趙壽培,李雪梅,孫新勝,車大璐,張會文,王新芳,高玉紅,程素彩
冬季漏縫地板羊舍溫熱參數(shù)的時空分布規(guī)律
趙壽培1,李雪梅1,孫新勝2,車大璐1,張會文3,王新芳4,高玉紅1※,程素彩5
(1. 河北農(nóng)業(yè)大學(xué)動物科技學(xué)院,保定 071001;2. 河北農(nóng)業(yè)大學(xué)信息與技術(shù)學(xué)院,保定 071001;3. 承德市農(nóng)業(yè)農(nóng)村局科技教育工作站,承德 067000;4. 河北省畜牧總站,石家莊 050035;5. 廊坊市農(nóng)林科學(xué)院,廊坊 065000)
為研究冬季寒冷地區(qū)漏縫地板羊舍溫熱參數(shù)空間和時間變化規(guī)律。該研究選擇兩棟南北朝向且結(jié)構(gòu)相同的傳統(tǒng)漏縫地板羊舍,舍A的出糞口未作封堵處理,而舍B的出糞口進行密閉封堵,對兩舍漏縫地板上部空間的溫濕度進行時間和空間(水平和垂直)的動態(tài)測定,試驗周期2個月,并利用紅外熱像儀對漏縫地板下部空間結(jié)構(gòu)進行成像分析。結(jié)果表明:1)兩舍日均溫和濕度雖未表現(xiàn)出顯著性差異(>0.05),舍A溫度和濕度為-3.07 ℃和38.08%,但出糞口封堵的舍B溫度呈現(xiàn)升高趨勢,均溫達-2.76 ℃,兩舍最大溫差可達1.05 ℃。2)從垂直空間看,漏縫地板上方1.5 m處溫度(1.5)顯著高于漏縫地板處溫度(0)(<0.01),舍A的兩處垂直溫差達1.71 ℃,而舍B溫差降至1.35 ℃,且舍B0平均溫度提高了0.49 ℃。另外,舍A的0最低可降至-7.40 ℃,且每天有16.0 h溫度低于-3 ℃。3)從水平空間看,兩棟舍南側(cè)的溫度均高于北側(cè),尤其是漏縫地板處,兩側(cè)溫差為0.59(舍A)和0.39 ℃(舍B),且舍東西方向的水平溫差較大,尤其舍北側(cè),其水平溫差舍A達2.11 ℃,而舍B降至0.92℃。所有測點中,兩舍西北側(cè)出糞口的漏縫地板處溫度最低,舍B0和1.5分別較舍A提高了1.33和0.47 ℃。4)從漏縫地板下部結(jié)構(gòu)的紅外熱成像圖分析,舍A漏縫地板和糞溝底部溫差達2.1 ℃,而舍B溫差降至0.7 ℃,且兩舍地板下部結(jié)構(gòu)中側(cè)壁溫度最低,分別達-9.3(舍A)和-7.2 ℃(舍B)。5)從風(fēng)寒溫度(Wind Chill Temperature,WCT)分析,舍B 的WCT顯著高于舍A(<0.05),且舍A出糞口處風(fēng)速顯著高于舍B(<0.05),最高達0.682 m/s。傳統(tǒng)漏縫地板羊舍的出糞口進行密閉封堵可提高舍內(nèi)溫度,降低舍內(nèi)水平和垂直溫差,建議羊舍設(shè)置漏縫地板時增加出糞口的密閉性和保溫性。
溫度;濕度;風(fēng)速;羊舍;漏縫地板
近幾年隨著中國集約化、標準化和現(xiàn)代化養(yǎng)羊業(yè)的發(fā)展,養(yǎng)殖環(huán)境的改善越來越受到重視,尤其是溫熱環(huán)境。溫度、濕度和風(fēng)速作為重要的溫熱參數(shù),直接影響羊群的生產(chǎn)和繁殖性能,而這些溫熱參數(shù)與羊舍的外圍護結(jié)構(gòu)密切相關(guān)。但是,由于目前羊舍建設(shè)標準化程度較低,建筑結(jié)構(gòu)及建筑材料隨意性較強,導(dǎo)致舍內(nèi)的溫熱環(huán)境難以滿足羊群需求,這嚴重制約了現(xiàn)代化羊業(yè)的高效、健康、可持續(xù)發(fā)展。外圍護結(jié)構(gòu)中,除了墻體和屋頂,地面也是維持羊舍環(huán)境的重要圍護結(jié)構(gòu)[1-3]。漏縫地板是目前豬和牛應(yīng)用較多的地面模式,其優(yōu)越性已被養(yǎng)殖場所認可。大量研究認為,漏縫地板有助于改善舍內(nèi)的空氣質(zhì)量,減少舍內(nèi)氨氣、硫化氫和甲硫醇等臭氣成分的濃度[4-6],并且可提高飼養(yǎng)管理水平,減少勞動力,提高養(yǎng)殖效率。鑒于漏縫地板在豬和牛場應(yīng)用上的成功案例,有些羊舍已開始采用漏縫地板模式。但隨著漏縫地板的應(yīng)用,其存在的缺點也逐漸暴露。Magrin等[7]和Hinterhofer等[8]研究認為,漏縫地板會降低動物福利,增加肢蹄發(fā)病率,且荷蘭已禁用全漏縫地板的生產(chǎn)方式[9]。關(guān)于羊舍采用漏縫地板的研究也有報道[10],相比漏縫地板,母羊更偏好于實心地板上躺臥休息。
近幾年,河北省現(xiàn)代農(nóng)業(yè)羊產(chǎn)業(yè)技術(shù)體系對全省羊舍設(shè)計與環(huán)境進行系統(tǒng)調(diào)研發(fā)現(xiàn),寒冷季節(jié)羊舍采用漏縫地板在實際生產(chǎn)中存在一些問題,漏縫地板下的風(fēng)速可能會影響舍內(nèi)的溫熱環(huán)境,進而對肉羊的育肥效果產(chǎn)生一定的負面影響[11],甚至?xí)黾痈嵫虻母篂a率及其死亡率[12],但目前尚未有漏縫地板羊舍溫熱環(huán)境的相關(guān)研究,為了漏縫地板在羊舍的應(yīng)用獲得更高的效率,本試驗選擇承德壩上典型的漏縫地板羊舍,對漏縫地板的出糞口進行封堵處理,研究冬季漏縫地板舍溫熱參數(shù)的時間和空間分布規(guī)律,為漏縫地板舍的應(yīng)用與改造提供科學(xué)依據(jù)。
試驗于2020年1—2月在承德壩上地區(qū)某規(guī)模化羊場進行,選擇2棟南北朝向且建筑結(jié)構(gòu)完全相同的有窗密閉式半鐘樓舍(舍A和舍B),舍頂部陽坡設(shè)置陽光板,地面設(shè)置塑料漏縫地板,漏縫地板板塊規(guī)格為60 cm×60 cm,板條間隙尺寸為6.5 cm×2.0 cm,板條厚度5 cm。羊舍南北兩側(cè)靠墻位置各設(shè)75 cm寬素土地面,漏縫地板下糞溝深度為0.6 m,并設(shè)置刮板清糞系統(tǒng)。出糞口位于羊舍西側(cè)且于舍西側(cè)設(shè)單層彩鋼板耳房,以減少風(fēng)通過出糞口倒灌入舍。舍A的出糞口不采取任何封堵措施,而舍B出糞口用聚乙烯材料進行密閉封堵,2棟舍均為母羔舍空舍,且試驗期間舍內(nèi)門窗關(guān)閉,確保羊舍處于封閉狀態(tài)。試驗羊舍結(jié)構(gòu)特點如圖1所示。
1.2.1 環(huán)境溫度和濕度
分別于2棟舍內(nèi)12個檢測點處安裝KTH-350電子溫濕度記錄儀(量程:溫度:-40~180 ℃,濕度:0~100% RH;測量精度:±0.25 ℃,±0.15% RH),記錄每天24 h溫濕度的連續(xù)變化,每隔0.5 h記錄一次。布點位置為:水平空間上,料道南北側(cè)的東、中、西位置(如圖1所示);垂直空間上,漏縫地板處(漏縫地板上方0處)和漏縫地板上方1.5 m處。
1.2.2 風(fēng)速
于羊舍西側(cè)(出糞口處)安裝WFWZY-1電子風(fēng)速記錄儀(量程:0.05~30 m/s;測量精度:±0.05 m/s),記錄每天24 h風(fēng)速的連續(xù)變化,每隔0.5 h記錄一次,并計算風(fēng)寒溫度(Wind Chill Temperature,WCT),具體公式如下[13]:
WCT= 13.12+ 0.621 5a-11.37×0.16+0.396 5×a×0.16(1)
式中WCT為風(fēng)寒溫度,℃;a為環(huán)境溫度,℃;為風(fēng)速,km/h。
1.2.3 紅外熱像圖分析
利用Testo-890紅外熱成像儀(量程:-20~350 ℃;測量精度:±2 ℃,波長范圍:8~14m)對兩棟舍出糞口處的漏縫地板及其下部空間進行拍照,形成熱像圖,以分析漏縫地板下部空間的水平和垂直溫度變化,并分析漏縫地板結(jié)構(gòu)的溫度變化。
利用GraphPad Prism 7.0對羊舍溫度、濕度和風(fēng)速等溫熱參數(shù)進行繪圖,同時利用熱成像分析軟件 Testo IRSoft2對測得的熱譜圖像進行處理,并提取溫度信息。另外,采用SPSS 21.0統(tǒng)計軟件對所測數(shù)據(jù)進行方差分析,多重比較采用Duncan氏法進行檢測。<0.05表示差異顯著,<0.01表示差異極顯著,>0.05表示差異不顯著。
冬季2棟舍漏縫地板處及其上部空間的環(huán)境溫度和濕度時間動態(tài)變化曲線如圖2所示。2棟羊舍的漏縫地板處和漏縫地板上方1.5 m處的日動態(tài)環(huán)境溫度均呈中午高、早晚低的變化趨勢,濕度變化則相反。未封堵出糞口的傳統(tǒng)漏縫地板舍A所有測點舍溫度日變化為-6.54~2.60 ℃,而封堵舍B日變化為-6.26~3.41 ℃。從日平均溫濕度來看,舍A日平均溫度為-3.07 ℃,平均濕度為38.08%,與封堵的舍B比較,舍內(nèi)溫度差異未達顯著水平(>0.05),但舍B溫度比舍A高0.31 ℃,為-2.76 ℃,兩舍最大溫差可達1.05 ℃。從漏縫地板上部空間的溫度看,舍A和舍B分別為-2.22和-2.09 ℃,而漏縫地板處的均溫舍A降至-3.93 ℃,最低僅-7.40 ℃,且每天有16.0 h溫度低于-3 ℃,而舍B漏縫地板處溫度比舍A提高了0.49 ℃,為-3.44 ℃。
冬季2棟舍漏縫地板處及其上部溫濕度空間變化如表1所示。羊舍垂直和水平方向的溫濕度均表現(xiàn)出一定的差異。從垂直分布可知,漏縫地板處的溫度與漏縫地板上1.5 m處的溫度表現(xiàn)出顯著性差異(<0.01),舍A漏縫地板上方溫度比漏縫地板處高1.71 ℃(<0.01),而舍B溫差則較小,為1.35 ℃。
從南北向的水平溫差可知,舍內(nèi)南北兩側(cè)溫度雖未表現(xiàn)出顯著性差異(>0.05),但舍A的南側(cè)平均溫度比北側(cè)高0.3 ℃,南側(cè)平均溫度和平均濕度分別為-2.92 ℃和37.50%;舍B南側(cè)和北側(cè)溫度分別為-2.66和-2.87 ℃,濕度分別為36.04%和38.17%。其中,漏縫地板處南北溫差更大,舍A溫差達0.59 ℃,舍B溫差降低了0.20 ℃,為0.39 ℃。
表1 2棟舍漏縫地板處及上部的溫濕度空間分布
從東西向水平溫差可知,舍內(nèi)東、中、西部溫度存在較大差異,南側(cè)和北側(cè)均表現(xiàn)為西部溫度最低,尤其西北側(cè)漏縫地板處的溫度最低,舍B 和舍A西北側(cè)漏縫地板處的溫度分別為-4.13和-5.46 ℃,舍B較舍A提高了1.33 ℃。另外,舍B漏縫地板上方1.5 m處的溫度較舍A也提高了0.47 ℃,且兩棟舍北側(cè)漏縫地板處的最大水平溫差分別達0.92 ℃(舍B)和2.11 ℃(舍A),而兩棟舍南側(cè)的水平溫差分別為1.33 ℃(舍B)和1.71 ℃(舍A),封堵舍B相較舍A溫差降低了0.36 ℃。從表1也可看出,相對濕度與溫度的分布規(guī)律基本相反。
冬季漏縫地板下部空間及漏縫地板處的紅外熱像圖如圖3所示。從圖3a、3b可知,舍A漏縫地板上側(cè)表面溫度為-4.2 ℃,而封堵舍B為-3.6 ℃。另外,與漏縫地板相鄰的土地面溫度高于漏縫地板表面溫度,舍A、B素土地面的溫度分別為-2.3 ℃、-1.7 ℃。由圖3c、3d可知,舍A漏縫地板下側(cè)表面溫度為-4.1 ℃,糞溝底部溫度為-6.2 ℃,溫差2.1 ℃,且最低溫度為-9.3 ℃(側(cè)壁)。圖3c、3d可知,封堵的舍B漏縫地板下側(cè)表面溫度為-3.6 ℃,糞溝底部-4.3 ℃,溫差僅0.7 ℃,側(cè)壁溫度最低,為-7.2 ℃。
冬季2棟舍出糞口風(fēng)速及WCT的動態(tài)變化曲線如圖4所示,兩棟舍的風(fēng)速差異顯著(<0.05)。舍A日均風(fēng)速為0.216 m/s,最高達0.682 m/s,而舍B日均風(fēng)速僅0.005 m/s,且A舍風(fēng)速于22:00—次日5:30保持較高水平,達0.318 m/s。而舍A和舍B的日均WCT分別為-5.02和-4.10 ℃,舍A 最低降至-8.86 ℃,且各時間段WCT均表現(xiàn)為舍B高于舍A(<0.05)。
中國北方地區(qū)春冬季節(jié)氣候寒冷,持續(xù)的低溫不僅給家畜生產(chǎn)帶來較大的經(jīng)濟損失,并且對畜體的健康和免疫造成一定的影響[14-15]。本研究結(jié)果表明,羊舍采用傳統(tǒng)漏縫地板結(jié)構(gòu)可使冬季舍內(nèi)的日均溫降至-3.07 ℃,而漏縫地板處的均溫更低達-3.93 ℃,全天7:30時溫度最低,僅-7.40 ℃,且每天有16.0 h溫度低于-3 ℃。采用聚乙烯材料對羊舍西側(cè)出糞口進行密閉封堵后,舍內(nèi)溫度明顯提高,漏縫地板處日均溫可提高0.49 ℃。已報道文獻指出,綿羊的最適溫度為-3~23 ℃,家畜長時間處于低溫環(huán)境中會抑制其感覺神經(jīng)和運動神經(jīng)功能,甚至可能發(fā)生不可逆損傷[16-18],并且家畜在寒冷條件下躺臥時間會減少,運動和進食時間延長,通過加快機體代謝以增加對外界環(huán)境的適應(yīng)性。也有研究認為,綿羊處于急性冷應(yīng)激條件下,機體會消耗部分脂肪以提供能量適應(yīng)外界環(huán)境的變化,這勢必降低了機體對能量的利用效率[19]。
本研究結(jié)果中漏縫地板舍垂直空間的溫濕度差異較大,傳統(tǒng)漏縫地板舍的地板處與其漏縫地板上方環(huán)境溫度相差達1.71 ℃,通過對出糞口封堵可縮小溫差。從漏縫地板下部空間的紅外熱成像圖可以看出,漏縫地板下部空間的溫度分布極不均勻,呈現(xiàn)漏縫地板下表面高于糞坑底部溫度,上下溫差可相差2.1 ℃。紅外熱像儀是基于輻射熱能分布的數(shù)值,包括目標自身發(fā)出的能量以及周圍環(huán)境通過物體表面反射的能量[20-21],利過紅外熱成像技術(shù)可對室內(nèi)圍護結(jié)構(gòu)進行測溫并成像以反映室內(nèi)的熱環(huán)境[22],已有研究也發(fā)現(xiàn),圍護結(jié)構(gòu)溫度和環(huán)境溫度密切相關(guān),外圍護結(jié)構(gòu)內(nèi)表面溫度與舍內(nèi)環(huán)境溫度呈顯著的線性正相關(guān)關(guān)系。本研究表明,密閉性差的漏縫地板出糞口冬季容易導(dǎo)致漏縫地板處溫度降低,同時影響了漏縫地板上方環(huán)境溫度的分布,簡單封堵后舍內(nèi)保溫性能增加。據(jù)報道,相比素土地面,漏縫地板牛舍溫度可降低0.73 ℃[23],采用棉簾圍堵高架漏縫地板可顯著增加地面附近的溫度,有效緩解冷應(yīng)激[11]。目前,關(guān)于漏縫地板羊舍內(nèi)部空間的溫濕參數(shù)變化規(guī)律尚無報道,漏縫地板是羊群活動和躺臥休息的區(qū)域,其重要性不言而喻。本研究中漏縫地板羊舍內(nèi)水平空間的溫濕度差異較大,舍內(nèi)南半側(cè)比北半側(cè)的環(huán)境溫度高,尤其漏縫地板處的溫度,南北側(cè)差異較大,傳統(tǒng)漏縫地板舍南北兩側(cè)可相差0.59 ℃,出糞口封堵后,舍內(nèi)地板表面的南北溫差有所降低。從舍東西軸的水平方向看,2棟羊舍西側(cè)溫度最低,尤其是西北側(cè),主要是由于羊舍北側(cè)采光差,再加上出糞口處的密封性差,這直接影響了西北側(cè)的溫度。通過對出糞口處封堵大大降低了漏縫地板處北半側(cè)的水平溫差,且提高了舍內(nèi)西北側(cè)漏縫地板上方的溫度。因此,羊舍建筑采用漏縫地板模式時,應(yīng)結(jié)合當?shù)貧夂蛱攸c,特別要考慮冬季寒冷地區(qū),避免因漏縫地板的強透風(fēng)性引起羊的冷刺激。
溫度、濕度和氣流等溫熱參數(shù)是直接影響畜舍環(huán)境的主要因素[24]。關(guān)于溫濕度評價冷環(huán)境的研究已有很多[25-26],風(fēng)速作為舍內(nèi)溫熱參數(shù)的重要指標,直接影響舍內(nèi)的溫熱環(huán)境。有研究指出,圍欄育肥牛場采用防風(fēng)墻降低風(fēng)速可提高肉牛的體感溫度,有利于冬季肉牛養(yǎng)殖[27],關(guān)于羊冷刺激的研究也認為,低溫環(huán)境下,隨著風(fēng)速增強引起的冷刺激可使綿羊日增重呈現(xiàn)負增長[28]。本研究中,傳統(tǒng)漏縫地板出糞口處由于密閉性較差,風(fēng)速顯著高于封堵舍,這也造成了舍內(nèi)溫度的降低。目前將風(fēng)速和溫度相結(jié)合的WCT指標常常用來評價家畜的冷應(yīng)激,-10~-25、-25~-45和-45~-59 ℃分別代表輕度、中度和高度冷應(yīng)激,但也有研究認為,當風(fēng)速不高于1.34 m/s時,WCT與實際溫度相等[29-30],而Shitzer等[31]認為,風(fēng)速為0~1.34 m/s時不應(yīng)該被忽略,認為此時的WCT應(yīng)該是逐漸變化的而不是突變的。本研究中2棟舍內(nèi)風(fēng)速均低于1.34 m/s,但封堵的舍出糞口處WCT明顯提高,這可緩解羊冬季受到的冷刺激,降低羊的冷應(yīng)激風(fēng)險。尤其是對于羊群影響較大的漏縫地板處溫度,由出糞口進入的冷風(fēng)穿過漏縫地板縫隙直接直接刺激畜體,加快機體熱量散失,容易引起羊群冷應(yīng)激,雖然綿羊較為耐寒,但采用漏縫地板結(jié)構(gòu)羊群仍存在遭受輕度冷應(yīng)激的風(fēng)險。從漏縫地板處熱成像圖也可以看出,板條縫隙間的溫度相較于板條溫度較低,并且漏縫地板板條溫度比相鄰的素土地面溫度要低約1.9 ℃,可見,漏縫地板雖然能提高羊場的管理水平,但冬季地面的保溫性能值得考慮,溫度尤其是寒冷地區(qū)。T?lü等[32]研究認為,漏縫地板更適用于溫帶環(huán)境,認為板條之間的縫隙會增加機體熱量散失,導(dǎo)致躺臥比例降低。F?revik等[33]研究也表明,冬季羊更喜歡躺臥于低導(dǎo)熱性能的材料表面。相關(guān)研究也認為,地板材料與溫度之間存在密切關(guān)系,低溫條件下,相比漏縫地板,實木和床墊對畜體更有利[2,34]。因此,實際生產(chǎn)中應(yīng)結(jié)合當?shù)貧夂蛱攸c選擇地面類型。
本研究通過對漏縫地板羊舍溫熱參數(shù)時空動態(tài)變化的分析得出,冬季漏縫地板羊舍出糞口及漏縫地板縫隙透風(fēng)性較強,對舍內(nèi)溫熱參數(shù)分布影響較大。主要結(jié)論如下:
1)傳統(tǒng)漏縫地板舍溫度日變化為-6.54~2.60 ℃(均溫-3.07 ℃),出糞口封堵后日變化為-6.26~3.41 ℃(均溫-2.76 ℃),兩舍最大溫差1.05 ℃。
2)傳統(tǒng)漏縫地板羊舍垂直和水平溫差均較大,地板上方1.5 m處的環(huán)境溫度顯著高于漏縫地板處的環(huán)境溫度,溫差達1.71 ℃,封堵后溫差降低0.36 ℃;傳統(tǒng)漏縫地板舍的地板處水平溫差較大,距出糞口較近的西北側(cè)地板處的溫度最低,僅-5.46 ℃,封堵后提高1.33 ℃。
3)漏縫地板羊舍出糞口風(fēng)速兩舍差異顯著(<0.05),舍A風(fēng)速高于封堵舍B,分別為0.216 m/s和0.005 m/s。
[1] 王美芝,任方杰,臧建軍,等. 保溫燈變功率供暖對哺乳仔豬環(huán)境調(diào)控及節(jié)能效果[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(15):182-191.
Wang Meizhi, Ren Fangjie, Zang Jianjun, et al. Environmental control and energy saving effect of heat lamp with variable power heating for piglets[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(15): 182-191. (in Chinese with English abstract)
[2] 顏培實,李如治. 家畜環(huán)境衛(wèi)生學(xué)[M]. 北京:高等教育出版社,2011.
[3] 臧強,李保明,施正香,等. 夏季運動場遮陽對舍飼小尾寒羊行為和生理指標的影響[J]. 農(nóng)業(yè)工程學(xué)報,2006,22(4):143-147.
Zang Qiang, Li Baoming, Shi Zhengxiang, et al. Effects of sheepcot shade on behavior and physiological indexes of Chinese little fat-tailed sheep in housing system during summer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(4): 143-147. (in Chinese with English abstract)
[4] Aarnink A J A, Van den Berg A J, Keen A, et al. Effect of slatted floor area on ammonia emission and on the excretory and lying behaviour of growing pigs[J]. Journal of Agricultural Engineering Research, 1996, 64(4): 299-310.
[5] Aarnink A J A, Swierstra D, Van den Berg A J, et al. Effect of type of slatted floor and degree of fouling of solid floor on ammonia emission rates from fattening piggeries[J]. Journal of Agricultural Engineering Research, 1997, 66(2): 93-102.
[6] Cai L, Yu J, Zhang J, et al. The effects of slatted floors and manure scraper systems on the concentrations and emission rates of ammonia, methane and carbon dioxide in goat buildings[J]. Small Ruminant Research, 2015, 132: 103-110.
[7] Magrin L, Gottardo F, Brscic M, et al. Health, behaviour and growth performance of Charolais and Limousin bulls fattened on different types of flooring[J]. Animal, 2019, 13(11): 2603-2611.
[8] Hinterhofer C, Ferguson J C, Apprich V, et al. Slatted floors and solid floors: Stress and strain on the bovine hoof capsule analyzed in finite element analysis[J]. Journal of Dairy Science, 2006, 89(1): 155-162.
[9] 戚咸理,黃興國,陳鐵橋. 改善畜床環(huán)境對減小豬肢蹄損傷發(fā)病率影響的研究[J]. 農(nóng)業(yè)工程學(xué)報,2003,19(2):203-206.
Qin Xianli, Hang Xingguo, Chen Tieqiao, et al. Influence of improved environmental conditions of stall floors on incidence rate of foot and limb injuries among sows[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(2): 203-206. (in Chinese with English abstract)
[10] J?rgensen G H M, Johanssen J R E, B?e K E. Preference in shorn sheep for different types of slatted flooring at low ambient temperatures[J]. Small Ruminant Research, 2017, 153: 17-22.
[11] 王超,張會文,趙娟娟,等. 不同地面類型對育肥羊生長性能、養(yǎng)分表觀消化率和血清生化指標的影響[J]. 動物營養(yǎng)學(xué)報,2020,32(6):2730-2737.
Wang Chao, Zhang Huiwen, Zhao Juanjuan, et al. Effects of different floor types on growth performance, nutrient apparent digestibilities and serum biochemical parameters of fattening sheep[J]. Chinese Journal of Animal Nutrition, 2020, 32(6): 2730-2737. (in Chinese with English abstract)
[12] Hernández-Cortazar I B, Jiménez-Coello M, Acosta-Viana K Y, et al. Comparing the dynamics of Toxoplasma gondii seroconversion in growing sheep kept on raised slatted floor cages or floor pens in Yucatan, Mexico[J]. Small Ruminant Research, 2014, 121(2/3): 400-403.
[13] Graunke K I, Schuster T, Lidfors L M. Influence of weather on the behaviour of outdoor-wintered beef cattle in Scandinavia[J]. Livestock Science, 2011, 136(2/3): 247-255.
[14] 陳浩,敖日格樂,王純潔,等. 慢性冷應(yīng)激對放牧蒙古母牛血清酶活力、蛋白代謝及血清激素分泌的影響[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報,2019,24(10):47-54.
Chen Hao, Aorigele, Wang Chunjie, et al. Effects of chronic cold stress on the serum enzyme activity, protein metabolism and serum hormone secretion of grazing Mongolian cows[J]. Journal of China Agricultural University, 2019, 24(10): 47-54. (in Chinese with English abstract)
[15] 高靜雯,汪驍軒,魏殿華,等. 強冷應(yīng)激對阿勒泰羔羊血清IgG、皮質(zhì)醇及小腸免疫相關(guān)細胞的影響[J]. 中國獸醫(yī)學(xué)報,2019,39(5):967-974.
Gao Jingwen, Wang Xiaoxuan, Wei Dianhua, et al. Effect of severe cold stress on serum IgG, cortisol concentration and intestinal immune-related cell in Altay lambs[J]. Chinese Journal of Veterinary Science, 2019, 39(5): 967-974. (in Chinese with English abstract)
[16] 趙有璋. 羊生產(chǎn)學(xué)[M]. 北京:中國農(nóng)業(yè)出版社,2011.
[17] Hangalapura B N, Kaiser M G, van der Poel J J, et al. Cold stress equally enhances in vivo pro-inflammatory cytokine gene expression in chicken lines divergently selected for antibody responses[J]. Developmental & Comparative Immunology, 2006, 30(5): 503-511.
[18] Westfall T C, Yang C L, Chen X, et al. A novel mechanism prevents the development of hypertension during chronic cold stress[J]. Autonomic and Autacoid Pharmacology, 2005, 25(4): 171-177.
[19] 汪驍軒,高靜雯,魏殿華,等. 強冷應(yīng)激對阿勒泰及雜交種羔羊脂質(zhì)代謝相關(guān)基因mRNA表達量及脂肪沉積的影響[J]. 中國畜牧雜志,2020,56(3):51-56.
Wang Xiaoxuan, Gao Jingwen, Wei Dianhua, et al. Effects of strong cold stress on mRNA expression of lipid metabolism related genes and fat changes in Altay and Hybrid Sheep[J]. Chinese Journal of Animal Science, 2020, 56(3): 51-56. (in Chinese with English abstract)
[20] Kylili A, Fokaides P A, Christou P, et al. Infrared thermography (IRT) applications for building diagnostics: A review[J]. Applied Energy, 2014, 134: 531-549.
[21] Balaras C A, Argiriou A A. Infrared thermography for building diagnostics[J]. Energy & Buildings, 2002, 34(2): 171-183.
[22] Lu X, Memari A. Application of infrared thermography for in-situ determination of building envelope thermal properties[J]. Journal of Building Engineering, 2019, 26: 100885.
[23] 趙婉瑩,許立新,王朝元,等. 不同地面形式自然通風(fēng)奶牛舍冬季溫室氣體和氨氣排放量[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報,2020,25(1):142-151.
Zhao Wanying, Xu Lixin, Wang Chaoyuan, et al. Greenhouse gas and ammonia emissions of naturally ventilated cowsheds with different floor types in winter[J]. Journal of China Agricultural University, 2020, 25(1): 142-151. (in Chinese with English abstract)
[24] 于桐,陳昭輝,任方杰,等. 寒冷地區(qū)冬季牛舍通風(fēng)參數(shù)及應(yīng)用效果研究[J]. 中國畜牧雜志,2020,56(6):142-149.
Yu Tong, Chen Zhaohui, Ren Fangjie, et al. Study on the ventilation parameters and application effect of beef cattle barn in winter of cold Area[J]. Chinese Journal of Animal Science, 2020, 56(6): 142-149. (in Chinese with English abstract)
[25] Carabano M J, Logar B, Bormann J, et al. Modeling heat stress under different environmental conditions[J]. Journal of Dairy Science, 2016, 99(5): 3798-3814.
[26] Rathwa S D, Vasava A A, Pathan M M, et al. Effect of season on physiological, biochemical, hormonal, and oxidative stress parameters of indigenous sheep[J]. Veterinary World, 2017, 10(6): 650-654.
[27] 熊浩哲,陳昭輝,徐一洺,等. 張掖地區(qū)圍欄育肥牛場防風(fēng)墻后不同風(fēng)速對肉牛場環(huán)境及肉牛生產(chǎn)性能的影響[J]. 中國畜牧雜志,2019,55(5):107-111.
Xiong Haozhe, Chen Zhaohui, Xu Yiming, et al. Effect of windbreak wall in finishing farm on performance of beef cattle in Zhangye district[J]. Chinese Journal of Animal Science, 2019, 55(5): 107-111. (in Chinese with English abstract)
[28] 張士軍. 低溫環(huán)境風(fēng)速對綿羊養(yǎng)分代謝及血清生理生化指標的影響[D]. 楊凌:西北農(nóng)林科技大學(xué),2019.
Zhang Shijun. Effect of Windy Velocity on Nutrient Metabolism and Serum Physiological and Biochemical Indexes of Sheep[D]. Yangling: Northwest A&F University, 2019. (in Chinese with English abstract)
[29] Tucker C B, Rogers A R, Verkerk G A, et al. Effects of shelter and body condition on the behaviour and physiology of dairy cattle in winter[J]. Applied Animal Behaviour Science, 2007, 105(1/3): 1-13.
[30] Mekis é, Vincent L A, Shephard M W, et al. Observed trends in severe weather conditions based on humidex, wind chill, and heavy rainfall events in Canada for 1953–2012[J]. Atmosphere-Ocean, 2015, 53(4): 383-397.
[31] Shitzer A, De Dear R. Inconsistencies in the “new” windchill chart at low wind speeds[J]. Journal of Applied Meteorology and Climatology, 2006, 45(5): 787-790.
[32] T?lü C, Sava? T. Dairy goat usage of flooring types varied by material, slope and slat width[J]. Applied Animal Behaviour Science, 2019, 215: 37-44.
[33] F?revik G, Andersen I L, B?e K E. Preferences of sheep for different types of pen flooring[J]. Applied Animal Behaviour Science, 2005, 90(3/4): 265-276.
[34] B?e K E, Andersen I L, Buisson L, et al. Flooring preferences in dairy goats at moderate and low ambient temperature[J]. Applied Animal Behaviour Science, 2007, 108(1/2): 45-57.
Spatio-temporal distribution of thermal parameters in sheep house with slatted floor in winter
Zhao Shoupei1, Li Xuemei1, Sun Xinsheng2, Che Dalu1, Zhang Huiwen3, Wang Xinfang4, Gao Yuhong1※, Cheng Sucai5
(1.,,071001,;2.,,071001,; 3.,067000,;4.,050035,5.,065000,)
The slatted floor was widely used in a sheep house for cold winter at present. The objective of this study was to investigate the spatial and temporal distribution of thermal parameters in a closed sheep house with a slatted floor in winter in a cold region. Two sheep houses with slatted floors (House A and B) with the same structure were selected in the north-south direction. The manure outlet of House A was not blocked, where that of House B was blocked. The temperature and humidity in the upper space of two slatted floors were continuously and dynamically measured in time and space (horizontal and vertical). A two-month test was carried out to measure the key environmental parameters. An infrared thermal imaging device was used to systematically analyze the temperature in the lower space of the slatted floor. The results showed that: 1) There was no difference in the average daily Temperature (Ta) or Relative Humidity (RH) between two houses (>0.05), with the Ta of -3.07 ℃ and the RH of 38.08% in House A. However, there was an increasing trend in the Ta at the fecal outlet of House B, compared with House A, revealing an average Ta of -2.76 ℃ and a maximum Ta difference of 1.05 ℃ between two houses. 2) the Ta at 1.5 m above floor (1.5) was higher than that at floor (0) (<0.01) in the vertical distribution. Specifically, the difference was 1.71 ℃ in House A, and decreased to 1.35 ℃ in House B. The average0in House B increased by 0.49 ℃, compared with House A. In addition, the lowest0in House A was -7.40 ℃, and the0was lower than -3 ℃ for 16.0 h every day. 3) In the horizontal direction, the Ta on the south side in both houses was higher than that on the north side. s lower than -3 ℃ for 16.0 h every day. 4) From horizontal, the south-side Ta in both houses was higher than the north-side. Particularly at the slatted floor, the difference between north- and south-side Ta reached to 0.59 ℃ in House A and 0.39 ℃ in House B. Moreover, the horizontal difference of Ta was obvious in the east-west direction, showing the west-side Ta was the lowest. Particularly on the west-north side, the horizontal temperature Ta difference reached 2.11 ℃in House A, whereas, the difference decreased to 0.92 ℃ in House B. Consequently, the Ta at the outlet on the north-west side was the lowest in both houses, where the0and1.5in House B increased by 1.33 and 0.47°C, respectively, compared with House A. 5) In infrared thermography of enclosure under the slatted floor, the Ta difference was 2.1 ℃ between the slatted floor and ditch bottom in House A, while the difference in House B dropped to 0.7 ℃. Moreover, the side wall Ta of the ditch in two houses was the lowest among all structures under floor, with -9.3 ℃ in House A and -7.2 ℃ in House B. 6) The wind chill temperature (WCT) in House B was higher than that in House A (<0.05). The wind speed at the fecal outlet of house A was higher (<0.05) than that of House B, reaching 0.682 m/s. The fecal outlet was sealed in a slatted-floor house, further increased the indoor Ta, while decreased both horizontal and vertical Ta difference. The finding can provide strong support to the airtightness and heat preservation at the fecal outlet when the slatted floor was used in the sheep house.
temperature; humidity; wind speed; sheep house; slatted floor
10.11975/j.issn.1002-6819.2021.10.019
S815.9
A
1002-6819(2021)-10-0159-07
趙壽培,李雪梅,孫新勝,等. 冬季漏縫地板羊舍溫熱參數(shù)的時空分布規(guī)律[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(10):159-165.doi:10.11975/j.issn.1002-6819.2021.10.019 http://www.tcsae.org
Zhao Shoupei, Li Xuemei, Sun Xinsheng, et al. Spatio-temporal distribution of thermal parameters in sheep house with slatted floor in winter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(10): 159-165. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.10.019 http://www.tcsae.org
2020-11-18
2021-02-20
河北省重點研發(fā)計劃項目“規(guī)?;驁龅膽?yīng)激(冷、熱)評價及綠色防控關(guān)鍵技術(shù)研究與示范”(20326612D);河北省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系羊產(chǎn)業(yè)創(chuàng)新團隊建設(shè)專項(HBCT2018140205);河北省高等學(xué)校科學(xué)技術(shù)研究項目(ZD2021323)
趙壽培,研究方向為動物營養(yǎng)與環(huán)境工程。Email:1406932357@qq.com
高玉紅,博士,教授,研究方向為畜禽環(huán)境控制和環(huán)境工程。Email:gyhsxs0209@126.com
中國農(nóng)業(yè)工程學(xué)會會員:高玉紅(中國農(nóng)業(yè)工程學(xué)會畜牧工程分會理事:10127)