盧園 陳海南 楊舟 薛惠天 王蘭蘭 孫夢(mèng)龍 彭亮
〔摘要〕 目的 觀察小魚(yú)際滾法干預(yù)新西蘭白兔骨骼肌急性鈍挫傷組織機(jī)化期的生長(zhǎng)/分化因子8 (growth differentiation factor 8, GDF-8)表達(dá)、受體活化型通路限制性蛋白Smad2、Smad3的表達(dá)水平以及Smad2的磷酸化水平(p-Smad2),探究小魚(yú)際滾法干預(yù)骨骼肌急性鈍挫傷組織機(jī)化期的可能作用機(jī)制。方法 采用隨機(jī)數(shù)字表法將18只兔分為空白組、模型組、滾法組,每組6只。采用自制重力錘打擊裝置制備新西蘭白兔骨骼肌急性鈍挫傷模型,于造模后第5天進(jìn)行干預(yù),空白組和模型組進(jìn)行捆綁,滾法組由經(jīng)過(guò)專(zhuān)門(mén)培訓(xùn)的專(zhuān)員進(jìn)行小魚(yú)際滾法干預(yù),皆為上午下午各1次,5 min/次,共3 d。干預(yù)結(jié)束后,觀察蘇木精-伊紅(hematoxylin-eosin, HE)染色組織形態(tài)學(xué)變化,采用蛋白質(zhì)印跡法(Western blot, WB)檢測(cè)GDF-8、p-Smad2、Smad2/3蛋白相對(duì)表達(dá)量。結(jié)果 HE染色結(jié)果顯示,模型組的股四頭肌肌束間不規(guī)則結(jié)締樣組織明顯增多,肌纖維排列紊亂,數(shù)量減少、變小,滾法組存在少量結(jié)締組織,肌束排列緊密,肌纖維排列較為整齊,大小近似。WB檢測(cè)顯示,與空白組比較,模型組和滾法組的GDF-8表達(dá)都升高(P<0.01),滾法組表達(dá)水平低于模型組(P<0.01);Smad2/3在各組的蛋白表達(dá)一致(P>0.05);與空白組比較,模型組的p-Smad2蛋白表達(dá)、p-Smad2/Smad2/3的灰度比值都升高(P<0.01),滾法組均顯著低于模型組(P<0.01)。結(jié)論 小魚(yú)際滾法在兔急性鈍挫傷組織機(jī)化期可能通過(guò)抑制GDF-8/Smad2信號(hào)通路達(dá)到延緩組織纖維化、促進(jìn)肌纖維生長(zhǎng)以及加強(qiáng)骨骼肌修復(fù)的目的。
〔關(guān)鍵詞〕 骨骼肌損傷;鈍挫傷;推拿;小魚(yú)際滾法;GDF-8;Smad2
〔中圖分類(lèi)號(hào)〕R244.1? ? ? ?〔文獻(xiàn)標(biāo)志碼〕A? ? ? ?〔文章編號(hào)〕doi:10.3969/j.issn.1674-070X.2021.09.006
The Effects of Hypothenar Rolling Method on GDF-8/Smad2 in Tissue Mechanization
Stage of Acute Blunt Rubbing Injury in Skeletal Muscle of Rabbit
LU Yuan, CHEN Hainan, YANG Zhou, XUE Huitian, WANG Lanlan, SUN Menglong, PENG Liang*
(College of Acupuncture and Massage, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China)
〔Abstract〕 Objective To investigate the effects of hypothenar rolling manipulation on the expression of growth differentiation factor 8 (GDF-8), receptor activated pathway limiting protein Smad2, Smad3, phosphorylation of Smad2 (p-Smad2) in skeletal muscle of New Zealand white rabbits during the tissue mechanization stage of acute blunt muscle contusion, and to explore the possible mechanism of hypothenar rolling in the intervention of skeletal muscle acute blunt trauma tissue during the tissue mechanization stage. Methods 18 rabbits randomly divided into blank group, model group, manipulation group according to random number table method, with 6 rabbits in each group. All rabbits except control group induced skeletal muscle acute blunt contusion model of New Zealand white rabbits by manufacture of self-made gravity hammer striking device. Different intervention methods were performed after 5th day. Blank group and model group were bundled, manipulation group was intervened by the specially trained specialists in the hypothenar rolling method, once in the morning and afternoon, 5 minutes/time for 3 days. After the intervention, hematoxylin-eosin (HE) staining was observed, and the relative protein expression levels of GDF-8, p-Smad2 and Smad2/3 were detected by Western blot (WB). Rseults HE staining results showed that the irregular connective tissue between the muscle bundles of the quadriceps femoris in the model group was significantly increased, and the muscle fibers were disordered, and the number was reduced or decreased. In the manipulation group, there was a small amount of connective tissue, the muscle bundles were closely arranged, and the muscle fibers were orderly and similar in size. WB assay showed that compared with blank group, GDF-8 expression was increased in both model group and manipulation group (P<0.01), while the expression level in manipulation group was lower than that in model group (P<0.01). The protein expression of Smad2/3 was consistent in all groups (P>0.05). Compared with blank group, p-Smad2 protein expression and p-Smad2/Smad2/3 gray ratio in model group were increased (P<0.01), while manipulation group was significantly lower than model group (P<0.01). Conclusion The hypothenar rolling method may delay tissue fibrosis, promote muscle fiber growth and enhance skeletal muscle repair by inhibiting GDF-8/Smad2 signaling pathway during the tissue mechanization stage of acute blunt contusion in rabbits.
〔Keywords〕 muscle injury; blunt injury; Tuina; hypothenar rolling manipulation; GDF-8; Smad2
骨骼肌大約占人體質(zhì)量的40%,為運(yùn)動(dòng)系統(tǒng)提供動(dòng)力。骨骼肌急性損傷后一般需經(jīng)歷炎癥期、組織機(jī)化期(肌衛(wèi)星細(xì)胞增殖分化期)和瘢痕期。骨骼肌修復(fù)階段防止其過(guò)度纖維化是損傷后康復(fù)的關(guān)鍵,成肌細(xì)胞增殖分化期在其中起到重要作用[1-3]。生長(zhǎng)/分化因子8(growth differentiation factor 8, GDF-8)又稱為肌肉生長(zhǎng)抑制素(myostatin, MSTN),是轉(zhuǎn)化生長(zhǎng)因子-β(transforming growth factor-β, TGF-β)超家族中重要成員,由骨骼肌分泌,在肌肉中特異性表達(dá),是肌肉生長(zhǎng)的重要負(fù)性調(diào)節(jié)因子。TGF-β成員(TGF-β1和MSTN)通過(guò)不同的途徑[4-6]激活Smad家族蛋白中受體活化型通路限制性蛋白Smad2和Smad3進(jìn)而發(fā)揮作用。研究[7-10]證明,推拿按摩干預(yù)急性鈍挫傷后的實(shí)驗(yàn)動(dòng)物,可以有效抑制TGF-β、Myostatin-Smad2/3等通路,減少Smad2/3、GDF-8等表達(dá),降低其活性,以進(jìn)一步達(dá)到幫助骨骼肌恢復(fù)、防止其過(guò)度纖維化的目的。艾玨萍等[11]認(rèn)為,小魚(yú)際滾法可以減少炎性細(xì)胞,促進(jìn)修復(fù)受損骨骼肌。本研究利用新西蘭白兔骨骼肌急性鈍挫傷模型,觀察小魚(yú)際滾法對(duì)兔急性鈍挫傷后組織機(jī)化期的影響,探討其作用機(jī)制是否與GDF-8/Smad2/3通路相關(guān)。
1 材料與方法
1.1? 實(shí)驗(yàn)動(dòng)物與分組
選取湖南中醫(yī)藥研究院實(shí)驗(yàn)動(dòng)物中心提供的健康清潔級(jí)成年新西蘭白兔18只(3月齡、雌雄各半),單籠飼養(yǎng),飼養(yǎng)環(huán)境為溫度20~25 ℃,濕度50%~70%。根據(jù)隨機(jī)數(shù)字表法將其編號(hào),并分為空白組、模型組、滾法組,每組6只。
1.2? 主要試劑與儀器
脫脂奶粉(中國(guó)北京普利萊基因技術(shù)有限公司,P1622);RIPA裂解液(中國(guó)上海碧云天生物技術(shù)有限公司,P0013B);顯影液(中國(guó)上海佳信科技有限公司,BW-61);定影液(中國(guó)上海佳信科技有限公司,BW-62);Smad2/3抗體(英國(guó)abcam公司,ab63672);p-Smad2抗體(英國(guó)abcam公司,ab188334);GDF-8抗體(美國(guó)proteintech公司,19142-1-AP);GAPDH抗體(美國(guó)proteintech公司,10494-1-AP)。
顯微鏡(麥克奧迪實(shí)業(yè)集團(tuán)有限公司,BA210T);電子天平(美國(guó)雙杰兄弟有限公司,JJ224BC);臺(tái)式冷凍離心機(jī)(中國(guó)湖南湘儀實(shí)驗(yàn)室儀器開(kāi)發(fā)有限公司,H1650R);切片機(jī)(浙江金華益迪試驗(yàn)器材,YD-315);電泳儀(中國(guó)北京六一生物科技有限公司)。
1.3? 模型制備
參考并改進(jìn)侯懿烜等[7]的方法,采用自制重力錘打擊裝置制備骨骼肌急性鈍挫傷新西蘭白兔模型。重力錘重0.85 kg,打擊面為直徑1.5 cm的平滑木制圓柱,不銹鋼導(dǎo)向管中空,長(zhǎng)30 cm,直徑1.8 cm。方法:新西蘭白兔適應(yīng)性喂養(yǎng)7 d后,將其右后肢內(nèi)側(cè)剃毛,腹面朝上綁于試驗(yàn)臺(tái),充分暴露實(shí)驗(yàn)兔右后肢股四頭肌及其相鄰肌肉,打擊點(diǎn)為股四頭肌肌腹中段,以打擊點(diǎn)中點(diǎn)為圓心、1 cm為直徑畫(huà)圈標(biāo)記。操作前于打擊部位覆蓋紗布防止皮膚局部受損,操作由專(zhuān)人控制,將重力錘沿導(dǎo)向管自由下落,同一部位連續(xù)打擊6次,高度40 cm,打擊面積約為1.77 cm2,動(dòng)能3.33 J,沖量2.38 Ns。另有實(shí)驗(yàn)人員用雙手拇食指固定實(shí)驗(yàn)兔股四頭肌上下端防止其掙扎造成打擊點(diǎn)移位。造模成功標(biāo)準(zhǔn):打擊部位皮膚出現(xiàn)明顯腫脹及淤血,無(wú)皮膚受損及骨折,觸碰實(shí)驗(yàn)兔時(shí)有躲避反射。
1.4? 干預(yù)方法與標(biāo)本取材
據(jù)本團(tuán)隊(duì)前期探索[12],造模后第5天實(shí)驗(yàn)兔進(jìn)入組織機(jī)化期??瞻捉M和模型組于造模后第5天開(kāi)始捆綁,滾法組于造模后第5天由專(zhuān)人進(jìn)行小魚(yú)際滾法操作,上午下午各1次,5 min/次,共3 d。滾法操作參考《推拿手法學(xué)》[13],干預(yù)前由專(zhuān)人(針灸推拿學(xué)專(zhuān)業(yè)研究生)先在ZTC-II 按摩手法測(cè)試儀訓(xùn)練并達(dá)到標(biāo)準(zhǔn)滾法參數(shù):前滾后滾著力輕重比3∶1,峰值壓力0.5 kg重力,操作頻率40 次/min。造模后第8天進(jìn)行標(biāo)本取材,采取心內(nèi)注射空氣處死各組兔后取樣,觀察實(shí)驗(yàn)兔后肢右股四頭肌肌腹中段,選取其損傷最嚴(yán)重處的病灶組織,大小約為1 cm×1 cm×0.5 cm。
1.5? 形態(tài)學(xué)檢測(cè)
各組兔右側(cè)后肢股四頭肌標(biāo)本先60 ℃烤片12 h,再用切片機(jī)切片,將其置于二甲苯中3次、20 min/次,再依次進(jìn)行梯度酒精脫水,每級(jí)放置10 min,蒸餾水浸洗5 min后進(jìn)行蘇木精-伊紅(hematoxylin-eosin, HE)染色,最后置于二甲苯2次、10 min/次,中性樹(shù)膠封片、顯微鏡觀察、采集圖像。
1.6? 蛋白質(zhì)印跡法(Western blot,WB)檢測(cè)
首先對(duì)標(biāo)本進(jìn)行蛋白提取,電子天平稱取0.030 g組織,剪碎、研磨,冰上裂解10 min,4 ℃,將上清液移入1.5 mL離心管中離心(12 000 r/min,13.5 cm)15 min。制膠并計(jì)算配置上樣蛋白以及buffer混合液等放入冰盒中速冷備用。電泳與轉(zhuǎn)膜:電泳恒定電壓78 V,時(shí)間為150 min,待溴酚藍(lán)電泳至膠底部時(shí)終止電泳。轉(zhuǎn)膜300 mA恒定電流,p-Smad2、GDF-8約80 min,Smad2/3、GAPDH約60 min。轉(zhuǎn)膜完畢后,將膜取出放入1×PBST中洗1次。封閉:1×PBST配制5%脫脂奶粉,將膜浸入后,室溫放置120 min,4 ℃過(guò)夜。一抗孵育:用1×PBST將一抗按照相應(yīng)比例稀釋?zhuān)琒mad2/3(1∶1 000)、p-Smad2(1∶3 000)、GDF-8(1∶750)、GAPDH(1∶3 000)孵育,室溫放置90 min,孵育結(jié)束,1×PBST洗3次,10 min/次。二抗孵育:1×PBST稀釋HRP標(biāo)記的二抗(HRP goat anti-mouse IgG 1∶5 000,HRP goat anti-rabbit IgG 1∶6 000)將稀釋后的二抗與膜共同室溫孵育60 min。孵育結(jié)束,1×PBST洗3次,10 min/次。ECL顯色曝光:使用ECL化學(xué)發(fā)光液與膜孵育1 min,用濾紙吸盡液體,用塑封膜將膜包裹雜交膜,在暗盒內(nèi)與X膠片曝光5~120 min;顯影沖洗。
1.7? 統(tǒng)計(jì)學(xué)方法
本研究所得數(shù)據(jù)以“x±s”表示,采用SPSS 26.0統(tǒng)計(jì)學(xué)軟件進(jìn)行數(shù)據(jù)分析。服從正態(tài)分布采用單因素方差分析,組間數(shù)據(jù)方差齊時(shí),兩兩比較采用Bonferroni檢驗(yàn),方差不齊時(shí)采用Games-Howel檢驗(yàn)。均以P<0.05表示差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1? 各組兔形態(tài)學(xué)結(jié)果比較
空白組的兔骨骼肌HE染色圖中見(jiàn)肌纖維、肌束形態(tài)完整,且有少量結(jié)締組織,肌細(xì)胞間排列整齊、大小形態(tài)近似;模型組見(jiàn)肌束間隔增大,不規(guī)則結(jié)締組織明顯增多,存在少量水腫,無(wú)出血及炎癥,肌纖維排列紊亂,滾法組見(jiàn)肌束間隔小于模型組,產(chǎn)生結(jié)締組織數(shù)量少,無(wú)水腫、出血及炎癥,肌肉細(xì)胞排列較為規(guī)則,大小形狀相似。見(jiàn)圖1。
2.2? 各組兔GDF-8、p-Smad2、Smad2/3等的表達(dá)比較
與空白組比較,模型組和滾法組的GDF-8表達(dá)均升高(P<0.01),滾法組表達(dá)水平低于模型組(P<0.01);Smad2/3在各組的蛋白表達(dá)一致(P>0.05);與空白組比較,模型組的p-Smad2蛋白表達(dá)、p-Smad2/Smad2/3的灰度比值均升高(P<0.01),滾法組顯著低于模型組(P<0.01),p-Smad2/Smad2/3的灰度比值均值分別為:17.67%、62.67%、33.67%。見(jiàn)圖2、表1。
3 討論
骨骼肌急性鈍挫傷后可進(jìn)行自然的修復(fù),一般表現(xiàn)由水腫、炎癥、出血、肌纖維壞死、成纖維細(xì)胞及肌衛(wèi)星細(xì)胞增殖分化、肌管和血管再生、結(jié)締組織增多、肉芽組織及瘢痕組織形成等。鈍挫傷的骨骼肌以瘢痕修復(fù)的方式愈合,肌肉嚴(yán)重或廣泛受損的情況下,成纖維細(xì)胞過(guò)度增生,瘢痕組織形成稠密,嚴(yán)重影響肌肉組織再生,導(dǎo)致骨骼肌收縮功能?chē)?yán)重減低,極大影響患者的日常生活。肌形成和纖維瘢痕形成之間的平衡是修復(fù)能否完全的關(guān)鍵,在纖維瘢痕形成快于肌形成的情況下會(huì)造成修復(fù)不全[8]。因此,促進(jìn)肌細(xì)胞再生和抑制延緩細(xì)胞外纖維瘢痕的形成是促進(jìn)骨骼肌鈍挫傷后修復(fù)的重要研究方向。
GDF-8是TGF-β超家族中重要一員,其在成熟個(gè)體的骨骼肌生長(zhǎng)中起抑制作用,是骨骼肌質(zhì)量的負(fù)調(diào)節(jié)因子,與成肌細(xì)胞和衛(wèi)星細(xì)胞的增殖分化密切相關(guān)[14-18]。GDF-8強(qiáng)烈抑制骨骼肌發(fā)育的特點(diǎn)廣泛存在于人和哺乳動(dòng)物當(dāng)中[1-2, 19-21]。多項(xiàng)研究[2, 20, 22-23]表明,肌生長(zhǎng)抑制素表達(dá)減少或活性降低皆可使肌纖維增殖或肥大,增加骨骼肌的質(zhì)量。Abo等[24]研究結(jié)果表明,肌肉生長(zhǎng)抑制素缺乏的小鼠肌細(xì)胞增生肥大,骨骼肌質(zhì)量增加,而過(guò)表達(dá)的小鼠肌纖維數(shù)量減少、變小,肌肉質(zhì)量比正常野生型小鼠輕18%~24%。Smad蛋白家族由9種蛋白組成,其中Smad2、Smad3蛋白是受體活化型通路限制性蛋白。Smad2/3在細(xì)胞內(nèi)直接由TGF-β激活,被磷酸化后與Smad4形成異聚體轉(zhuǎn)位至細(xì)胞核進(jìn)行相關(guān)的轉(zhuǎn)錄翻譯[25]。Trendelenburg、Welle等[17, 26-28]認(rèn)為,降低p-Smad2/3的表達(dá)可以促進(jìn)肌肉細(xì)胞中的蛋白質(zhì)合成。Cortez等[27]研究發(fā)現(xiàn),p-Smad2蛋白表達(dá)增加會(huì)減少肌肉質(zhì)量。減少p-Smad2表達(dá)、降低Smad2蛋白的活性成為骨骼肌修復(fù)的重要方向之一。肌肉大小由肌纖維數(shù)量和大小共同決定,數(shù)量在發(fā)育時(shí)被設(shè)定,大小則隨生命過(guò)程發(fā)生適應(yīng)性改變,GDF-8在這兩方面均發(fā)揮作用。GDF-8/Smad2/3信號(hào)通路在肌肉發(fā)育的負(fù)調(diào)節(jié)中起重要作用[15]。抑制肌生長(zhǎng)抑制素可以減少Smad2的磷酸化,同時(shí)促進(jìn)肌肉中蛋白的合成[28]。
本研究的結(jié)果顯示,3組中GDF-8的表達(dá)依次為模型組>滾法組>空白組,可以看出急性鈍挫傷后自然恢復(fù)的兔肌肉生長(zhǎng)抑制素呈現(xiàn)高表達(dá)。在HE染色中,肌纖維排列松散,數(shù)量較少、變小,結(jié)締樣組織增多,滾法干預(yù)的組別雖然存在結(jié)締組織但較少,肌細(xì)胞和肌束間排列較為整齊緊密,大小近似,整體形態(tài)與正常組相似。各組的Smad2/3蛋白總量并未見(jiàn)明顯的改變,但滾法干預(yù)組的Smad2的活性卻遠(yuǎn)遠(yuǎn)低于模型組(P<0.01),p-Smad2/Smad2/3的比值也遠(yuǎn)低于模型組(P<0.01),可以認(rèn)為小魚(yú)際滾法干預(yù)兔骨骼肌急性鈍挫傷后組織機(jī)化期可以降低GDF-8的表達(dá),并且通過(guò)改變Smad2的蛋白結(jié)構(gòu)以降低損傷后組織機(jī)化期p-Smad2的表達(dá)水平及Smad2的活性,即可通過(guò)抑制GDF-8/Smad2通路以達(dá)到延緩組織纖維化,促進(jìn)骨骼肌細(xì)胞生長(zhǎng)、肌肉修復(fù)的目的。但在分子層面需要更進(jìn)一步的研究探索。
參考文獻(xiàn)
[1] MCPHERRON A C,LAWLER A M,LEE S J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member[J]. Nature, 1997, 387(6628): 83-90.
[2] MCPHERRON A C, LEE S J. Double muscling in cattle due to mutations in the myostatin gene[J]. Proceedings of the National Academy of Sciences of the United States of America,1997, 94(23): 12457-12461.
[3] LEE S J. Regulation of muscle mass by myostatin[J]. Annual Review of Cell and Developmental Biology, 2004, 20: 61-86.
[4] SARTOR R, MILAN G, PATRON M, et al. Smad2 and 3 transcription factors control muscle mass in adulthood[J]. Cell Physiology, 2009, 296(6): 1248-1257.
[5] BURKS T N, COHN R D. Role of TGF-β signaling in inheritedand acquired myopathies[J]. Burks Cohn Skeletal Muscle,2011, 1: 19.
[6] LIU D, BLACK B L, DERYNCK R. TGF-β inhibits musclediff?
erentiation through functional repression of myogenictranscription factors by Smad3[J]. Genes & Development, 2001, 15: 2950-2966.
[7] 侯懿烜,柳滿然,余? 敏,等.按摩促進(jìn)兔股四頭肌損傷修復(fù)的體內(nèi)研究[J].中國(guó)修復(fù)重建外科雜志,2012,26(3):346-351.
[8] 王榮國(guó).電針促進(jìn)家兔骨骼肌鈍器傷后再生的作用和機(jī)制研究[D].北京:北京中醫(yī)藥大學(xué),2012.
[9] 龐? 賡,曾文赟,黃? 慧,等.推拿聯(lián)合電針療法對(duì)大鼠急性骨骼肌鈍挫傷后纖維化的影響[J].時(shí)珍國(guó)醫(yī)國(guó)藥,2020,31(9):2274-2277.
[10] 楊之雪,朱正威,賀? 舟,等.推拿聯(lián)合跑臺(tái)訓(xùn)練對(duì)急性骨骼肌損傷大鼠肌蛋白代謝相關(guān)因子的影響[J].中華物理醫(yī)學(xué)與康復(fù)雜志,2020,42(5):385-391.
[11] 艾玨萍,羅? 婷,吳安林,等.小魚(yú)際滾法對(duì)組織機(jī)化期骨骼肌鈍性損傷家兔Fibronectin-1與CTGF-1表達(dá)的影響[J].湖南中醫(yī)藥大學(xué)學(xué)報(bào),2020,40(2):204-208.
[12] 吳安林,艾玨萍,謝秀惠,等.兔急性骨骼肌損傷模型的建立及分期確定[J].山西中醫(yī)藥大學(xué)學(xué)報(bào),2020,21(4):257-259.
[13] 趙? 毅,季? 遠(yuǎn).推拿手法學(xué)[M].北京:中國(guó)中醫(yī)藥出版社,2016: 200.
[14] THOMAS M, LANGLEY B, BERRY C, et al. Myostatin,? a negative regulator of muscle growth,? functions by inhibiting myoblast proliferation[J]. Journal of Biological Chemistry,2000, 275(51): 40235-40243.
[15] LANGLEY B, THOMAS M, BISHOP A, et al. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression[J]. Journal of Biological Chemistry, 2002, 277(51): 49831-49840.
[16] MCCROSKERY S, THOMAS M, MAXWELL L, et al. Myostatin negatively regulates satellite cell activation and self-renewal[J].Journal of Cell Biology, 2003, 162(6):1135-1147.
[17] TRENDELENBURG A U, MEYER A, ROHNER D, et al. Myostatin reduces Akt/TORC1/p70S6K signaling,? inhibiting myoblast
differentiation and myotube size[J]. Cell Physiology, 2009, 296(6): 1258-1270.
[18] BEYER T A, NARIMATSU M, WEISS A, et al. The TGF-β superfamily in stem cell biology and early mammalian embryonic development[J]. Biochimica et Biophysica Acta, 2013, 1830(2): 2268-2279.
[19] GROBET L, MARTIN L J, PONCELET D, et al. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle[J]. Nature Genetics, 1997, 17(1): 71-74.
[20] SCHUELKE M, WAGNER K R, STOLZ L E, et al. Myostatin mutation associated with gross muscle hypertrophy in a child[J]. New England Journal of Medicine, 2004, 350(26): 2682-2688.
[21] CLOP A, MARCQ F, TAKEDA H, et al.A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep[J]. Nature Genetics, 2006, 38(7):813-818.
[22] KAMBADUR R, SHARMA M, SMITH T P, et al. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle[J]. Genome Research, 1997, 7(9): 910-916.
[23] MOSHER D S, QUIGNON P, BUSTAMANTE C D, et al.A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs[J]. PLoS Genetics, 2007, 3(5): e79.
[24] ABO T, IIDA R H, KANEKO S, et al. IGF and myostatin pathways are respectively induced during the earlier and the later stages of skeletal muscle hypertrophy induced by clenbuterol, a β-adrenergic agonist[J]. Cell Biochemistry and Function, 2012, 30(8): 671-676.
[25] LIN X, CHEN Y, MENG A, et al. Termination of TGF-beta superfamily signaling through SMAD dephosphorylation--a functional genomic view[J]. Journal of Genetics and Genomics, 2007, 34(1): 1-9.
[26] WELLE S L. Myostatin and muscle fiber size. Focus on "Smad2 and 3 transcription factors control muscle mass in adulthood" and "Myostatin reduces Akt/TORC1/p70S6K signaling,? inhibiting myoblast differentiation and myotube size"[J]. Cell Physiology, 2009, 296(6): 1245-1247.
[27] CORTEZ-TOLEDO O, SCHNAIR C, SANGNGERN P, et al.Nur77 deletion impairs muscle growth during developmental
myogenesis and muscle regeneration in mice[J]. Plos One, 2017, 12(2): e0171268.
[28] CHANG F, FANG R, WANG M, et al. The transgenic expression of human follistatin-344 increases skeletal muscle mass in pigs[J]. Transgenic Research, 2017, 26(1): 25-36.
湖南中醫(yī)藥大學(xué)學(xué)報(bào)2021年9期