.20~4.21 mg/kg[19],因此這可為鎘污染農(nóng)田提供適宜的高鎘累積水稻修復(fù)品種。早在1977年Brooks等提出了重金屬超富集植物的衡量標準:植株長勢良好情況下,地上部Cd含量達到100 mg/kg以上,地上部對地下部重金屬轉(zhuǎn)運系數(shù)大于1,植物對土壤重金屬的富集系數(shù)大于1[20-21]。在已發(fā)現(xiàn)的超富集植物400余種中,大部分都是野生植物資源,其生境特殊,地域性強,雖然其重金屬吸收含量量高,但生長速度慢、生物量低。因此為解決中國農(nóng)田土壤重金屬污染問題很多學(xué)者篩選和發(fā)現(xiàn)了適合本地種植且其重金屬鎘累積能力與超富集植物相當?shù)谋镜刂参锲贩N,如籽粒莧、葉用紅菾菜等[22-24]。在本研究中,在完熟期水稻品種9311和YZX的各個部位(包括根、莖0~10 cm、莖10~20 cm、莖20 cm以上和谷)中鎘的富集系數(shù)均大于1(表2),雖然其各部位對鎘的轉(zhuǎn)運系數(shù)均小于1(表1),但其根和莖0~10 cm中鎘含量水平可類比在鎘污染農(nóng)田上種植的鎘超富集模式植物遏藍菜鎘含量水平[25]。另外,通過統(tǒng)計水稻品種9311和YZX每株各部位的生物量可知,水稻品種9311根和地上部中鎘累積含量分別為352.2和1 299.9g/株,品種YZX根和地上部中鎘累積含量分別為269.4和1 278.3g/株。兩個品種的種植密度按2.1×105株/hm2計算,水稻品種9311與YZX的根和地上部每公頃的鎘累積含量分別73.5g和273.0g與15.0g和268.5g,水稻品種9311與YZX地上部鎘累積含量已超過高富集煙草和油菜輪作所富集的鎘含量(176.75 g/hm2)[26],由此可見,水稻品種9311和YZX表現(xiàn)出鎘的高積累特性。
本試驗地耕層土壤(0~20 cm)鎘含量為1.69 mg/kg,農(nóng)田耕層土壤鎘含量為253.5 g/hm2,故在整株移除的情況下,每公頃種植一季水稻9311與YZX可以帶走土壤中9.1%和8.5%的鎘,估算出在該污染水平區(qū)連續(xù)單季種植水稻9311與YZX約8~9 a時間可以使得該片農(nóng)田土壤恢復(fù)安全健康水平(農(nóng)田土壤Cd 含量小于篩選值0.4 mg/kg),在只移除地上部稻草的情況下,每公頃地種植一季水稻9311與YZX可以帶走土壤中7.2%和7.1%的鎘,估算出在該污染水平區(qū)連續(xù)單季種植水稻9311與YZX約10~11 a時間可以使得該片農(nóng)田土壤恢復(fù)安全健康水平,故使用高鎘累積水稻品種用于修復(fù)農(nóng)田Cd 污染具有較好的應(yīng)用前景。另外從圖2中可看出,水稻9311與YZX在孕穗期以后鎘高效吸收,因此在保證晚稻季正常種植的情況下,在早稻季節(jié)種植非全生育期的該二者水稻品種或是種植高鎘累積早稻品種可提高水稻提取鎘的含量,從而縮短修復(fù)年限。
目前中國農(nóng)田重金屬鎘污染治理形勢嚴峻,利用遏藍菜、景天等超積累植物或藿香薊、黃麻等具有高鎘積累能力的植物作為鎘污染農(nóng)田環(huán)境修復(fù)材料的研究很多(表3),但利用高鎘累積水稻品種修復(fù)鎘污染農(nóng)田的研究還較少。研究表明水稻根系是水稻吸收累積鎘的主要部位[27],在本研究中水稻9311與YZX根是水稻吸收鎘含量最高的部位,占整株植物鎘累積含量的21.3%和17.4%,根系的鎘是否移除顯著影響土壤鎘的移除效果及修復(fù)年限。雖然基于高鎘水稻較旱作植物修復(fù)鎘污染農(nóng)田無需改變土壤結(jié)構(gòu)和當?shù)亻L期習(xí)慣的種植方式,操作簡單、更經(jīng)濟、適宜面積更廣,然而水稻根系不易移除,因此水稻根系機械化移除設(shè)施完善是后續(xù)水稻修復(fù)鎘污染農(nóng)田要解決的問題。另外,在后續(xù)研究和實際應(yīng)用過程中,還需進一步明確品種可獲得性、農(nóng)民的可接受性,從種子到收割,高鎘植株和稻谷的全過程監(jiān)管與安全處置,以防流入市場,進入食物鏈。
表3 不同鎘富集植物的鎘富集特征及土壤鎘移除效率對比
1)水稻揚稻6號和玉珍香各部位中鎘含量隨生育期的延長而增加,孕穗期增加幅度最大,在整個生育期中水稻不同部位鎘含量分布均隨株高呈遞減趨勢。
2)孕穗期至完熟期,水稻揚稻6號和玉珍香各個部位對鎘富集系數(shù)均大于1,對鎘表現(xiàn)出高積累特性。
3)水稻揚稻6號和玉珍香稻草鎘累積移除含量在整個生育期從大到小依次為整株收割、地上部全收割、離地10 cm 收割、離地20 cm收割,完熟期整株移除情況下,9311稻草鎘累積移除含量達1 652.11g/株,YZX稻草鎘累積移除含量達1 547.70g/株。
4)整株移除情況下種植一季水稻揚稻6號和玉珍香,土壤鎘移除效率分別為9.1%和8.5%,僅地上部移除情況下,土壤鎘移除效率分別為7.2%和7.1%。
[1] Bin H, Yun Z J, Shi J B, et al. Research progress of heavy metal pollution in China: Sources, analytical methods, status, and toxicity[J]. Chinese Science Bulletin, 2013, 58(2): 134.
[2] Chi Y H, Li F B, Tam N F, et al. Variations in grain cadmium and arsenic concentrations and screening for stable low-accumulating rice cultivars from multi-environment trials[J]. Science of the Total Environment, 2018, 643: 1314-1324.
[3] 楊小粉,伍湘,汪澤錢,等. 水分管理對水稻鎘砷吸收積累的影響研究[J]. 生態(tài)環(huán)境學(xué)報,2020,29(10):2091-2101.
Yang Xiaofen, Wu Xiang, Wang Zeqian, et al. Effects of water management on the absorption and accumulation of cadmium and arsenic in rice[J]. Ecology and Environmental Sciences, 2020, 29(10): 2091-2101. (in Chinese with English abstract)
[4] 張雨婷,田應(yīng)兵,黃道友,等. 典型污染稻田水分管理對水稻鎘累積的影響[J]. 環(huán)境科學(xué),2021, 42(5): 2512-2521.
Zhang Yuting, Tian Yingbing, Huang Daoyou, et al. Effects of water management on cadmium accumulation by rice (L.) growing in typical paddy soil[J]. Environmental Science, 2021, 42(5): 2512-2521. (in Chinese with English abstract)
[5] 周亮,肖峰,肖歡,等. 施用石灰降低污染稻田上雙季稻鎘積累的效果[J]. 中國農(nóng)業(yè)科學(xué),2021,54(4):780-791.
Zhou Liang, Xiao Feng, Xiao Huan, et al. Effects of lime on cadmium accumulation of double-season rice in paddy fields with different cadmium pollution degrees[J]. Scientia Agricultura Sinica, 2021, 54(4): 780-791. (in Chinese with English abstract)
[6] 楊海君,張海濤,劉亞賓,等. 不同修復(fù)方式下土壤-稻谷中重金屬含量特征及其評價[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(23):164-171.
Yang Haijun, Zhang Haitao, Liu Yabin, et al. Characteristics and its assessment of heavy metal content in soil and rice with different repair methods[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 164-171. (in Chinese with English abstract)
[7] 王昊,張悅,王欣,等. 硅酸鹽調(diào)控抑制水稻對富硒水稻土中Cd吸收[J]. 農(nóng)業(yè)工程學(xué)報, 2019, 35(22):225-233.
Wang Hao, Zhang Yue, Wang Xin, et al. Suppression of silicates regulation on Cd uptaking of rice in Se-rich paddy soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 225-233. (in Chinese with English abstract)
[8] 鄧思涵,龍九妹,陳聰穎,等. 葉面肥阻控水稻富集鎘的研究進展[J]. 中國農(nóng)學(xué)通報,2020,36(1):1-5.
Deng Sihan, Long Jiumei, Chen Congying, et al. Foliar fertilizers mitigate cadmium accumulation in rice: A review[J]. Chinese Agricultural Science Bulletin, 2020, 36(1): 1-5. (in Chinese with English abstract)
[9] 吳志強,顧尚義,李海英,等. 重金屬污染土壤的植物修復(fù)及超積累植物的研究進展[J]. 環(huán)境科學(xué)與管理,2007,32(3):67-71.
Wu Zhiqiang, Gu Shangyi, Li Haiying, et al. Phytoremdiation of heavy metals-contaminated soils and hyper-accumulator’s research advance[J]. Environmental Science and Manegement, 2007, 32(3): 67-71. (in Chinese with English abstract)
[10] 楊勇,王巍,江榮風,等. 超累積植物與高生物量植物提取鎘效率的比較[J]. 生態(tài)學(xué)報,2009,29(5):2732-2737.
Wang Yong, Wang Wei, Jiang Rongfeng, et al. Comparison of phytoextraction efficiency of Cd with the hyperaccumulatorand three high biomass species[J]. Acta Ecologica Sinica, 2009, 29(5): 2732-2737. (in Chinese with English abstract)
[11] 倪天華. 東南景天()對鎘特異吸收和積累特性的研究[D]. 杭州:浙江大學(xué),2003.
Ni Tianhua. Mechanisms of Cadmium Uptake and Accumulation in[D]. Hangzhou: Zhejiang University, 2003. (in Chinese with English abstract)
[12] 劉威,束文圣,藍崇鈺. 寶山堇菜()—一種新的鎘超富集植物[J]. 科學(xué)通報, 2003, 48(19):2046-2049.
[13] 魏樹和,周啟星,王新. 超積累植物龍葵及其對鎘的富集特征[J]. 環(huán)境科學(xué),2005,26(3):167-171.
Wei Shuhe, Zhou Qixing, Wang Xin. Cadmium-hyperaccumulatorand its accumulating characteristics[J]. Environmental Science, 2005, 26(3): 167-171. (in Chinese with English abstract)
[14] 李玉雙,孫麗娜,孫鐵珩,等. 超富集植物葉用紅菾菜(L. )及其對Cd的富集特征[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2007,26(4):1386-1389.
Li Yushuang, Sun Lina, Sun Tieyan, et al. Cadmium hyperaccumulatorL. and its accumulating characteristics[J]. Journal of Agro-Environment Science, 2007, 26(4): 1386-1389. (in Chinese with English abstract)
[15] 聶發(fā)輝. 鎘超富集植物商陸及其富集效應(yīng)[J]. 生態(tài)環(huán)境,2006,15(2):303-306.
Nie Fahui. Cd hyper-accumulatorRoxb and Cd-accumulative characteristics[J]. Ecology and Environment, 2006, 15(2): 303-306. (in Chinese with English abstract)
[16] 蔣先軍,駱永明,趙其國. 鎘污染土壤的植物修復(fù)及其EDTA調(diào)控研究:Ⅰ. 鎘對富集植物印度芥菜的毒性[J]. 土壤,2001,33(4):197-201.
[17] Duan G L, Shao G S, Tang Z, et al. Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars[J]. Rice, 2017, 10(1): 9.
[18] Mu T T, Wu T Z, Zhou T, et al. Geographical variation in arsenic, cadmium, and lead of soils and rice in the major rice producing regions of China[J]. Science of the Total Environment, 2019, 677: 373-381.
[19] 柳賽花,紀雄輝,謝運河,等. 基于GGE雙標圖和BLUP分析篩選鎘砷同步低累積水稻品種[J]. 生態(tài)環(huán)境學(xué)報,2021,30(2):405-411.
Liu Saihua, Ji Xionghui, Xie Yunhe, et al. Screening of cadmium and arsenic synchronous low-accumulating rice cultivars based on GGE double plot and BLUP analysis[J]. Ecology and Environmental Sciences, 2021, 30(2): 405-411. (in Chinese with English abstract)
[20] Brooks R R, Lee J, Reeves R D, et al. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants[J]. Journal of Geochemical Exploration, 1977, 7: 49-57.
[21] Baker A J M, Brooks R R, Pease A J, et al. Studies on copper and cobalt tolerance in three closely related taxa within the genusL. (Caryophyllaceae) from Za?re[J]. Plant and Soil, 1983, 73(3): 377-385.
[22] 谷雨,蔣平,譚麗,等. 6種植物對土壤中鎘的富集特性研究[J]. 中國農(nóng)學(xué)通報,2019,35(30):119-123.
Gu Yu, Jiang Ping, Tan Li, et al. Enrichment characteristics of cadmium by six plants in soil[J]. Chinese Agricultural Science Bulletin, 2019, 35(30): 119-123. (in Chinese with English abstract)
[23] 宋波,張云霞,田美玲,等. 應(yīng)用籽粒莧修復(fù)鎘污染農(nóng)田土壤的潛力[J]. 環(huán)境工程學(xué)報,2019,13(7):1711-1719.
Song Bo, Zhang Yunxia, Tian Meiling, et al. Potential for cadmium contaminated farmland remediation withL[J]. Chinese Journal of Environmental Engineering, 2019, 13(7): 1711-1719. (in Chinese with English abstract)
[24] 涂鵬飛,譚可夫,陳璘涵,等. 紅葉甜菜—花生和油葵—花生輪作修復(fù)土壤Cd的能力[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2020,37(4):609-614.
Tu Pengfei, Tan Kefu, Chen Linhan, et al. Ability of red leaf beet-peanut and oil sunflower-peanut rotation patterns to remediate soil Cd[J]. Journal of Agro-Environment Science, 2020, 37(4): 609-614. (in Chinese with English abstract)
[25] 鄭瑞倫,石東,劉文菊,等. 兩種能源草田間條件下對鎘和鋅的吸收累積[J]. 環(huán)境科學(xué),2020,42(3):1158-1165.
Zhen Ruilun, Shi Dong, Liu Wenju, et al. Uptake and accumulation of cadmium and zinc by two energy grasses: A field experiment[J]. Environmental Science, 2020, 42(3):1158-1165. (in Chinese with English abstract)
[26] 常銀川. 高富集植物的篩選以及不同輪作模式修復(fù)輕中度鎘污染農(nóng)田潛力的比較[D]. 長沙:湖南農(nóng)業(yè)大學(xué),2019.
Chang Yinchuan. Screening of Highly Enriched Plants and Comparison of the Phytoremediation Potential by Different Crop Rotation Models in Mild and Moderate Cadmium Polluted Farmland[D]. Changsha: Hunan Agricultural University, 2019. (in Chinese with English abstract)
[27] 單天宇,劉秋辛,閻秀蘭,等. 鎘砷復(fù)合污染條件下鎘低吸收水稻品種對鎘和砷的吸收和累積特征[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2017,36(10):1938-1945.
Shan Tianyu, Liu Qiuxin, Yan Xiulan, et al. Cd and As absorption and transport characteristics of rice in a paddy field co-contaminated by Cd and As[J]. Journal of Agro-Environment Science, 2017, 36(10): 1938-1945. (in Chinese with English abstract)
[28] 張云霞,周浪,肖乃川,等. 鬼針草(L. )對鎘污染農(nóng)田的修復(fù)潛力[J]. 生態(tài)學(xué)報,2020,40(16):5805-5813.
Zhang Yunxia, Zhou Liang, Xiao Naichuan, et al. Remediation potential ofL. in cadmium-contaminated farmland[J]. Acta Ecologica Sinica, 2020, 40(16): 5805-5813. (in Chinese with English abstract)
[29] 鄧月強,曹雪瑩,譚長銀,等. 有機物料對鎘污染酸性土壤伴礦景天修復(fù)效率的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2020,39(12):2762-2770.
Deng Yueqiang, Cao Xueying, Tan Changyin, et al. Effect of organic materials on phytoremediation efficiency of Cd-contaminated acid soil by[J]. Journal of Agro-Environment Science, 2020, 39(12): 2762-2770. (in Chinese with English abstract)
[30] Fan Y Q, Zhu L, Tong Z, et al. Phytoextraction potential of soils highly polluted with cadmium using the cadmium/zinc hyperaccumulator[J]. International Journal of Phytoremediation, 2019, 21(8): 733-741.
[31] 張云霞,宋波,賓娟,等. 超富集植物藿香薊(L. )對鎘污染農(nóng)田的修復(fù)潛力[J]. 環(huán)境科學(xué),2019,40(5):457-463.
Zhang Yunxia, Song Bo, Bin Juan, et al. Remediation potential ofL. on cadmium contaminated farmland[J]. Environmental Science, 2019, 40(5): 457-463. (in Chinese with English abstract)
[32] 陳迪,李伯群,楊永平,等. 4種草本植物對鎘的富集特征[J]. 環(huán)境科學(xué),2021,42(2):960-966.
Chen Di, Li Boqun, Yang Yongping, et al. Cadmium accumulation characteristics of four herbs[J]. Environmental Science, 2021, 42(2): 960-966. (in Chinese with English abstract)
[33] 譚可夫,涂鵬飛,楊洋,等. 煙草—紅葉甜菜輪作對鎘污染農(nóng)田的修復(fù)潛力試驗[J]. 環(huán)境工程技術(shù)學(xué)報,2020,10(3):440-448.
Tan Kefu, Tu Pengfei, Yang Yang, et al. Phytoextraction of cadmium contaminated agricultural soil by tobacco and swiss chard rotation systems[J]. Journal of Environmental Engineering Technology, 2020, 10(3): 440-448. (in Chinese with English abstract)
[34] 尹明,楊大為,唐慧娟,等. 黃麻修復(fù)重度鎘污染農(nóng)田的品種篩選[J]. 中國麻業(yè)科學(xué),2020,42(4):150-156.
Ying Ming, Yang Dawei, Tang Huijuan, et al. Comparison of the capacity of different varieties of Jute (L.) to remediate heavily cadmium- contaminated farmland[J]. Plant Fiber Sciences in China, 2020, 42(4): 150-156. (in Chinese with English abstract)
Remediation potential of rice with high cadmium accumulation to cadmium contaminated farmland
Liu Saihua, Chen Haoyu, Ji Xionghui※, Liu Zhaobing, Xie Yunhe, Tian Fangxiang, Pan Shufang
(-,,410125,)
Phytoremediation is a typical environmentally friendly and economical method to in situ natural remediation of soil pollution. Therefore, it can widely be expected to serve as a very feasible way to remediate the contaminated rice paddy fields with high cadmium accumulation, particularly without changing the property and structure of farmland. This study aims to explore the remediation potential of high Cadmium (Cd) accumulated rice varieties (Yangdao 6 and Yuzhenxiang) in the contaminated farmland soil. A field plot experiment was conducted to investigate the accumulation regularity in rice, removal time and removal height of rice varieties with high cadmium accumulation. The content of Cd was also determined in 5 parts (root, stem 0-10 cm, stem 10-20 cm, stem above 20 cm and grain) of rice straw at 6 different growth stages (seedling, tillering, booting, full heading, ripening and full ripening). The results showed that the content of Cd in different parts of rice (Yangdao 6 and Yuzhenxiang) increased with the prolongation of the growth stage ranging from the booting to the mature stage, where the maximum was observed. Besides, the Cd distribution in different parts of rice decreased with the plant height in the same period. At the mature stage, the Cd content in roots, 0-10 cm stem, 10-20 cm stem, above 20 cm stem, and grain of rice varieties Yangdao 6 and Yuzhenxiang were 19.3, 11.8, 9.4, 8.1, and 3.9 mg/kg, and 19.5, 16.3, 14.3, 9.7 and 3.7 mg/kg, respectively. The Cd enrichment coefficients were also all greater than 1, indicating high Cd accumulation. The removal content of cumulative cadmium was ranked in order of the whole plant, the whole ground part, 10 cm above the ground, 20 cm above the ground, harvested rice stalk of Yangdao 6 and Yuzhenxiang during the whole growth period. Specifically, the removal contents of cumulative cadmium in the rice stalk of Yangdao 6 and Yuzhenxiang were up to 1 299.90 and 1 278.33g/plant, respectively, when the whole shoot was removed at the full maturity stage. The removal contents of cumulative cadmium in the rice straw of Yangdao 6 and Yuzhenxiang were up to 1 652.11 and 1 547.70g/plant, respectively, when the whole plant was removed at the full maturity stage. The removal efficiency of soil Cd was 9.1% and 8.5%, respectively, when the rice varieties Yangdao 6 and Yuzhenxiang were planted once a year and the whole plant was removed. By contrast, the removal efficiency of soil Cd was 7.2% and 7.1%, respectively, when the whole shoot was removed. It infers that the Cd polluted rice roots were difficult to be removed. Therefore, it was strongly recommended to remove the rice stalk by harvesting the whole ground part after the rice was fully ripe, particularly considering the remediation and operability. As such, the remediation of Cd contaminated rice paddy fields can remain the soil structure and local planting pattern in a long term, compared with dryland phytoremediation of Cd polluted farmland. The finding can provide a new insightful idea for the phytoremediation in cadmium-contaminated paddy fields.
cadmium; farmland; rice; phytoremediation; accumulation
10.11975/j.issn.1002-6819.2021.10.021
S154.1
A
1002-6819(2021)-10-0175-07
柳賽花,陳豪宇,紀雄輝,等. 高鎘累積水稻對鎘污染農(nóng)田的修復(fù)潛力[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(10):175-181.doi:10.11975/j.issn.1002-6819.2021.10.021 http://www.tcsae.org
Liu Saihua, Chen Haoyu, Ji Xionghui, et al. Remediation potential of rice with high cadmium accumulation to cadmium contaminated farmland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(10): 175-181. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.10.021 http://www.tcsae.org
2021-03-09
2021-04-16
國家自然科學(xué)基金(42007118);國家水稻產(chǎn)業(yè)體系(CARS-01-28);湖南省農(nóng)業(yè)科技創(chuàng)新資金項目(2020CX54);湖南省自然科學(xué)基金青年基金項目(2020JJ5297);湖南省農(nóng)業(yè)科技創(chuàng)新資金項目(2020CX06-03)
柳賽花,助理研究員,研究方向為農(nóng)田重金屬污染治理。Email:285398758@qq.com
紀雄輝,博士,研究員,研究方向為農(nóng)村生態(tài)環(huán)境污染治理。Email:1546861600@qq.com