楊美娟 李文龍
摘要:角度估計(jì)是雷達(dá)的一個(gè)關(guān)鍵功能。極化敏感陣列用作雷達(dá)天線可有效減小模型誤差,改善測(cè)角性能。為提高目標(biāo)角度估計(jì)精度,本文提出了一種擴(kuò)展的加權(quán)融合測(cè)角方法。首先對(duì)完備電磁矢量進(jìn)行介紹,建立了極化-空域信號(hào)處理模型;其次推導(dǎo)了擴(kuò)展后的加權(quán)融合測(cè)角方法;最后結(jié)合稀疏恢復(fù)測(cè)角方法,以雙正交電偶極子陣列天線為例,驗(yàn)證了方法的有效性。結(jié)果表明,極化信息的引入,減小了陣列信號(hào)模型的誤差,并通過極化加權(quán)使得該方法能夠有效提升目標(biāo)空間角度估計(jì)的精度。
關(guān)鍵詞:電磁矢量;極化敏感陣列;加權(quán)融合;DOA估計(jì)
中圖分類號(hào):TN821+.1文獻(xiàn)標(biāo)識(shí)碼:ADOI:10.19452/j.issn1007-5453.2021.03.005
傳統(tǒng)雷達(dá)信號(hào)處理領(lǐng)域一般聚焦于信號(hào)的時(shí)間延遲、多普勒頻移和空間到達(dá)角,較少關(guān)注信號(hào)的極化信息。近年來,隨著信號(hào)處理相關(guān)應(yīng)用的不斷增多,極化敏感陣列天線在雷達(dá)領(lǐng)域的逐漸嶄露頭角,極化信號(hào)處理技術(shù)成為國內(nèi)外學(xué)者新的關(guān)注點(diǎn)[1-4]。獲取極化信息的主要途徑是采用極化敏感陣列,通過引入信號(hào)的極化信息,可提高陣列自由度,增加陣列接收數(shù)據(jù)的冗余信息,減少模型誤差對(duì)后續(xù)信號(hào)處理分析的影響[5-7]。此外,極化陣列的檢測(cè)性能對(duì)信號(hào)的極化狀態(tài)不敏感,能夠滿足各類極化信號(hào)的檢測(cè)要求,證明其具有較強(qiáng)的檢測(cè)魯棒性[8]。
目標(biāo)到達(dá)角估計(jì)是雷達(dá)信號(hào)處理領(lǐng)域的重點(diǎn)研究?jī)?nèi)容之一,陣列測(cè)角的物理基礎(chǔ)是電磁波在均勻介質(zhì)中傳播的直線性和陣列天線的方向性。國內(nèi)外學(xué)者已相繼在極化信號(hào)處理領(lǐng)域開展了有關(guān)工作,針對(duì)參數(shù)估計(jì)的研究已成為熱點(diǎn)問題。國外方面主要通過將經(jīng)典的超分辨測(cè)角算法,如多重信號(hào)分類算法(MUSIC)、旋轉(zhuǎn)不變子空間法(ESPRIT)等,經(jīng)過改進(jìn)修正應(yīng)用至極化敏感陣列上,實(shí)現(xiàn)目標(biāo)空間角度和極化角度的聯(lián)合估計(jì)[9-12]。國內(nèi)方面,王洪洋等[13]說明了如何通過完備電磁矢量在空頻和極化域進(jìn)行聯(lián)合參數(shù)估計(jì),大多學(xué)者[14-16]采用修正MUSIC算法或降維MUSIC算法進(jìn)行目標(biāo)角度估計(jì)。然而,國內(nèi)外鮮有利用極化信息對(duì)空域角度估計(jì)值加權(quán)來提升到達(dá)角(DOA)估計(jì)精度的研究。
為了提高DOA估計(jì)精度,本文提出一種擴(kuò)展后的利用極化敏感陣列的完備電磁矢量信息對(duì)單極子陣列所測(cè)角度進(jìn)行加權(quán)融合的方法,該方法能夠有效提升測(cè)角精度,且具有較強(qiáng)的魯棒性。
1極化敏感陣列信號(hào)處理基礎(chǔ)
1.1完備電磁矢量
本文主要考慮遠(yuǎn)場(chǎng)平面窄帶信號(hào),且各陣元所接收數(shù)據(jù)的噪聲互不相關(guān),均為隨機(jī)高斯白噪聲。設(shè)存在一遠(yuǎn)場(chǎng)平面電磁波沿-r?傳播(見圖1)。電場(chǎng)強(qiáng)度復(fù)矢量表達(dá)式為:
3計(jì)算機(jī)仿真與分析
采用單極子天線,并利用基于稀疏恢復(fù)原理的AGO方法[18]進(jìn)行目標(biāo)角度估計(jì),將該測(cè)角結(jié)果與利用加權(quán)融合算法得到的結(jié)果進(jìn)行對(duì)比驗(yàn)證。采用半波長布陣,波束寬度為10.42°,快拍數(shù)為6,目標(biāo)信號(hào)的來波方向設(shè)置為15°,極化參數(shù)為63°。仿真從兩種情況出發(fā),分別為無隨機(jī)幅相誤差和有隨機(jī)幅相誤差,考查測(cè)角均方根誤差(RMSE)隨信噪比(SNR)的變化,令隨機(jī)幅度誤差不超過±0.5dB,隨機(jī)相位誤差不超過±5°。通過多次蒙特卡羅試驗(yàn),對(duì)比X方向電偶極子陣列、Y方向電偶極子陣列和兩種陣列加權(quán)融合后的測(cè)角均方根誤差隨信噪比的變化。仿真結(jié)果如圖3所示。
圖3中紅線、黑線和藍(lán)線依次表示利用AGO方法在采用X方向陣列、Y方向陣列和兩方向陣列加權(quán)融合時(shí),有無隨機(jī)幅相誤差的測(cè)角RMSE隨信噪比的變化。從圖3(a)可以看出,隨著信噪比的提高,三種陣列的測(cè)角RMSE均相應(yīng)減小,并且加權(quán)融合后的測(cè)角RMSE小于單一方向陣列的測(cè)角RMSE;觀察圖3(b)也可以得到相同的結(jié)論,說明加權(quán)融合方法能夠有效提高測(cè)角精度。通過對(duì)比圖3(a)和(b)發(fā)現(xiàn),相比無隨機(jī)幅相誤差,存在誤差時(shí)AGO極化加權(quán)融合的測(cè)角RMSE增加不超過0.1°,說明本文方法具有較好的魯棒性。多次改變仿真條件,均可得到與圖3類似的仿真結(jié)果,故具體仿真圖不再一一羅列。
4結(jié)束語
針對(duì)傳統(tǒng)測(cè)角方法精度低的現(xiàn)狀,提出了一種擴(kuò)展后的基于極化敏感陣列的加權(quán)融合測(cè)角方法。該方法通過獲取目標(biāo)極化信息,提升信號(hào)處理模型準(zhǔn)確度,并利用加權(quán)系數(shù)提高目標(biāo)角度的估計(jì)精度。該方法可結(jié)合傳統(tǒng)的測(cè)角方法加權(quán),也可利用較新的稀疏恢復(fù)測(cè)角方法加權(quán),因此,為提升測(cè)角精度提供了一種較好的思路。此外,后續(xù)研究中可將本文方法應(yīng)用至綜合后的陣列天線[19]或稀疏優(yōu)化陣列[20],驗(yàn)證本文方法的適應(yīng)性。
參考文獻(xiàn)
[1]Nehorai A,Paldi E. Vector-sensor array processing for electromagnetic source localization[J]. IEEE Transactions on Signal Processing,1994,42(2):376-398.
[2]Wong K T,Zoltowski M D. Root-MUSIC-based directionfinding and polarization estimation using diversely polarized possibly collocated antennas[J]. IEEE Antennas and Wireless Propagation Letters,2004(3):129-132.
[3]Wong K T,Yuan Xin. Vector cross-product direction-finding with an electronmagnetic vector-sensor of six orthogonally oriented but spatially noncollocating dipoles-loops[J]. IEEE Transactions on Signal Processing,2011,59(1):160-171.
[4]莊釗文,徐振海,肖順平.極化敏感陣列信號(hào)處理[M].北京:國防工業(yè)出版社,2005. Zhuang Zhaowen, Xu Zhenhai, Xiao Shunping. Signal processing of polarization sensitive array[M].Beijing: National Defense Industry Press, 2005. (in Chinese)
[5]徐振海.極化敏感陣列信號(hào)處理的研究[D].國防科學(xué)技術(shù)大學(xué),2004. Xu Zhenhai. Research on signal processing of polarization sensitive array[D]. Changsha: National University of Defense Technology, 2004. (in Chinese)
[6]徐友根,劉志文,龔曉峰,等.極化敏感陣列信號(hào)處理[M].北京:北京理工大學(xué)出版社,2013. Xu Yougen, Liu Zhiwen, Gong Xiaofeng, et al. Polarization sensitive array signal processing[M]. Beijing: Beijing Institute of Technology Press, 2013. (in Chinese)
[7]劉芳.基于極化敏感陣列的參數(shù)估計(jì)及波束形成算法研究[D].成都:電子科技大學(xué),2015. Liu Fang. Research on parameter estimation and beamforming algorithms based on polarization sensitive array[D]. Chengdu: University of Electronic Science and Technology of China, 2015. (in Chinese)
[8]陳善繼,張銳戈,吳國慶,等.極化敏感陣列及其應(yīng)用研究[J].現(xiàn)代電子技術(shù),2009,32(5):53-56. Chen Shanji, Zhang Ruige, Wu Guoqing, et al. Research on the polarization sensitive array and its application[J]. Modern Electronics Technique, 2009, 32(5):53-56. (in Chinese)
[9]Li Jian,Compton R T.Two-dimensional angle and polarization estimation using the esprit algorithm[J]. IEEE Trans. AP,1992,40(5):550-555.
[10]Li Jian. Direction and polarization estimation using arrays with small loops and short dipoles [J]. IEEE Transactions on Antennas and Propagation,1993,41(3):379-387.
[11]Cheng Q,Hua Y. Performance analysis of the MUSIC and pencil-MUSIC algorithms for diversely polarized array [J]. IEEE Transactions on Signal Processing,1994,42(11):3150-3165.
[12]Weiss A J,F(xiàn)riedlander B. Direction finding for diversely polarized signals using polynomial rooting [J]. IEEE Transactions on Signal Processing,1993,41(5):1893-1905.
[13]王洪洋,王蘭美,廖桂生.基于單矢量傳感器的信號(hào)多參數(shù)估計(jì)方法[J].電波科學(xué)學(xué)報(bào),2005,20(1):15-19. Wang Hongyang, Wang Lanmei, Liao Guisheng. Parameter estimation of multiple source based on uni vector-sensor[J]. Chinese Journal of Radio Science, 2005,20(1):15-19. (in Chinese)
[14]任生凱,周瑞青,周大衛(wèi),等.極化敏感陣列的空間譜估計(jì)測(cè)向技術(shù)研究[J].航天電子對(duì)抗,2016,32(1):31-34. Ren Shengkai, Zhou Ruiqing, Zhou Dawei, et al. Study on spatial spectrum DOA estimation technique for polarization sensitive array[J]. Aerospace Electronic Warfare, 2016, 32(1): 31-34. (in Chinese)
[15]吳迪軍,徐振海,張亮,等.極化域空域聯(lián)合匹配波束形成技術(shù)研究[J].電波科學(xué)學(xué)報(bào), 2012(1):92-96. Wu Dijun, Xu Zhenhai, Zhang Liang, et al. Beamformer of polarized and spatial domains joint matching for polarization phased array radar[J]. Chinese Journal of Radio Science, 2012(1):92-96. (in Chinese)
[16]李紗,張?jiān)7?極化敏感陣列的到達(dá)角和極化參數(shù)聯(lián)合估計(jì)方法[J].制導(dǎo)與引信,2016,37(4):48-53. Li Sha, Zhang Yufeng. Joint estimation method of DOA and polarization parameters for polarization sensitive array[J]. Guidance & Fuze, 2016,37(4):48-53. (in Chinese)
[17]張光義.相控陣?yán)走_(dá)原理[M].北京:國防工業(yè)出版社, 2009. Zhang Guangyi. Phased array radar principle[M]. Beijing: National Defense Industry Press, 2009. (in Chinese)
[18]曾操,楊美娟,李世東,等.基于信源數(shù)估計(jì)的柵格偏移優(yōu)化目標(biāo)到達(dá)角估計(jì)方法,CN105334488A[P].2016-02-17. Zeng Cao, Yang Meijuan, Li Shidong, et al. A method of estimating target arrival angle with altering grid optimization based on source number estimation,CN105334488A[P].2016-02-17. (in Chinese)
[19]郭玉霞,張艷艷,邢金鳳.基于量子粒子群算法的大型陣稀疏優(yōu)化方法[J].航空科學(xué)技術(shù),2020,31(8):57-62. Guo Yuxia, Zhang Yanyan, Xing Jinfeng. Sparse optimization of large array based on quantum particle swarm optimization [J]. Aeronautical Science & Technology, 2020,31(8):57-62. (in Chinese)
[20]景陽,范旭慧,梁軍利.無須模板的陣列天線方向圖綜合設(shè)計(jì)方法[J].航空科學(xué)技術(shù),2019,30(6):74-80. Jing Yang, Fan Xuhui, Liang Junli. Pattern synthesis design method of array antenna without template [J]. Aeronautical Science & Technology, 2019,30(6):74-80. (in Chinese)
(責(zé)任編輯陳東曉)
作者簡(jiǎn)介
楊美娟(1992-)女,碩士研究生,工程師。主要研究方向:極化敏感陣列信號(hào)處理。
Tel:15229029718E-mail:mjyang11@163.com
Weighted Fusion Angle Measurement Method Based on Polarization Sensitive Array
Yang Meijuan*,Li Wenlong
Chinese Flight Test Establishment,Xian 710089,China
Abstract: Angle estimation is the key function of radar. Polarization sensitive array used as radar antenna can effectively reduce model error and improve angle measurement performance. In order to improve the accuracy of target angle estimation, this paper proposes an extended weighted fusion angle measurement method. Firstly, the complete electromagnetic vector is introduced briefly, and the polarization-space signal processing model is established. Secondly, the extended weighted fusion angle measurement method is derived. Finally, combined with sparse restoration method, the effectiveness of the proposed method is verified by taking the biorthogonal electric dipole array antenna as an example. The results show that the error of array signal model is diminished by using the polarization information. And through the weighted fusion, the accuracy of target space angle estimation is effectively improved.
Key Words: electromagnetic vector; polarization sensitive array; weighted fusion; DOA estimation