顧浩天 張?zhí)熹? 滕海媛 常曉麗 王冬生 袁永達(dá)
摘要 近年來,大量研究發(fā)現(xiàn)以低劑量刺激、高劑量抑制為表征的雙相劑量效應(yīng)關(guān)系(毒物興奮效應(yīng),hormesis)在動植物及微生物中廣泛存在。根據(jù)測試終點(diǎn)的不同,hormesis可被繪制成倒“U”型或“J”型曲線,主要表現(xiàn)為生物體因內(nèi)穩(wěn)態(tài)受到干擾而引起過度補(bǔ)償?shù)纳飳W(xué)效應(yīng)。蚯蚓作為“生態(tài)系統(tǒng)的工程師”,對改良土壤結(jié)構(gòu)功能、提高土壤生物肥力均有積極有益影響。同時,蚯蚓作為毒理學(xué)研究中的指示生物和模式生物,被廣泛應(yīng)用于評價污染物的環(huán)境風(fēng)險。針對蚯蚓hormesis的研究進(jìn)展進(jìn)行綜述,以期為未來研究提供理論依據(jù)和參考。
關(guān)鍵詞 毒物興奮效應(yīng);污染物;蚯蚓;劑量-反應(yīng)關(guān)系;測試終點(diǎn)
中圖分類號 X 171.5 ?文獻(xiàn)標(biāo)識碼 A ?文章編號 0517-6611(2021)15-0018-03
Abstract In recent years, a large number of studies have found that the biphasic doseeffect relationship (hormesis) characterized by lowdose stimulation and highdose inhibition is widespread in animals, plants and microorganisms.According to the different test endpoints, hormesis can be drawn as an inverted "U" or "J" curve, which is mainly manifested as the biological effect of overcompensation caused by the disturbance of the homeostasis of the organism.As the "engineer of the ecosystem", earthworms have a positive and beneficial effect on improving soil structure and function and improving soil biological fertility. At the same time, earthworms, as indicator organisms and model organisms in toxicology research, are widely used to assess the environmental risks of pollutants.This article reviewed the research progress of earthworm hormesis in order to provide theoretical basis and reference for future research.
Key words Hormesis;Pollutants;Earthworm;Doseresponse relationship;Test endpoint
基金項(xiàng)目 上海市科技興農(nóng)重點(diǎn)推廣項(xiàng)目“稻田秸稈蚯蚓原位處理模式與循環(huán)產(chǎn)業(yè)技術(shù)集成示范”(滬農(nóng)科推字(2018)第4-14號)。
作者簡介 顧浩天(1993—),男,遼寧阜新人,研究實(shí)習(xí)員,碩士,從事農(nóng)藥生態(tài)毒理效應(yīng)及環(huán)境風(fēng)險、農(nóng)業(yè)害蟲生理分子調(diào)控機(jī)理研究。*通信作者,副研究員,碩士,從事農(nóng)作物有害昆蟲的生理特性及綜合治理研究。
收稿日期 2020-12-05
劑量效應(yīng)關(guān)系是污染物毒性風(fēng)險評價中最基本、最核心的概念之一。環(huán)境中污染物通常以極低劑量存在,而大多數(shù)研究僅僅關(guān)注污染物的效應(yīng)劑量,而忽略了其在低于未觀察到損害作用劑量(noobserved adverse effect level,NOAEL)下所產(chǎn)生的環(huán)境影響。研究發(fā)現(xiàn)亞效應(yīng)劑量(subeffective dose)與高劑量下所誘導(dǎo)的生物效應(yīng)截然相反,即毒物興奮效應(yīng)(hormesis)[1-2]。根據(jù)所研究的測試終點(diǎn),毒物興奮效應(yīng)表現(xiàn)為倒“U”型或“J”型曲線的劑量-時間-效應(yīng)關(guān)系[3-4],其機(jī)理為毒物在極低劑量水平下打破生物體生理內(nèi)穩(wěn)態(tài),刺激生物體產(chǎn)生過度補(bǔ)償或應(yīng)激適應(yīng)性響應(yīng)來重建生理內(nèi)穩(wěn)態(tài)平衡[2]。毒物興奮效應(yīng)現(xiàn)象在植物、動物、微生物中普遍存在[5],可由有機(jī)或無機(jī)污染物、離子輻射、溫度、pH、鹽度等脅迫誘導(dǎo)產(chǎn)生[6-7]。毒物興奮劑量模型提示了污染物風(fēng)險評價的閾劑量[8],在毒理學(xué)研究中較閾值模型、線性非閾值模型更為常見[9]。因此探討毒物興奮效應(yīng)的環(huán)境影響具有重要意義。
蚯蚓是土壤生態(tài)系統(tǒng)中最大的動物區(qū)系,通過掘穴、排泄、取食等生理活動改善土壤透氣性和孔隙度,維持土壤理化結(jié)構(gòu),促進(jìn)土壤養(yǎng)分循環(huán)、團(tuán)聚體形成、有機(jī)質(zhì)降解礦化,提高土壤微生物多樣性、活性及生物肥力[10]。蚯蚓對土壤中低劑量污染物敏感,且能通過表皮被動吸收、主動取食、腸道消化等途徑與多種類型的環(huán)境污染物暴露接觸,因而被用作評價污染物環(huán)境風(fēng)險及化學(xué)品毒性的指示生物[11]。近年來,已有大量關(guān)于蚯蚓響應(yīng)污染物脅迫的hormesis現(xiàn)象報(bào)道,筆者針對此進(jìn)行梳理和總結(jié),以期為未來研究提供參考。
1 蚯蚓中的hormesis現(xiàn)象
毒物興奮效應(yīng)是暴露于低濃度污染物條件下,生物內(nèi)穩(wěn)態(tài)產(chǎn)生的過度補(bǔ)償響應(yīng)機(jī)制[9,12],僅出現(xiàn)在低于NOAEL的較窄低劑量帶(hormetic zone)[12]。研究表明興奮效應(yīng)具有普遍性,農(nóng)藥、重金屬、抗生素、環(huán)境壓力等均可誘導(dǎo)蚯蚓形成低劑量促進(jìn)-高劑量抑制的興奮效應(yīng),且該現(xiàn)象可能與蚯蚓受脅迫后體內(nèi)氧化應(yīng)激壓力產(chǎn)生活性氧簇(ROS)的動態(tài)變化及作用機(jī)制相關(guān)[13-14]。當(dāng)環(huán)境污染物濃度較低時低劑量ROS可誘導(dǎo)生物體產(chǎn)生積極的響應(yīng)[15],促進(jìn)體內(nèi)抗氧化酶系如過氧化氫酶(SOD)、超氧化物歧化酶(CAT)、愈創(chuàng)木酚過氧化物酶(POD)及解毒酶系如細(xì)胞色素P450(CYP450)、乙酰膽堿酯酶(AChE)、膽堿酯酶(ChE)、羧酸酯酶(CES)、谷胱甘肽硫轉(zhuǎn)移酶(GST)等活性增加;而當(dāng)污染物濃度持續(xù)增加,過量ROS的積累破壞機(jī)體正常的氧化還原動態(tài)平衡,從而對生理代謝活動產(chǎn)生毒害作用[16]。
Hackenberger等[17-18]研究發(fā)現(xiàn)雙硫磷和馬拉硫磷濃度分別為0.12、0.10 ng/cm2處理2 h后 Eisenia fetida 膽堿酯酶(ChE)活性顯著增加,相比對照組(0 ng/cm2)分別提高3628%、30.30%。低劑量重金屬鎘(Cd)誘導(dǎo) E.fetida 的 SOD、CAT活性增加且SOD(34.498%)的最大響應(yīng)效應(yīng)較CAT(27.637%)高,暗示SOD對Cd脅迫響應(yīng)更敏感,毒物興奮效應(yīng)產(chǎn)生可能與蚯蚓體內(nèi)適應(yīng)性通路的激活有關(guān)且不同受試終點(diǎn)的hormesis反應(yīng)幅度不同[19]。同理,Cao等[20]報(bào)道 E.fetida 在濾紙中染毒48 h后,Cd誘導(dǎo)細(xì)胞色素P450(CYP3A4)酶活出現(xiàn)hormesis,可能與維持細(xì)胞和生理內(nèi)穩(wěn)態(tài)的適應(yīng)性通路被激活相關(guān);CYP450的hormesis在受毒死蜱脅迫的 Aporrectodea caliginosa [21]及苯并芘脅迫的 E.fetida [22]中也被發(fā)現(xiàn)。蚯蚓暴露于添加低劑量鑭元素的天然土中,其體內(nèi)SOD和POD酶活、蛋白質(zhì)含量等均表現(xiàn)hormesis[23]。0.01 mg/mL福爾馬林暴露2 h后誘導(dǎo) E.andrei 的AChE活性增加12%(與對照組相比)[24]。 E.fetida 暴露于環(huán)丙沙星污染的土壤中,POD、抗壞血酸過氧化物酶(APX)活性表現(xiàn)hormesis[25]。Li等[26]研究發(fā)現(xiàn)恩諾沙星污染的人工土中, E.fetida CYP450 基因表達(dá)顯示低劑量(1 mg/kg)促進(jìn)、高劑量(10~500 mg/kg)抑制的毒物興奮效應(yīng),表明毒物也可在分子水平上誘導(dǎo)蚯蚓的hormesis[12]。
污染物暴露也會誘導(dǎo)蚯蚓的存活、繁殖、生長、生物量等測試終點(diǎn)的hormesis。如添加Cd或Cu的人工土壤誘導(dǎo) E.andrei 繁殖力產(chǎn)生hormesis,即低濃度刺激產(chǎn)繭量而高濃度抑制產(chǎn)繭量[27]。在 E.fetida 中,產(chǎn)繭量隨暴露草甘膦的濃度升高而增加[28]。Spurgeon等[29]研究發(fā)現(xiàn)Cu誘導(dǎo) Lumbricus rubellus 幼蚓的生長發(fā)育產(chǎn)生hormesis。同理,Bustos等[30]研究也發(fā)現(xiàn)采礦區(qū)土壤砷(As)濃度低于45 mg/kg時誘導(dǎo) E.fetida 幼蚓產(chǎn)量出現(xiàn)類似現(xiàn)象。Zhu等[31]研究發(fā)現(xiàn)低劑量氯化汞(0.780~3.125 mg/kg)暴露11~17 d后誘導(dǎo) E.fetida 存活率增加114%~132%,推測可能與蚯蚓體內(nèi)代謝解毒酶、抗氧化酶酶活的補(bǔ)償響應(yīng)有關(guān),并總結(jié)蚯蚓的存活率在hormesis研究中是敏感穩(wěn)定的測試終點(diǎn)。 E.andrei 暴露于添加62.5 mg/kg氟蟲腈的人工土中,孵育28 d后存留生物量相比對照組高,暗示低劑量氟蟲腈誘導(dǎo)了hormesis[32],也可能由于對照組蚯蚓將更多能量和營養(yǎng)物質(zhì)用于交配及產(chǎn)繭過程,從而造成體重下降[33]。
此外,環(huán)境壓力也會誘導(dǎo)蚯蚓產(chǎn)生毒物興奮效應(yīng),如Wu等[15]報(bào)道土壤酸脅迫(pH 3.0~6.3)28 d后,誘導(dǎo) E.fetida 的 CAT酶活性、金屬硫蛋白(MT)及總蛋白(TP)含量產(chǎn)生hormesis。低劑量輻射誘導(dǎo)蚯蚓體內(nèi)成熟卵母細(xì)胞增加,產(chǎn)生有性繁殖,而高劑量輻射后無性繁殖顯著增加,暗示低劑量輻射也可誘導(dǎo)蚯蚓產(chǎn)生hormesis[34]。
2 蚯蚓hormesis的研究方法
近年來在蚯蚓hormesis研究中常用的方法包括濾紙接觸法、人工土壤法、微宇宙及中宇宙試驗(yàn)(圖1)。人工土壤法、濾紙接觸法是經(jīng)濟(jì)合作與發(fā)展組織(organization of economic cooperation and development,OECD)和國際標(biāo)準(zhǔn)化組織(international standardization organization,ISO)推薦的蚯蚓毒理試驗(yàn)標(biāo)準(zhǔn)方法,主要以 E.fetida、E.andrei 這2種表?xiàng)痉N為研究對象,在實(shí)驗(yàn)室模擬條件下開展急性、亞急性毒性試驗(yàn)[35-37]。Velki等[38-39]采用OECD法研究樂果對 E.andrei 的生態(tài)毒理效應(yīng),在濾紙接觸法中發(fā)現(xiàn)低劑量樂果誘導(dǎo)AChE和CES酶活性產(chǎn)生hormesis,而該現(xiàn)象在人工土壤法中并未發(fā)現(xiàn)[40],這可能是由于在土壤試驗(yàn)中選取的濃度過高,因此并未在較窄的低劑量帶觀察到毒物興奮效應(yīng)。Domínguez等[33]采用ISO人工土壤法評估氨甲基磷酸(草甘膦代謝產(chǎn)物,AMPA)對蚯蚓 E.andrei 的毒理效應(yīng),結(jié)果發(fā)現(xiàn)濃度為1 000~2 500 μg/kg暴露56 d后,與對照組相比,AMPA誘導(dǎo)產(chǎn)繭量和幼蚓數(shù)量發(fā)生hormesis而顯著增加。
土壤微宇宙和中宇宙試驗(yàn)是人工模擬的半野外多物種試驗(yàn)系統(tǒng),用以評估污染物對蚯蚓的生態(tài)毒性。將蚯蚓引入一個土壤單元(收集的、過篩的、完整的土樣)中,分析污染物在分子、細(xì)胞、組織、個體、種群、群落等水平上產(chǎn)生的生物學(xué)效應(yīng)[41]。為接近真實(shí)環(huán)境試驗(yàn)條件,污染物通常僅添加在土壤表面,且需要較多生物樣本容量以降低個體差異性[40]。Bundy等[42]采用半野外中宇宙試驗(yàn)結(jié)合cDNA微陣列的轉(zhuǎn)錄組分析表?xiàng)痉N L.rubellus 對亞致死劑量Cu(10~480 mg/kg)的代謝響應(yīng),結(jié)果發(fā)現(xiàn),40 mg/kg Cu處理后70 d其能量代謝及氧化應(yīng)激相關(guān)基因和通路顯著上調(diào),暗示Cu在分子水平上誘導(dǎo)蚯蚓hormesis。Velki等[40]采用微宇宙法將表?xiàng)痉N、內(nèi)棲蚓種、深棲蚓種暴露于3種殺蟲劑的田間推薦劑量,與對照相比,低劑量有機(jī)磷農(nóng)藥暴露不同時間顯著誘導(dǎo)蚯蚓體內(nèi)AChE、CAT、CES、GST酶活性及谷胱甘肽(GSH)含量的hormesis,結(jié)果詳見表1。
在真實(shí)環(huán)境中,土壤污染物常以極低的濃度存在。盡管OECD標(biāo)準(zhǔn)方法具有簡單快速、易操作、結(jié)果重現(xiàn)性好等優(yōu)勢,但采用半野外微宇宙、中宇宙試驗(yàn)可以最大程度模擬真實(shí)的自然條件,較為準(zhǔn)確反映污染物環(huán)境相關(guān)的毒理風(fēng)險數(shù)據(jù),因此是環(huán)境污染及監(jiān)測研究中的有力工具[3,40]。
3 小結(jié)與展望
在環(huán)境監(jiān)測中,毒物興奮效應(yīng)被視為生物暴露于污染物亞效應(yīng)劑量的標(biāo)志,因此建立毒物興奮模型對污染物毒性評價、化學(xué)品風(fēng)險評估具有重要價值[3,9]。蚯蚓的毒物興奮效應(yīng)可能與污染物誘導(dǎo)產(chǎn)生的體內(nèi)氧化壓力相關(guān)[19,43],因此在土壤生態(tài)毒理學(xué)研究中應(yīng)注意污染物低劑量長期暴露引起的氧化壓力與hormesis之間的關(guān)聯(lián)性。針對蚯蚓毒物興奮效應(yīng)的研究較為復(fù)雜,受試驗(yàn)條件、土壤環(huán)境、污染物濃度、污染物類型、污染物的生物有效性、蚯蚓生態(tài)類群、暴露時間、受試終點(diǎn)等多重因素的影響。未來研究應(yīng)選用合適的試驗(yàn)方法、試驗(yàn)濃度及高特異性、高靈敏的受試終點(diǎn)來檢測蚯蚓在低于NOAEL濃度下的脅迫響應(yīng),以解析不同污染物誘導(dǎo)蚯蚓產(chǎn)生毒物興奮效應(yīng)的內(nèi)在分子機(jī)理。此外,當(dāng)土壤中多種有毒物興奮效應(yīng)的污染物共存時,其聯(lián)合暴露引起蚯蚓的hormesis表現(xiàn)為相加、拮抗還是協(xié)同作用有待進(jìn)一步探索。同時研究污染物劑量低于hormesis劑量時對蚯蚓的毒理學(xué)效應(yīng)也是未來研究的難點(diǎn)與挑戰(zhàn)。
參考文獻(xiàn)
[1] AGATHOKLEOUS E,CALABRESE E J.Hormesis:The dose response for the 21st century:The future has arrived[J/OL].Toxicology,2019,425[2020-04-25].https://doi.org/10.1016/j.tox.2019.152249.
[2] CALABRESE E J.Hormetic mechanisms[J].Critical reviews in toxicology,2013,43(7):580-606.
[3] VELKI M,ECˇIMOVIC' S.Important issues in ecotoxicological investigations using earthworms[M]//DE VOOGT P.Reviews of environmental contamination and toxicology:Volume 239.Cham:Springer,2016:157-184.
[4] SUN H,CALABRESE E J,LIN Z,et al.Similarities between the Yin/Yang doctrine and hormesis in toxicology and pharmacology[J].Trends in pharmacological sciences,2020,41(8):544-556.
[5] JIA L,LIU Z L,CHEN W,et al.Hormesis effects induced by cadmium on growth and photosynthetic performance in a hyperaccumulator, Lonicera japonica ?Thunb.[J].Journal of plant growth regulation,2015,34(1):13-21.
[6] LINDSAY D G.Nutrition,hormetic stress and health[J].Nutrition research reviews,2005,18(2):249-258.
[7] CALABRESE E J,BLAIN R B.Hormesis and plant biology[J].Environmental pollution,2009,157(1):42-48.
[8] QIN L T,LIU S S,LIU H L,et al.Support vector regression and least squares support vector regression for hormetic doseresponse curves fitting[J].Chemosphere,2010,78(3):327-334.
[9] CALABRESE E J,BALDWIN L A.The hormetic doseresponse model is more common than the threshold model in toxicology[J].Toxicological sciences,2003,71(2):246-250.
[10] 陳鈺琪,張虹,周垂帆.蚯蚓生態(tài)功能研究進(jìn)展[J].內(nèi)蒙古林業(yè)調(diào)查設(shè)計(jì),2019,42(6):101-104.
[11] 邵將,張宗鵬,謝宇震,等.蚯蚓在生態(tài)毒理試驗(yàn)中的應(yīng)用研究[J].農(nóng)業(yè)與技術(shù),2020,40(16):24-26.
[12] CALABRESE E J.Paradigm lost,paradigm found:The reemergence of hormesis as a fundamental dose response model in the toxicological sciences[J].Environmental pollution,2005,138(3):379-411.
[13] GUO B,LIANG Y C,ZHU Y G,et al.Role of salicylic acid in alleviating oxidative damage in rice roots( Oryza sativa )subjected to cadmium stress[J].Environmental pollution,2007,147(3):743-749.
[14] RAZINGER J,DERMASTIA M,KOCE J D,et al.Oxidative stress in duckweed( Lemna minor ?L.)caused by shortterm cadmium exposure[J].Environmental pollution,2008,153(3):687-694.
[15] WU J L,REN Z L,ZHANG C,et al.Effects of soil acid stress on the survival,growth,reproduction,antioxidant enzyme activities,and protein contents in earthworm( Eisenia fetida )[J].Environmental science and pollution research,2020,27:33419-33428.
[16] LIU T,WANG X G,CHEN D,et al.Growth,reproduction and biochemical toxicity of chlorantraniliprole in soil on earthworms( Eisenia fetida )[J].Ecotoxicology and environmental safety,2018,150:18-25.
[17] HACKENBERGER B K,JARIC'PERKUIC' D,STEPIC' S.Effect of temephos on cholinesterase activity in the earthworm ?Eisenia fetida (Oligochaeta,Lumbricidae)[J].Ecotoxicology & environmental safety,2008,71(2):583-589.
[18] VELKI M.Hormetic response of earthworm( Eisenia fetida )to subeffect exposure to malathion[C]//International Life Sciences Students Conference 2008.Hrvatska znanstvena bibliografija i MZOSSvibor,2008.
[19] ZHANG Y,SHEN G,YU Y,et al.The hormetic effect of cadmium on the activity of antioxidant enzymes in the earthworm ?Eisenia fetida [J].Environmental pollution,2009,157(11):3064-3068.
[20] CAO X,SONG Y,KAI J,et al.Evaluation of EROD and CYP3A4 activities in earthworm ?Eisenia fetida ?as biomarkers for soil heavy metal contamination[J].Journal of hazardous materials,2012,243:146-151.
[21] SANCHEZHERNANDEZ J C,NARVAEZ C,SABAT P,et al.Integrated biomarker analysis of chlorpyrifos metabolism and toxicity in the earthworm ?Aporrectodea caliginosa [J].Science of the total environment,2014,490:445-455.
[22] ZHANG W,SONG Y F,GONG P,et al.Earthworm cytochrome P450 determination and application as a biomarker for diagnosing PAH exposure[J].Journal of environmental monitoring,2006,8(9):963-967.
[23] 杜宇,王應(yīng)軍,武陽,等.鑭脅迫對蚯蚓幾種重要酶活性的影響[J].中國稀土學(xué)報(bào),2014,32(1):84-93.
[24] HACKENBERGER B K,VELKI M,STEPIC' S,et al.The effect of formalin on acetylcholinesterase and catalase activities,and on the concentration of oximes,in the earthworm species ?Eisenia andrei [J].European journal of soil biology,2012,50:137-143.
[25] WANG C R,RONG H,LIU H T,et al.Detoxification mechanisms,defense responses,and toxicity threshold in the earthworm ?Eisenia foetida ?exposed to ciprofloxacinpolluted soils[J].Science of the total environment,2018,612:442-449.
[26] LI Y S,ZHAO C,LU X X,et al.Identification of a cytochrome P450 gene in the earthworm ?Eisenia fetida ?and its mRNA expression under enrofloxacin stress[J].Ecotoxicology and environmental safety,2018,150:70-75.
[27] KILPIKOSKI J,PENTTINEN O P,VISNEN A O,et al.Toxicity of binary mixtures of Cu,Cr and As to the earthworm ?Eisenia andrei [J].Ecotoxicology,2020,29(7):900-911.
[28] SANTADINO M,COVIELLA C,MOMO F.Glyphosate sublethal effects on the population dynamics of the earthworm ?Eisenia fetida (Savigny,1826)[J].Water,air,& soil pollution,2014,225(12):1-8.
[29] SPURGEON D J,SVENDSEN C,KILLE P,et al.Responses of earthworms( Lumbricus rubellus )to copper and cadmium as determined by measurement of juvenile traits in a specifically designed test system[J].Ecotoxicology and environmental safety,2004,57(1):54-64.
[30] BUSTOS V,MONDACA P,VERDEJO J,et al.Thresholds of arsenic toxicity to ?Eisenia fetida ?in fieldcollected agricultural soils exposed to copper mining activities in Chile[J].Ecotoxicology and environmental safety,2015,122:448-454.
[31] ZHU J,YANG D L,F(xiàn)U R B,et al.Hormetic effects of mercury on survival of ?Eisenia fetida (Oligochaeta)[M] //International conference civil engineering and urban planning 2012.Reston,VA,USA:American Society of Civil Engineers,2012:299-307.
[32] ALVES P R L,CARDOSO E J B N,MARTINES A M,et al.Earthworm ecotoxicological assessments of pesticides used to treat seeds under tropical conditions[J].Chemosphere,2013,90(11):2674-2682.
[33] DOMNGUEZ A,BROWN G G,SAUTTER K D,et al.Toxicity of AMPA to the earthworm ?Eisenia andrei ?Bouché,1972 in tropical artificial soil[J].Scientific reports,2016,6:1-8.
[34] MIYACHI Y,KANAO T,OKAMOTO T.Low dose βemitter source induces sexual reproduction instead of fragmentation in an earthworm, Enchytraeus japonensis [J].J Environ Radioact,2005,79(1):1-5.
[35] OECD.OECD Guideline for Testing of Chemicals,No.207,Earthworm Acute Toxicity[R].Paris,F(xiàn)rance:OECD,1984.
[36] OECD.OECD Guideline for Testing of Chemicals,No.222,Earthworm Reproduction Test( Eisenia fetida/Eisenia andrei )[R].Paris,F(xiàn)rance:OECD,2004.
[37] ISOInternational Organization for Standardization.Soil qualityEffects of pollutants on earthworms - Part 1:Determination of acute toxicity to ?Eisenia fetida/Eisenia Andrei ?and Part 2:Determination of effects on reproduction of Eisenia fetida/Eisenia andrei.ISO 112681 and ISO 112682[S].Geneva,Switzerland:International Organization for Standardization,2012,2015.
[38] VELKI M,HACKENBERGER B K.Speciesspecific differences in biomarker responses in two ecologically different earthworms exposed to the insecticide dimethoate[J].Comparative biochemistry and physiology part C:Toxicology & pharmacology,2012,156(2):104-112.
[39] VELKI M,HACKENBERGER B K.Inhibition and recovery of molecular biomarkers of earthworm ?Eisenia andrei ?after exposure to organophosphate dimethoate[J].Soil biology and biochemistry,2013,57:100-108.
[40] VELKI M,HACKENBERGER B K,LONCˇARIC' ,et al.Application of microcosmic system for assessment of insecticide effects on biomarker responses in ecologically different earthworm species[J].Ecotoxicology and environmental safety,2014,104:110-119.
[41] BURROWS L A,EDWARDS C A.The use of integrated soil microcosms to predict effects of pesticides on soil ecosystems[J].European journal of soil biology,2002,38(3/4):245-249.
[42] BUNDY J G,SIDHU J K,RANA F,et al.‘Systems toxicology approach identifies coordinated metabolic responses to copper in a terrestrial nonmodel invertebrate,the earthworm ?Lumbricus rubellus [J].BMC biology,2008,6(1):1-21.
[43] YANG P,HE X Q,PENG L,et al.The role of oxidative stress in hormesis induced by sodium arsenite in human embryo lung fibroblast(HELF)cellular proliferation model[J].Journal of toxicology and environmental health:Part A,2007,70(11):976-983.