鐘海玲 龔雪 陳忠敏 陳國(guó)寶 王富平
摘要: 自古中醫(yī)采用家蠶蠶繭治療糖尿病,近年來研究確定是家蠶蠶繭中的絲膠蛋白(SS)起作用。文章在Ⅱ型糖尿?。═2DM)研究中發(fā)現(xiàn):SS可以促進(jìn)胰島信號(hào)轉(zhuǎn)導(dǎo)、增加糖降解,促進(jìn)肝糖原的生成而降低T2DM的血糖水平;改善胰島素抵抗、提高糖耐量、促進(jìn)胰島細(xì)胞增殖、提高胰島素分泌量來逆轉(zhuǎn)胰島素量能;同時(shí),SS還具有改善脂肪代謝,提高抗氧化能力、降低炎癥反應(yīng)、減輕肝臟損傷、減輕腎臟損傷等逆轉(zhuǎn)身體機(jī)能。研究結(jié)果表明:SS對(duì)T2DM血糖降低、恢復(fù)T2DM患者身體機(jī)能方面具有顯著效果,具有潛在的治療T2DM價(jià)值。
關(guān)鍵詞: 絲膠蛋白;Ⅱ型糖尿病;降血糖;改善胰島素抵抗;逆轉(zhuǎn)身體機(jī)能
中圖分類號(hào): TS101.4
文獻(xiàn)標(biāo)志碼: A
文章編號(hào): 1001-7003(2021)09-0040-08
引用頁(yè)碼: 091107
DOI: 10.3969/j.issn.1001-7003.2021.09.007(篇序)
Research progress of sericin reversing type Ⅱ diabetes
ZHONG Hailing, GONG Xue, CHEN Zhongmin, CHEN Guobao, WANG Fuping
(College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China)
Abstract:Silkworm cocoons have been used for TCM treatment of diabetes since ancient times and it has been confirmed by research in recent years that sericin(SS) in silkworm cocoons plays a key role. It is found in studies of type 2 diabetes mellitus(T2DM) that SS can facilitate islet signal transduction, accelerate glucose degradation, and promote the generation of liver glycogen, thereby reducing the blood sugar level of T2DM. It can also ameliorate insulin resistance, improve glucose tolerance, promote islet cell proliferation, enhance the amount of insulin secretion to reverse insulin quantity. In the meantime, SS has advantages of improving fat metabolism, enhancing antioxidant capacity, reducing inflammation, alleviating liver damage, kidney damage and other reversal of body functions. The results reveal that SS has a significant effect on reducing blood sugar in T2DM patients and restoring the body function of T2DM patients, and has potential value in T2DM treatment.
Key words:sericin; type 2 diabetes; reduce blood glucose; improve insulin resistance; restore the body ability
收稿日期: 20201210
修回日期: 20210824
基金項(xiàng)目: 重慶市技術(shù)創(chuàng)新與應(yīng)用發(fā)展專項(xiàng)面上項(xiàng)目(cstc2019jscxmsxmX0110)
作者簡(jiǎn)介: 鐘海玲(1996),女,碩士研究生,研究方向?yàn)樯锊牧?。通信作者:王富平,副教授,wangfp2013@cqut.edu.cn。
糖尿病是一種由于胰島素分泌不足或功能受損而導(dǎo)致內(nèi)分泌代謝異常的慢性疾病[1],全世界大約有4.15億糖尿病患者,且數(shù)量逐年增加[2],預(yù)計(jì)到2045年將增至7億[3],其中Ⅱ型糖尿?。╰ype 2 diabetes mellitus,T2DM)患者占總數(shù)的90%以上[4-5]。T2DM主要由胰島素抵抗并伴有胰島素分泌不足導(dǎo)致,目前主要通過促進(jìn)胰島素分泌、增強(qiáng)胰島素敏感性及促進(jìn)胰島以外的其他組織對(duì)葡萄糖的吸收等控制血糖水平[68]。研究表明,天然生物活性物質(zhì)可以控制血糖濃度,減少T2DM并發(fā)癥的發(fā)生[9],《本草綱目》記載蠶繭可能對(duì)糖尿病有治療作用[10]。研究發(fā)現(xiàn)是家蠶蠶繭中一種具有生物活性物質(zhì)的絲膠蛋白(silk sericin,SS)起作用[11],SS可促進(jìn)葡萄糖轉(zhuǎn)運(yùn)和肝糖原合成,從而降低血糖[12];增強(qiáng)胰島素的分泌與敏感性,減輕胰島損傷;同時(shí)調(diào)節(jié)脂質(zhì)代謝、抑制炎癥反應(yīng)等[13],發(fā)揮對(duì)逆轉(zhuǎn)T2DM具有的作用。
1降低血糖水平
空腹血糖(fasting bloodglucose,F(xiàn)BG)是檢測(cè)糖尿病嚴(yán)重程度的重要指標(biāo)之一[13],空腹血糖≥7.0 mmol/L、隨機(jī)血糖≥11.1 mmol/L即為糖尿病。FBG值也是婦女早期診斷妊娠期糖尿病的重要診斷指標(biāo)[14]。近年來,采用喂食或灌胃方式,將SS給予T2DM模型鼠,檢測(cè)血糖水平變化發(fā)現(xiàn):SS可明顯降低T2DM鼠的血糖水平(表1)。其中,采用較高劑量(>1 800 mg/kg/d),每周的降糖速率均達(dá)到3 mmol/L/周以上,且兩個(gè)月內(nèi)可接近正常組血糖水平;在較低劑量(100~400 mg/kg/d),每周的降糖速率與初始FBG相關(guān),存在濃度依賴性,且隨SS劑量增加,降糖速率提高;而中劑量(400~1 800 mg/kg/d),未見相關(guān)報(bào)道。
T2DM初期發(fā)生胰島素抵抗,胰島素生物學(xué)效應(yīng)降低,進(jìn)一步發(fā)展會(huì)出現(xiàn)糖耐量受損,這階段胰島素分泌量不足以降血糖,出現(xiàn)胰島β細(xì)胞功能障礙,進(jìn)而導(dǎo)致胰島素分泌不足,出現(xiàn)惡性循環(huán),導(dǎo)致糖代謝遇阻。研究發(fā)現(xiàn),SS可降低血糖水平,并進(jìn)行了相關(guān)機(jī)制研究。
1.1改善胰島素抵抗
胰島素抵抗是T2DM的主要發(fā)病機(jī)制[2627],穩(wěn)態(tài)模式評(píng)估法測(cè)定胰島素抵抗指數(shù)(homeostasis model assessment for insulin resistance,HOMAIR)和胰島素敏感性指數(shù)(insulin sensitivity index,ISI)用于評(píng)估糖尿病患者的胰島素抵抗[28]。Dong等[13]研究結(jié)果顯示,以初始血糖水平為基線值,腹腔注射胰島素(0.5 U/kg BW)15 min后,糖尿病對(duì)照組(DC組)高于正常對(duì)照組(NC組),絲膠治療組(SS組)血糖水平下降至接近NC組;NC組、DC組、SS組血清胰島素水平分別約為1583、37.16、20.93 mIU/L,SS組較DC組的降低率約為4368%。此外,NC組、DC組、SS組的HOMAIR值分別約為5.69、45.16、10.60,ISI值分別約為-1.74、-3.81、-2.35,SS組較DC組的HOMAIR值降低率為76.15%,ISI值提高率為38.3%。
糖化血紅蛋白(hemoglobinA1c,HbA1c)水平是判斷血糖控制狀況最有價(jià)值的指標(biāo),Zhao等[8]測(cè)得DC組、NC組的HbA1c水平分別約為9.72、3.86 mmol/L。SS組分三個(gè)組,低劑量SS組(LSS組)、中劑量SS組(MSS組)、高劑量SS組(HSS組),MSS、HSS組較DC組的HbA1c降低率分別約為54.53%、55.56%,均有效降低T2DM小鼠HbA1c水平。同時(shí)ISI隨著HOMAIR降低而逐漸增加,有效減輕胰島素抵抗,表明SS可減輕T2DM的胰島素抵抗,增強(qiáng)胰島素敏感性。
1.2提高糖耐量
口服葡萄糖耐量試驗(yàn)(oral glucose tolerance test,OGTT)能反映人體調(diào)節(jié)血糖的能力。研究發(fā)現(xiàn)SS可以抑制血清游離脂肪酸表達(dá),增加外周組織對(duì)葡萄糖攝取,進(jìn)而改善葡萄糖耐量[29]。Dong等[1-3]給予1.5 g/kg(BW)葡萄糖,120 min時(shí)SS組的血糖水平顯著下降至12.5 mmol/L,DC組的血糖水平為27 mmol/L,SS組較DC組血糖下降率為53.7%。Zhao等[8]測(cè)得SS組糖耐量在三個(gè)時(shí)間點(diǎn)(60、90、120 min)均表現(xiàn)出改善現(xiàn)象,在120 min時(shí),NC組、DC組及LSS、MSS、HSS組的血糖降低率分別約為71.73%、18.02%、34.41%、58.65%和66.34%,表明SS可有效提高T2DM的糖耐量。
1.3促進(jìn)胰島信號(hào)轉(zhuǎn)導(dǎo)
胰島素是機(jī)體調(diào)節(jié)血糖吸收、促進(jìn)合成代謝最關(guān)鍵的激素,可以促進(jìn)糖原、脂肪、蛋白質(zhì)合成。胰島素由胰島β細(xì)胞分泌后與胰島素受體(insulin receptor,IR) 結(jié)合,進(jìn)而與胰島素受體底物(insulin receptorsubstrate,IRS)鍵合。啟動(dòng)磷脂酰肌醇3激酶/蛋白激酶B(phosphatidylinositol3kinase/protein kinase B,PI3K/Akt)信號(hào)通路,通過磷酸化(Ser9位點(diǎn)磷酸化)使糖原合成酶激酶3β(glycogen synthase kinase3β,GSK 3β)失活,增加糖原合成酶(glycogen synthase,GS)活性,抑制糖異生,增加糖原生成[8,3031],磷酸化糖原合成酶激酶3β(phosphoglycogen synthase kinase3β,pGSK3β)參與胰島素信號(hào)傳導(dǎo),胰島素還通過激活蛋白磷酸酶1(protein phosphatase1,PP1),進(jìn)而調(diào)節(jié)多個(gè)關(guān)鍵糖原代謝酶,刺激糖原的合成?;罨腁kt調(diào)控維持胰島β細(xì)胞周期,促進(jìn)β細(xì)胞增殖,抑制β細(xì)胞凋亡[32-35],調(diào)節(jié)β細(xì)胞分泌胰島素,減輕胰島素抵抗[36]。張艷[37]研究發(fā)現(xiàn)DC組IR、IRS、pAkt蛋白水平顯著低于NC組,分別為NC組的50.00%、16.95%、38.91%,而LSS、MSS、HSS組IR、IRS、pAkt蛋白表達(dá)均升高,HSS組接近正常水平。另外,SS組的PGSK3β顯著提高,與SS劑量成正比關(guān)系;NC組、DC組及LSS、MSS、HSS的pGSK3β:GSK3β的比值分別為0.72、0.17、0.44、0.64、0.79[8]。SS組的IR、IRS、PI3K、PAkt和PGSK3β水平均升高,表明SS可提高胰島工作效率[38],SS可減少糖異生,增加糖原生成,有助于降低血糖。
此外,Song等[12]采用免疫組織化學(xué)染色和Western Blot檢測(cè)IR、IRS1、PI3K和AKT蛋白水平,結(jié)果顯示DC組IR、IRS1、PI3K、AKT蛋白表達(dá)水平明顯低于NC組,分別約為NC組的22.95%、42.11%、27.78%、30.23%;HSS組較DC組的IR、IRS1、PI3K、AKT蛋白表達(dá)水平增長(zhǎng)率分別為29.51%、52.63%、61.11%、58.14%,LSS組增長(zhǎng)率分別為6.56%、2631%、33.33%、48.86%。Dong等[13]研究也發(fā)現(xiàn),SS可上調(diào)IR、IRS1、PI3K和AKT蛋白表達(dá)水平。研究表明,經(jīng)SS治療可減輕T2DM的胰島組織病理?yè)p傷,提高促進(jìn)胰島信號(hào)轉(zhuǎn)導(dǎo)的關(guān)鍵蛋白(IR、IRS、GSK3β、PI3K、AKT)表達(dá)。對(duì)抑制糖異生,增加糖原生成,降低血糖起到了積極作用。
1.4減少糖異生
磷酸烯醇丙酮酸羧化激酶(phosphoenolpyruvate carboxykinase,PCK)和葡萄糖6磷酸酶(glucose6phosphatase,G6pase)是糖異生的兩種限速酶,PCK可以催化草酰乙酸轉(zhuǎn)化為磷酸烯醇丙酮酸異構(gòu)糖并增加葡萄糖產(chǎn)量。Dong等[13]通過蛋白印跡實(shí)驗(yàn)發(fā)現(xiàn)DC組G6Pase、PCK的相對(duì)表達(dá)量顯著高于NC組,SS組較DC組G6Pase、PCK相對(duì)表達(dá)下降率分別約為58.18%、56.6%。Zhao等[8]測(cè)得MSS、HSS組較DC組的PCK表達(dá)的下降率分別為51.91%、46.15%,表明SS可顯著減少糖異生。
1.5促進(jìn)糖原生成
研究SS對(duì)T2DM大鼠肝糖原含量的影響,采用周期性酸Schiff染色法測(cè)定肝糖原含量,肝糖原主要位于肝細(xì)胞胞漿,在各組肝切片中均呈陽性表達(dá),在胞漿中呈紅色和紫色顆粒[12,37]。陰性對(duì)照用淀粉酶消化的組織切片,在NC組中陽性細(xì)胞數(shù)量較多,經(jīng)染色呈現(xiàn)出深紫色,DC組中陽性細(xì)胞數(shù)量較少,顏色較淺呈現(xiàn)淡紅色;SS組陽性染色細(xì)胞數(shù)均增多,顏色加深,且HSS比LSS組陽性染色細(xì)胞數(shù)更多;HSS、LSS組的肝糖原增長(zhǎng)率分別約為270%、230%[12]。張艷[37]研究發(fā)現(xiàn)SS組肝糖原含量顯著高于DC組,且與NC組無明顯差別。另外,高建梅等[39]每日給予蠶絲水解物1 g/kg(BW),觀察12周,發(fā)現(xiàn)T2DM的骨骼肌細(xì)胞對(duì)葡萄糖的攝取顯著增加,且在自由攝食的狀態(tài)下肝糖原、骨骼肌糖原的含量均增加,表明SS可顯著增加T2DM的肌糖原生成,且與SS呈劑量依賴性。
以上研究結(jié)果顯示,SS可以通過改善胰島素抵抗、提高糖耐量、促進(jìn)胰島信號(hào)轉(zhuǎn)導(dǎo)、增加糖降解,促進(jìn)肝糖原的生成而降低T2DM的血糖水平。
2逆轉(zhuǎn)胰島素量能
胰島β細(xì)胞的功能障礙及數(shù)量減少被證實(shí)為T2DM發(fā)病的一個(gè)主要原因,長(zhǎng)期有T2DM的患者β細(xì)胞數(shù)量減少、功能下降,通常稱為“β細(xì)胞衰竭”[16]。研究表明,SS可增加胰島β細(xì)胞數(shù)量、改善胰島功能。
2.1增加胰島β細(xì)胞數(shù)量
王小杰等[40]研究SS對(duì)鏈脲佐菌素(streptozocin,STZ)誘導(dǎo)胰島細(xì)胞株INS1凋亡相關(guān)因子B淋巴細(xì)胞瘤2(Bcell lymphoma2,Bcl2)、Bcl2基因家族中細(xì)胞凋亡促進(jìn)基因BCL2Associated X的蛋白質(zhì)(Bax)的影響。將大鼠胰島細(xì)胞株INS1分為3組:NC組不作任何處理,STZ組以STZ作用胰島細(xì)胞株INS1,SS組以STZ和SS共同作用胰島細(xì)胞株INS1。測(cè)得STZ組胰島細(xì)胞株INS1細(xì)胞存活率低于NC組,SS組較STZ組存活率約升高28.64%;STZ組胰島細(xì)胞株INS1細(xì)胞凋亡率較NC組升高,SS組較STZ組降低率約為3.4%;STZ組Bcl2 mRNA、Bcl2 mRNA/Bax mRNA表達(dá)水平低于NC組,SS組較STZ組提高率分別約為9.52%、136.11%;STZ組Bax mRNA表達(dá)水平高于NC組,SS組較STZ組的降低率為52.79%。付秀美等[18]實(shí)驗(yàn)表明,SS可抑制STZ誘導(dǎo)的胰島細(xì)胞株INS1的凋亡,提高Bcl2/Bax的比值,抑制胰島β細(xì)胞凋亡,對(duì)糖尿病胰島損傷具有預(yù)防作用。采用H&E切片染色觀察胰腺,顯示NC組胰島結(jié)構(gòu)完整,排列均勻,胰島β細(xì)胞豐富;DC組胰島細(xì)胞呈疏松或變形,胰腺β細(xì)胞明顯減少,凋亡或壞死,胰腺邊緣不規(guī)則;LSS、MSS、HSS組的胰島結(jié)構(gòu)均得到改善,胰島β細(xì)胞數(shù)量均增加[8,41]。
2.2增強(qiáng)胰島β細(xì)胞功能
研究發(fā)現(xiàn),胰島素蛋白免疫陽性產(chǎn)物位于胰島β細(xì)胞胞質(zhì),呈棕黃色顆粒狀。DC組、SS組、NC組大鼠胰島β細(xì)胞的胰島素蛋白的相對(duì)表達(dá)量分別約為0.392、0.619、0.729,表明SS可顯著上調(diào)β細(xì)胞的胰島素蛋白表達(dá)能力[42]。免疫熒光染色法檢測(cè)SS對(duì)T2DM胰島素分泌量的影響,胰島素呈綠色,DC組胰島素分泌量明顯低于NC組,SS組綠色熒光增強(qiáng),胰島面積增大,結(jié)構(gòu)趨于完整,且HSS組效果更加明顯[8,41]。研究表明,SS具有修復(fù)胰島結(jié)構(gòu)損傷、促使胰島細(xì)胞增殖和改善胰島功能的潛能,并具有保持胰島結(jié)構(gòu)完整的功能[43]。
研究發(fā)現(xiàn),SS抑制胰島細(xì)胞凋亡,降低胰島損傷,上調(diào)β細(xì)胞的胰島素蛋白的表達(dá)能力,從而逆轉(zhuǎn)胰島素量能。
3改善身體機(jī)能
3.1改善機(jī)體對(duì)脂質(zhì)的調(diào)節(jié)
糖尿病患者易出現(xiàn)脂代謝紊亂[44],脂肪細(xì)胞中的胰島素信號(hào)調(diào)控,影響機(jī)體對(duì)胰島素的敏感性。此外,脂質(zhì)在肌細(xì)胞和肝臟中積累的異位脂肪是導(dǎo)致胰島素抵抗的重要原因[45]。早年研究發(fā)現(xiàn),SS對(duì)T2DM的血脂代謝紊亂具有良好的治療及預(yù)防作用[46]。固醇調(diào)節(jié)元件結(jié)合蛋白1c(sterol regulatory element binding protein1c,SREBP1c)參與脂質(zhì)合成調(diào)控,研究表明肝臟SREBP1c異常表達(dá)與糖尿病的發(fā)生、病情進(jìn)展及糖尿病肝臟脂肪病變密切相關(guān)[47]。李強(qiáng)等[15]分析SS對(duì)STZ誘導(dǎo)糖尿病大鼠肝臟保護(hù)作用及對(duì)SREBP1c表達(dá)的影響發(fā)現(xiàn),DC組SREBP1c水平顯著高于NC組,SS組可有效降低SREBP1c水平,最高達(dá)到-35.29%。
甘油三酯(triglyceride,TG)、總膽固醇(total cholesterol,TC)、高密度脂蛋白膽固醇(high density liptein cholesterol,HDLC)和低密度脂蛋白膽固醇(low density lipoprotein,LDLC)的代謝,為主要的脂質(zhì)代謝生化過程[48]。研究發(fā)現(xiàn),DC組TG、TC、LDLC水平均明顯高于NC組,而HDLC水平均明顯
低于NC組,在攝入SS后,相應(yīng)水平均被有效調(diào)節(jié)[8,49],最高分別達(dá)到-41.67%、-33.33%、-45.45%和60.00%[8]。此外,過氧化物酶體增殖物激活受體γ(peroxisome proliferatoractivated receptor gamma,PPARγ)對(duì)脂質(zhì)代謝調(diào)節(jié)起著關(guān)鍵作用,DC組PPARγ蛋白水平為NC組的46.56%,而MSS、HSS組的PPARγ水平較DC組均有顯著提高,提高率分別為26%、76%[8]。
脂聯(lián)素可通過激活磷酸腺苷(adenosine monophosphate,AMP)、活化蛋白激酶(peroxisome proliferatorsactivated receptors,AMPK),進(jìn)而促進(jìn)骨骼肌脂肪酸氧化和葡萄糖利用,脂聯(lián)素還可下調(diào)促進(jìn)肝臟脂肪生成酶的主要調(diào)節(jié)因子的生成,進(jìn)而提高胰島素敏感性[29]。乙酰輔酶A羧化酶(acetyl CoA carboxylase,ACC)催化乙酰輔酶A形成丙二酸單酰輔酶A的羧化作用,在脂肪酸合成和代謝中起重要作用。Dong等[13]研究發(fā)現(xiàn),DC組AMPKα水平明顯低于NC組,ACC蛋白表達(dá)明顯高于NC組,SS組較DC組的AMPKα水平上調(diào)22.22%,ACC蛋白表達(dá)下調(diào)37.78%。
研究結(jié)果顯示,SS可顯著改善T2DM的脂質(zhì)合成與代謝(表2),表明SS可有效改善T2DM的脂肪代謝紊亂,促進(jìn)機(jī)體對(duì)脂質(zhì)的調(diào)節(jié)與利用。
3.2減輕炎癥反應(yīng)
長(zhǎng)期高糖環(huán)境下肝臟炎癥因子和糖、脂代謝紊亂的影響,可能導(dǎo)致T2DM患者肝臟氧化應(yīng)激,在體內(nèi)引起炎癥變化[13],炎癥反應(yīng)是導(dǎo)致胰島素抵抗的重要原因,還會(huì)損傷胰腺細(xì)胞。肝臟、腎臟的損傷及胰島素抵抗影響炎癥因子白細(xì)胞介素6(interleukin6,IL6)、單核細(xì)胞趨化蛋白1(monocyte chemotactic protein 1,MCP1)、腫瘤壞死因子α(tumor necrosis factorα,TNFα)的表達(dá)。IL6和TNFα與肥胖和胰島素抵抗有關(guān),TNFα和MCP1的表達(dá)與糖尿病腎病(diabetic nephropathy,DN)密切相關(guān)[13,50]。Wang等[11]發(fā)現(xiàn)DC組、NC組腎臟TNFα水平分別為68.65、39.30 pg/gprot,SS組TNFα水平均下降,HSS組的TNFα水平約為50 pg/gprot,顯著低于DC組。同時(shí),DC組MCP1水平升高,SS組MCP1水平降低,HSS組MCP1水平降至(26.96±0.91) pg/gprot,與NC組接近[11]。Zhao等[8]發(fā)現(xiàn)MSS組較DC組肝臟中核轉(zhuǎn)錄因子κB(nuclear factor,NFκB)、IL6和TNFα表達(dá)水平的降低率分別為31.18%、46.88%、48.99%,HSS組降低率分別為501%、54.26%、54.25%。通過免疫印跡法和RTPCR法研究發(fā)現(xiàn),SS組肝臟組織中TNFα蛋白和mRNA的表達(dá)水平較DC組明顯降低[8,13],表明SS有助于減緩炎癥反應(yīng)[41]。
3.3減輕肝臟損傷
氧化應(yīng)激反應(yīng)會(huì)導(dǎo)致線粒體功能障礙,引起細(xì)胞的胰島素抵抗,最終導(dǎo)致肝臟損傷[51]。正常組的肝小葉結(jié)構(gòu)清晰,肝細(xì)胞在中央靜脈周圍呈索狀排列,細(xì)胞核位于細(xì)胞中心且大而圓,胞漿染色均勻,肝竇清晰。采用H&E染色法觀察到,DC組肝細(xì)胞腫脹,體積增大,胞漿出現(xiàn)明顯的空泡結(jié)構(gòu),且部分肝細(xì)胞出現(xiàn)可溶性壞死,肝竇呈狹窄或閉鎖狀態(tài);SS組病理癥狀明顯減輕,肝小葉結(jié)構(gòu)清晰,細(xì)胞排列規(guī)則[8,1213]。Song等[12]觀察到,HSS組的治療效果最好,不僅細(xì)胞排列均勻,且脂肪堆積、炎癥浸潤(rùn)狀況和水腫面積均明顯減少,表明SS可有效改善T2DM的肝臟形態(tài)結(jié)構(gòu)。
除肝細(xì)胞病理?yè)p傷嚴(yán)重,并伴有炎性浸潤(rùn),脂肪堆積,代謝紊亂等問題。Zhao等[8]研究發(fā)現(xiàn)DC組的丙氨酸轉(zhuǎn)氨酶(alanine transaminase,ALT)和天冬氨酸轉(zhuǎn)氨酶(aspartate transaminase,AST)水平均高于NC組,NC組ALT、AST水平分別約為23.00、90 μl-1,DC組ALT、AST水平分別約為58.00、16747 μl-1,LSS、MSS、HSS組較DC組的ALT水平的降低率分別約為39.66%、37.93%、41.38%,較DC組的AST水平降低率分別約為37.90%、37.30%、39.69%。表明,SS可有效調(diào)節(jié)T2DM的肝臟功能。
經(jīng)SS治療后可降低會(huì)促進(jìn)炎癥反應(yīng)的關(guān)鍵蛋白(TNFα、MCP1、IL6、P65、IKKβ、NFκB)的表達(dá),從而減輕T2DM肝臟、腎臟的炎癥反應(yīng)[8,13]。肝細(xì)胞核因子4α(hepatocyte nuclear factor 4 alpha,HNF4α)參與糖脂代謝及胰島素分泌的調(diào)控,劉東慧等[19]研究發(fā)現(xiàn),NC組肝臟組織中的TNFα、HNF4α蛋白水平分別為0.403、0.025,而DC分別為0.677、0.043,明顯高于NC組;SS組TNFα、HNF4α蛋白表達(dá)水平分別降低至0.594、0.030,明顯低于DC組。表明,SS可能通過下調(diào)肝臟組織炎癥因子的表達(dá)保護(hù)糖尿病患者肝臟損傷[41]。
3.4減輕腎臟損傷
糖尿病腎病是糖尿病患者死亡的主要原因之一[5253]。T2DM是造成腎功能衰竭的主要原因,但有效的長(zhǎng)期治療很少[54]。腎臟慢性高血糖癥會(huì)對(duì)腎臟造成損害,NC組腎小球和腎小管細(xì)胞清晰、規(guī)則。但DC組腎小球基底膜明顯增厚,系膜明顯擴(kuò)張。Wang等[11]通過PAS染色實(shí)驗(yàn)觀察到DC組系膜增寬,基質(zhì)增多,且相關(guān)PAS陽性物質(zhì)區(qū)與NC組相比明顯擴(kuò)大。MSS、HSS組的PAS陽性物質(zhì)區(qū)均明顯低于DC組,僅有LSS組還存在有輕微的系膜擴(kuò)張,而MSS、HSS組系膜擴(kuò)張明顯改善。表明,SS對(duì)糖尿病患者的腎臟具有很好的保護(hù)作用。
P38絲裂原活化蛋白激酶(P38 mitogen activated protein kinase,P38MAPK)的信號(hào)通路與DN的發(fā)病和纖維化有關(guān)[50,55],增加纖維連接蛋白(fibronectin,F(xiàn)N)和促炎性細(xì)胞因子的表達(dá)。DC組腎臟pP38α水平顯著低于正常組,F(xiàn)N1水平約為NC組的182.4%,SS可顯著降低腎臟pP38α、FN1水平,且HSS組下降至接近NC組水平,表明SS可減少腎臟損傷,保護(hù)腎臟[11]。
DC組腎臟絲裂原活化蛋白激酶(mitogenactivated protein kinase kinase,MEK)蛋白及mRNA的表達(dá)比NC組高,腎臟細(xì)胞外信號(hào)調(diào)節(jié)激酶(extracellular signal regulated kinase,ERK)信號(hào)通路的激活也可能對(duì)腎臟造成損傷。郝祥俊等[20]研究發(fā)現(xiàn),SS組腎臟MEK、MEK mRNA的表達(dá)較DC組的降低率分別為39.16%、48.80%;宋妤軒等[53]研究發(fā)現(xiàn),SS組較DC組ERK mRNA表達(dá)的降低率約為48.60%;劉美琴等[25]研究發(fā)現(xiàn),SS組較DC組的ERK表達(dá)的降低率約為43.58%。表明,SS可能通過降低血糖影響腎臟ERK的激活,減輕ERK介
導(dǎo)的腎小球系膜細(xì)胞增生、肥大癥狀,增強(qiáng)腎臟功能,發(fā)揮對(duì)因糖尿病造成腎臟損傷的保護(hù)作用[20,53]。宋成軍等[21]研究還發(fā)現(xiàn),SS可通過上調(diào)腎臟色素上皮衍生因子(renal pigment epithelium derived factor,PEDF)蛋白的表達(dá),發(fā)揮對(duì)糖尿病腎臟的保護(hù)和預(yù)防保護(hù)作用,DC組PEDF表達(dá)水平低于NC組,SS組較DC組的提高率約為35.96%。此外,Chen等[23]發(fā)現(xiàn),SS可預(yù)防DN期間的細(xì)胞外基質(zhì)(extracellular matrix,ECM)和腎小球發(fā)生硬化,對(duì)預(yù)防DN的發(fā)生有較好的作用。
3.5維持體重
糖尿病患者后期體重均下降[8,11,13],Dong等[13]發(fā)現(xiàn)NC組、DC組、SS組初始體重分別約為40.1、39.18、39.2 g,4周后各組小鼠的體重分別約為42.1、37.5、38.4 g,各組體重增加率分別約為5.0%、-4.3%、-2.0%。Zhao等[8]研究發(fā)現(xiàn),NC、DC、LSS、MSS、HSS組初始體重分別約為38.2、40、41.5、41、42 g,在第7周時(shí)測(cè)得各組體重增加率分別為1257%、-15%、-10.8%、-3.4%、-6.2%。SS組小鼠體重均高于DC組,且MSS、HSS組體重經(jīng)2周下降后便趨于穩(wěn)定[8]。
研究表明,SS通過調(diào)節(jié)脂肪代謝過程中的基因表達(dá)而改善T2DM的脂肪代謝,降低炎癥因子表達(dá),減輕機(jī)體的炎癥反應(yīng),從而保護(hù)肝臟、改善代謝;通過調(diào)節(jié)導(dǎo)致DN相關(guān)通路,減輕腎小球系膜細(xì)胞增生、肥大等癥狀,增強(qiáng)腎臟功能;另外,有效抑制體重的減輕等逆轉(zhuǎn)糖尿病患者身體機(jī)能。
4結(jié)論
糖尿病后期導(dǎo)致各種組織,特別是肝臟、腎臟、胰腺、眼、心臟、血管、神經(jīng)等的慢性損害,致使功能障礙。現(xiàn)治療糖尿病以補(bǔ)充胰島素為主、輔以二甲雙胍改善胰島素抵抗、GLP1受體激動(dòng)劑(利拉魯肽、索馬魯肽)促進(jìn)胰島素的合成和分泌,刺激胰島β細(xì)胞的增殖和分化,抑制胰島β細(xì)胞的凋亡,改善胰島功能等。而SS除上述作用外,還可以從調(diào)節(jié)糖代謝,脂質(zhì)代謝,炎癥反應(yīng),保護(hù)肝臟、腎臟等方面逆轉(zhuǎn)糖尿病患者身體機(jī)能。目前,SS治療T2DM的結(jié)果證據(jù)比較充分,但其灌胃/口服后的吸收轉(zhuǎn)運(yùn)、起效物質(zhì)、作用機(jī)制不明確,有待進(jìn)一步研究,相信SS在未來糖尿病治療領(lǐng)域?qū)⒕哂芯薮蟮膽?yīng)用前景。
PDF下載
參考文獻(xiàn):
[1]ZHENG W, WANG G, ZHANG Z, et al. Research progress on classical traditional Chinese medicine formula Liuwei Dihuang pills in the treatment of type 2 diabetes[J]. Biomedicine & Pharmacotherapy, 2020, 121: 109-564.
[2]DAI Z, JIAO Y, FAN Q, et al. Homocysteine, interleukin1β, and fasting blood glucose levels as prognostic markers for diabetes mellitus complicated with cerebral infarction and correlated with carotid intimamedia thickness[J]. Experimental and Therapeutic Medicine, 2020, 19(2): 1167-1174.
[3]CHO N H, SHAW J E, KARURANGN S, et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045[J]. Diabetes Research & Clinical Practice, 2018: 271.
[4]HOLMAN N, YOUNG B, GADSBY R. Current prevalence of type 1 and type 2 diabetes in adults and children in the UK[J]. Diabetic Medicine A Journal of the British Diabetic Association, 2015, 32(9): 1119.
[5]BRUNO G, RUNZO C, CAVALLO P, et al. Incidence of type 1 and type 2 diabetes in adults aged 3049 years: the populationbased registry in the province of Turin, Italy[J]. Diabetes Care, 2005, 28(11): 2613.
[6]王濤, 印曉星. 2型糖尿病治療藥物研究進(jìn)展[J]. 藥學(xué)進(jìn)展, 2016, 40(5): 323-330.
WANG Tao, YIN Xiaoxing. Advances in therapeutics of type 2 diabetes mellitus[J]. Progress in Pharmaceutical Sciences, 2016, 40(5): 323-330.
[7]曹志國(guó). 芻議糖尿病人的藥物治療[J]. 糖尿病新世界, 2015(9): 43.
CAO Zhiguo. Drug therapy for diabetics[J]. Diabetes New World, 2015(9): 43.
[8]ZHAO J G, WANG H Y, WEI Z G, et al. Therapeutic effects of ethanolic extract from the green cocoon shell of silkworm Bombyx mori on type 2 diabetic mice and its hypoglycaemic mechanism[J]. Toxicology Research, 2019, 8(3): 407-420.
[9]ZAKERKISH M, JENABI M, ZAEEMZADEH N, et al. The effect of Iranian propolis on glucose metabolism, lipid profile, insulin resistance, renal function and inflammatory biomarkers in patients with type 2 diabetes mellitus: a randomized doubleblind clinical trial[J]. Scientific Reports, 2019, 9(1): 111.
[10]CAO T T, ZHANG Y Q. Processing and characterization of silk sericin from Bombyx mori and its application in biomaterials and biomedicines[J]. Materials Science and Engineering: C, 2016, 61: 940-952.
[11]WANG H Y, ZHAO J G, WEI Z G, et al. The renal protection of flavonoidrich ethanolic extract from silkworm green cocoon involves in inhibiting TNFαp38 MAP kinase signalling pathway in type 2 diabetic mice[J]. Biomedicine & Pharmacotherapy, 2019, 118: 109-379.
[12]SONG C, LIU D, YANG S, et al. Sericin enhances the insulinPI3K/AKT signaling pathway in the liver of a type 2 diabetes rat model[J]. Experimental and Therapeutic Medicine, 2018, 16(4): 3345-3352.
[13]DONG X, ZHAO S X, YIN X L, et al. Silk sericin has significantly hypoglycaemic effect in type 2 diabetic mice via antioxidation and antiinflammation[J]. International Journal of Biological Macromolecules, 2019, 150(6): 1061-1071.
[14]SOUZA A C, COSTA R A, PAGANOTI C F, et al. Can we stratify the risk for insulin need in women diagnosed early with gestational diabetes by fasting blood glucose[J]. The Journal of MaternalFetal & Neonatal Medicine, 2019, 32(12): 2036-2041.
[15]李強(qiáng), 梁秀軍, 周健, 等. 絲膠對(duì)STZ誘導(dǎo)糖尿病大鼠肝臟保護(hù)作用及對(duì)SREBP1c蛋白表達(dá)的影響[J/OL]. 中國(guó)現(xiàn)代醫(yī)學(xué)雜志: 115. http: //scfw. cqut. edu. cn: 80/rwt/CNKI/http/NNYHGLUDN3WXTLUPMW4A/kcms/detail/43.1225.R.20190507.1817.002.html.
LI Qiang, LIANG Xiujun, ZHOU Jian, et al. Effects of sericin on liver protection and expression of SREBP1c protein in diabetic rats induced by STZ[J/OL]. China Journal of Modern Medicine: 115. http://scfw.cqut.edu.cn:80/rwt/CNKI/http/NNYHGLUDN3WXTLUPMW4A/kcms/detail/43.1225.R.20190507.1817.002.html.
[16]張雷, 李東哲, 陳志宏. 絲膠蛋白對(duì)2型糖尿病大鼠腎臟氧化應(yīng)激損傷和PI3K/Akt信號(hào)通路的影響[J]. 中國(guó)老年學(xué)雜志, 2020, 40(4): 831-834.
ZHANG Lei, LI Dongzhe, CHEN Zhihong. Effects of sericin on oxidative stress injury and PI3K/Akt signaling pathway in kidney of type 2 diabetic rats[J]. Chinese Journal of Gerontology, 2020, 40(4): 831-834.
[17]劉東慧, 付文亮, 付秀美, 等. 絲膠對(duì)2型糖尿病大鼠肝臟胰島素PI3K/Akt信號(hào)通路的調(diào)節(jié)作用及其機(jī)制[J]. 吉林大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2020, 46(2): 228-232.
LIU Donghui, FU Wenliang, FU Xiumei, et al. Regulatory effect of sericin on liver insulin PI3K/Akt signaling pathway in rats of type 2 diabetes mellitus and its mechanism[J]. Journal of Jilin University(Medicine Edition), 2020, 46(2): 228-232.
[18]付秀美, 薛景鳳, 付文亮, 等. 絲膠預(yù)處理對(duì)糖尿病大鼠胰島細(xì)胞蛋白表達(dá)的影響[J]. 中國(guó)醫(yī)科大學(xué)學(xué)報(bào), 2012, 41(11): 1007-1010.
FU Xiumei, XUE Jingfeng, FU Wenliang, et al. Effects of sericin pretreatment on the expression of pancreatic islet cell proteins in diabetes rats[J]. Journal of China Medical University, 2012, 41(11): 1007-1010.
[19]劉東慧, 劉美曉, 王小杰, 等. 絲膠對(duì)2型糖尿病大鼠肝臟組織中TNFα和HNF4α表達(dá)的影響[J]. 吉林大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2015, 41(4): 685-689.
LIU Donghui, LIU Meixiao, WANG Xiaojie, et al. Effects of sericin on TNFα and HNF4α expression liver tissue of rats with type 2 diabetes mellitus[J]. Journal of Jilin University(Medicine Edition), 2015, 41(4): 685-689.
[20]郝祥俊, 于曉敏, 宋成軍, 等. 絲膠對(duì)糖尿病大鼠腎臟ERK信號(hào)通路的影響[J]. 中國(guó)醫(yī)科大學(xué)學(xué)報(bào), 2013, 42(1): 60-64.
HAO Xiangjun, YU Xiaomin, SONG Chengjun, et al. Effects of sericin on ERK signaling pathway of diabetic rats′kidney[J]. Journal of China Medical University, 2013, 42(1): 6064.
[21]宋成軍, 楊振軍, 陳志宏. 糖尿病大鼠腎臟PEDF表達(dá)的變化及絲膠的保護(hù)作用[J]. 承德醫(yī)學(xué)院學(xué)報(bào), 2011, 28(3): 233-235.
SONG Chengjun, YANG Zhenjun, CHEN Zhihong. Changes of PEDF expression in kidney of diabetes mellitus rats and the protective effects of sericine[J]. Journal of Chengde Medical University, 2011, 28(3): 233-235.
[22]宋成軍, 郝祥俊, 陳志宏. 絲膠對(duì)糖尿病腎病大鼠腎功能和腎臟TIMP1表達(dá)的影響[J]. 中國(guó)老年學(xué)雜志, 2010, 30(15): 2157-2159.
SONG Chengjun, HAO Xiangjun, CHEN Zhihong. Effects of Sericine on renal function and TIMP1 expression in kidney of diabetic nephropathy rats[J]. Chinese Journal of Gerontology, 2010, 30(15): 2157-2159.
[23]CHEN Z H, SONG C J, FU X M, et al. Effects of sericin pretreatment on the expression of ECM associated protein in the kidney of diabetic nephropathy rats[J]. Journal of China Medical University, 2010, 39(2): 112-115.
[24]楊振軍, 宋成軍, 陳志宏. 糖尿病大鼠腎臟VEGF表達(dá)的變化及絲膠的保護(hù)作用[J]. 承德醫(yī)學(xué)院學(xué)報(bào), 2011, 28(2): 119-121.
YANG Zhenjun, SONG Chengjun, CHEN Zhihong. Changes of VEGF expression in kidney of DM rats and protective effects of sericine[J]. Journal of Chengde Medical University, 2011, 28(2): 119-121.
[25]劉美琴. 家蠶絲膠對(duì)糖尿病大鼠腎臟胞外信號(hào)調(diào)節(jié)激酶信號(hào)轉(zhuǎn)導(dǎo)通路活性的影響[J]. 中國(guó)藥物與臨床, 2014, 14(4): 460-461.
LIU Meiqin. The effect of silkworm sericin on the activity of extracellular signalregulated kinase signal transduction pathway in the kidney of diabetic rats[J]. Chinese Remedies & Clinics, 2014, 14(4): 460-461.
[26]楊娟, 佘美華. FoxO1在2型糖尿病中的作用及其研究進(jìn)展[J]. 中南醫(yī)學(xué)科學(xué)雜志, 2017, 45(3): 307-311.
YANG Juan, SHE Meihua, The role of FoxO1 in type 2 diabetes and its research progress[J]. Medical Science Journal of Central South China, 2017, 45(3): 307-311.
[27]HUNDAL R S, PETERSEN K F, MAYERSON A B, et al. Mechanism by which highdose aspirin improves glucose metabolism in type 2 diabetes[J]. Journal of Clinical Investigation, 2002, 109(10): 1321-1326.
[28]TURNER N, KOWALSKI G M, LESLIE S J, et al. Distinct patterns of tissuespecific lipid accumulation during the induction of insulin resistance in mice by highfat feeding[J]. Diabetologia, 2013, 56(7): 1638-1648.
[29]OKAZAKI Y, KAKEHI S, XU Yonghui, et al. Consumption of sericin reduces serum lipids, ameliorates glucose tolerance and elevates serum adiponectin in rats fed a highfat diet[J]. Bioscience, Biotechnology, and Biochemistry, 2010, 74(8): 1534-1538.
[30]劉東慧, 劉陳霏, 宋妤軒, 等. 絲膠對(duì)2型糖尿病大鼠胰腺Akt的調(diào)節(jié)作用[J]. 承德醫(yī)學(xué)院學(xué)報(bào), 2019, 36(3): 254-256.
LIU Donghui, LIU Chenfei, SONG Yuxuan, et al. Regulating role of sericin on Akt of pancreas in type 2 diabetic rats[J]. Journal of Chengde Medical University, 2019, 36(3): 254-256.
[31]WANG C, CHEN X, DING X, et al. Exendin4 promotes Beta cell proliferation via PI3K/Akt signalling pathway[J]. Cell Physiol Biochem, 2015, 35(6): 2223-2232.
[32]張娟, 趙原, 趙曉宏, 等. PTEN參與小檗堿保護(hù)脂毒性損傷的胰島βTC3細(xì)胞[J]. 現(xiàn)代生物醫(yī)學(xué)進(jìn)展, 2017, 17(5): 810-814.
ZHANG Juan, ZHAO Yuan, ZHAO Xiaohong, et al. PTEN gene participated in protective effects of Berberine on Lipoapoptosis in Pancreatic βTC3 cells[J]. Progress in Modern Biomedicine, 2017, 17(5): 810-814.
[33]楊麗, 姜紅, 許芳, 等. 糖尿病與膳食模式的相關(guān)性分析[J]. 國(guó)外醫(yī)學(xué)(醫(yī)學(xué)地理分冊(cè)), 2017, 38(2): 147-150.
YANG Li, JIANG Hong, XU Fang, et al. A study on the correlation between diabetes and dietary patterns[J]. Foreign Medical Sciences(Section of Medgeography), 2017, 38(2): 147-150.
[34]孫一嬋, 王丹丹, 李東哲, 等. 絲膠對(duì)大鼠INS1細(xì)胞Bcl2蛋白表達(dá)的影響[J]. 承德醫(yī)學(xué)院學(xué)報(bào), 2017, 34(6): 453-455.
SUN Yichan, WANG Dandan, LI Dongzhe, et al. Effects of sericin on expression of Bcl2 protein in rats INS1 cells[J]. Journal of Chengde Medical University, 2017, 34(6): 453-455.
[35]孫一嬋. 絲膠蛋白對(duì)STZ誘導(dǎo)下INS1細(xì)胞細(xì)胞周期相關(guān)因子表達(dá)的調(diào)控作用[D]. 承德: 承德醫(yī)學(xué)院, 2018.
SUN Yichan. Regulation Effects of Sericin Protein on the Expression of Cell Cycle Related Factors in INS1 Cells Induced by Streptozotocin[D]. Chengde: Chengde Medical University, 2018.
[36]KANG G, CHEPURNY O G, RINDLER M J, et al. A cAMP and Ca2+ coincidence detector in support of Ca2+induced Ca2+ release in mouse pancreatic beta cells[J]. Journal of PhysiologyLondon, 2005, 566(1): 173788.
[37]張艷. 絲膠對(duì)2型糖尿病大鼠肝臟損傷的保護(hù)作用[D]. 承德: 承德醫(yī)學(xué)院, 2014.
ZHANG Yan. Protective Effect of Sericin on Liver Injury of Type 2 Diabetic Rats[D]. Chengde: Chengde Medical University, 2014.
[38]YOKOI S, MURAKAMI M, MORIKAWA M, et al. Sericin in the isolating solution improves the yield of islets isolated from the pancreas[J]. Cytotechnology, 2016, 68(6): 2491-2502.
[39]高建梅, 白錦, 滿青青, 等. 蠶絲水解物對(duì)實(shí)驗(yàn)性糖尿病大鼠血糖的調(diào)節(jié)作用[J]. 衛(wèi)生研究, 2000(4): 223-225.
GAO Jianmei, BAI Jin, MAN Qingqing, et al. Effect of silk hydrolysate on the blood glucose metabolism in rats with experimental diabetes[J]. Journal of Hygiene Research, 2000(4): 223-225.
[40]王小杰, 劉美曉, 謝云鵬, 等. 絲膠蛋白對(duì)鏈脲佐菌素誘導(dǎo)胰島細(xì)胞株INS1凋亡相關(guān)因子的影響研究[J]. 中國(guó)全科醫(yī)學(xué), 2017, 20(14): 1697-1701.
WANG Xiaojie, LIU Meixiao, XIE Yunpeng, et al. Effect of sericin on apoptosis related factors in streptozotocininduced INS1 cells[J]. Chinese General Practice, 2017, 20(14): 1697-1701.
[41]劉東波. 絲膠對(duì)2型糖尿病大鼠胰島β細(xì)胞的保護(hù)作用及其機(jī)制[D]. 承德: 承德醫(yī)學(xué)院, 2014.
LIU Dongbo. Protective Effect of Sericin on Islet βCells with Type 2 Diabetic Rats and Its Mechanism[D]. Chengde: Chengde Medical University, 2014.
[42]李健, 劉東慧, 宋成軍, 等. 絲膠對(duì)2型糖尿病大鼠胰島細(xì)胞胰島素蛋白表達(dá)的作用[J]. 中國(guó)老年學(xué)雜志, 2014(6): 1549-1550.
LI Jian, LIU Donghui, SONG Chengjun, et al. Effects of sericine on insulin protein expression in islet cells of type 2 diabetes mellitus rats[J]. Chinese Journal of Gerontology, 2014(6): 1549-1550.
[43]MORIKAWA M, KIMURA T, MURAKAMI M, et al. Rat islet culture in serumfree medium containing silk protein sericin[J]. Journal of HepatoBiliaryPancreatic Surgery, 2009, 16(2): 223.
[44]李愛香. 2型糖尿病患者的脂質(zhì)代謝特點(diǎn)[J]. 基層醫(yī)學(xué)論壇, 2010, 14(1): 86-87.
LI Aixiang. Characteristics of lipid metabolism in patients with type 2 diabetes[J]. The Medical Forum, 2010, 14(1): 86-87.
[45]HOSOOKA T, HOSOKAWA Y, MATSUGI K, et al. The PDK1FoxO1 signaling in adipocytes controls systemic insulin sensitivity through the 5lipoxygenaseleukotriene B4 axis[J]. Proceedings of the National Academy of Sciences, 2020, 117(21): 11674-11684.
[46]FU X M, ZHONG M R, FU W L. Effect of sericine on blood glucose and blood lipid in type 2 diabetes rats[J]. Chinese Journal of Gerontology, 2011, 4: 1.
[47]TANG S, WU W, TANG W, et al. Suppression of Rhokinase 1 is responsible for insulin regulation of the AMPK/SREBP1c pathway in skeletal muscle cells exposed to palmitate[J]. Acta Diabetologica, 2017, 54(2): 110.
[48]KUNZ R I, CAPELASSI A N, ALEGREMallerACP, et al. Sericin as treatment of obesity: morphophysiological effects in obese mice fed with highfat diet[J]. Einstein So Paulo, 2020, 18(35): 19.
[49]付文亮, 張艷, 陳志宏. 絲膠對(duì)糖尿病大鼠膽固醇和甘油三酯的調(diào)節(jié)作用[J]. 承德醫(yī)學(xué)院學(xué)報(bào), 2013, 30(3): 183-185.
FU Wenliang, ZHANG Yan, CHEN Zhihong. Regulating effects of sericine on cholesterol and triglyceride of diabetes mellitus rats[J]. Journal of Chengde Medical University, 2013, 30(3): 183-185.
[50]CHOW F, OZOLS E, NIKOLIC D J, et al. Macrophages in mouse type 2 diabetic nephropathy: correlation with diabetic state and progressive renal injury[J]. Kidney International, 2004, 65(1): 116-128.
[51]ZHAO L, ZHENG Q, ZOU Y, et al. Chitooligosaccharidebiguanidine alleviates liver injury and insulin resistance in type 2 diabetic rats[J]. StarchStrke, 2020, 72(1): 1900-203.
[52]楊元慶, 張智龍, 李思, 等. 中醫(yī)藥治療糖尿病腎病的研究進(jìn)展[J]. 內(nèi)蒙古中醫(yī)藥, 2018, 37(1): 88-90.
YANG Yuanqing, ZHANG Zhilong, LI Si, et al. Research progress of Chinese medicine treatment of diabetic nephropathy[J]. Inner Mongolia Journal of Traditional Chinese Medicine, 2018, 37(1): 88-90.
[53]宋妤軒, 王丹丹, 李東哲, 等. 絲膠蛋白對(duì)2型糖尿病模型大鼠腎臟細(xì)胞外信號(hào)調(diào)節(jié)激酶表達(dá)的影響[J]. 中國(guó)老年學(xué)雜志, 2019, 39(16): 4050-4053.
SONG Yuxuan, WANG Dandan, LI Dongzhe, et al. Effects of sericine on extracellular signal regulated kinase expression in kidney of type 2 diabetes mellitus rats[J]. Chinese Journal of Gerontology, 2019, 39(16): 4050-4053.
[54]PERKOVIC V, JARDINE M J, NEAL B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy[J]. New England Journal of Medicine, 2019, 380(24): 2295-2306.
[55]ENEPEEL S C, COOKE K, WADSWORTH S, et al. MAPK pathway inhibition induces MET and GAB1 levels, priming BRAF mutant melanoma for rescue by hepatocyte growth factor[J]. Oncotarget, 2017, 8(11): 17795-17809.