国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

高溫液滴流輻射換熱及蒸發(fā)特性

2021-10-09 14:24:30楊林翼王成龍張大林蘇光輝田文喜秋穗正
原子能科學(xué)技術(shù) 2021年10期
關(guān)鍵詞:工質(zhì)液滴光學(xué)

楊林翼,秦 浩,王成龍,張大林,蘇光輝,田文喜,秋穗正

(西安交通大學(xué) 核科學(xué)與技術(shù)學(xué)院,陜西 西安 710049)

隨著空間堆趨向于高參數(shù)、大功率方向發(fā)展,其產(chǎn)生的廢熱也迅速增多,如果采用傳統(tǒng)的輻射散熱器,可能由于輻射器質(zhì)量過重而無法滿足航天需求[1]。液滴輻射器(LDR)是大功率航天器實(shí)現(xiàn)余熱排出的一種理想形式[2-4]。LDR通過大量亞毫米級(jí)液滴在空間中輻射換熱來實(shí)現(xiàn)余熱釋放,具有很大的比換熱面積和較快的換熱速度,且在太空中不需過多的鎧裝保護(hù)。這些優(yōu)點(diǎn)是其他類型的散熱器所不具有的。LDR的裝載工質(zhì)對(duì)于其散熱性能有著很重要的影響[5],本文針對(duì)目前最具有應(yīng)用前景的矩形LDR[6],對(duì)其液滴流的輻射換熱與蒸發(fā)特性進(jìn)行研究,開發(fā)特性分析程序,分析不同因素對(duì)液滴流輻射換熱及蒸發(fā)特性的影響,從而得到LDR的熱設(shè)計(jì)優(yōu)化準(zhǔn)則。

1 數(shù)學(xué)物理模型

LDR工作原理示意圖如圖1所示。液滴流在吸收廢熱之后流入液滴發(fā)生器,液滴發(fā)生器通過其內(nèi)部的噴嘴微單元陣列將工質(zhì)以多束液滴的方式噴射而出向液滴收集器飛去,在飛行的過程中形成液滴層,通過輻射將熱量排放至外部深冷空間。之后,液滴經(jīng)液滴收集器匯集,由泵再次送入換熱器中進(jìn)行換熱,循環(huán)往復(fù)[7]。基于LDR的工作原理和工作環(huán)境,作出下列假設(shè):1) 液滴層在穩(wěn)態(tài)工作下可視為等效均勻介質(zhì);2) 液滴層內(nèi)部的輻射傳熱視為灰體輻射傳熱;3) 液滴的形狀為球形,內(nèi)部不存在溫度梯度;4) 不考慮宇宙中其他天體輻射對(duì)液滴層的影響。

圖1 LDR工作原理示意圖Fig.1 Working principle of LDR

1.1 液滴層輻射換熱模型

將液滴層沿x、y、z方向進(jìn)行劃分,劃分為若干個(gè)控制體,劃分方式如圖2所示。由于z方向的尺度遠(yuǎn)大于x和y方向的尺度,因此可認(rèn)為z方向上液滴層溫度是均勻的。

圖2 輻射換熱模型示意圖Fig.2 Schematic of radiation heat transfer model

液滴層形狀特征可用光學(xué)厚度κD[8]來表示:

κD=NsD

(1)

式中:N為粒子數(shù)密度,表示單位體積內(nèi)液滴個(gè)數(shù);s為液滴投影面積;D為液滴層厚度。

每個(gè)控制體均應(yīng)滿足能量守恒,即每個(gè)控制體的內(nèi)能減少量等于控制體向外輻射的熱量,因此可得到每個(gè)控制體的能量守恒方程[9]:

(2)

式中:ρLS為液滴層密度;cLS為液滴層比熱容;Ti為第i個(gè)控制體的溫度;qir為第i個(gè)控制體熱輻射損失的熱量;α為吸收系數(shù);σs為散射系數(shù)。

初始條件為:

Ti(κ,t=0)=T0

(3)

式(2)中右側(cè)熱輻射流密度偏微分項(xiàng)?qir/?κ的表達(dá)式[10]為:

E1(|κ-κ*|)dκ*-4πI(κ,t)

(4)

I(κ,t)為液滴層的源函數(shù),其表達(dá)式為:

(5)

式中:Ω為散射反射率,Ω=σs/(σs+α);σ為斯忒藩-玻爾茲曼常數(shù)。

飛行過程中每個(gè)控制體內(nèi)的工質(zhì)在單位時(shí)間內(nèi)的溫度變化為ΔT,則其對(duì)外輻射能量Δq的表達(dá)式[11]為:

Δq=cmiΔT

(6)

式中:c為液滴比熱容;mi為控制體質(zhì)量。

1.2 液滴層蒸發(fā)模型

LDR工作在廣闊的太空中,因此可認(rèn)為蒸發(fā)散逸的分子不會(huì)再回到液滴層中,且蒸發(fā)主要發(fā)生在液滴層的厚度方向,飛行方向的蒸發(fā)損失相較于厚度方向可忽略不計(jì)。

假設(shè)1個(gè)光學(xué)厚度為κD的液滴層,則任意光學(xué)厚度κ1上的1個(gè)控制體中,其質(zhì)量的變化受兩方面影響,一方面為0~κ1液滴層蒸發(fā)產(chǎn)生且經(jīng)過κ1處的液滴層時(shí)所滯留的液滴,另一方面為光學(xué)厚度在κ1~κD處液滴層中逸出液滴。因此可得下式[12]:

(7)

蒸發(fā)率Eev(κ,t)的表達(dá)式[13]為:

(8)

式中:cd為凝結(jié)系數(shù),在入射到液滴表面的粒子不反射的情況下,cd=1;M為液滴分子的摩爾質(zhì)量;T為液滴溫度;R為理想氣體常數(shù);pV為液滴飽和蒸氣壓。

式(8)為在氣液平衡的條件下推導(dǎo)而得,但蒸發(fā)狀態(tài)下,蒸發(fā)速度僅與液滴的表面形狀和溫度有關(guān),所以該式依然適用,同時(shí),因液滴自身所具有的曲率半徑會(huì)導(dǎo)致液滴的飽和蒸氣壓較水平面液滴飽和蒸氣壓p1大,p1與有曲率半徑的pV之間存在如下關(guān)系[14]:

(9)

式中:β為液滴表面張力;ρ為液滴工質(zhì)密度;r為液滴的半徑。

在給定時(shí)間t0的情況下,y=vt0處單位時(shí)間、單位面積上的液滴層蒸發(fā)損失速率為:

(10)

LDR在穩(wěn)態(tài)工作條件下,液滴層的各項(xiàng)工作特性應(yīng)以沿y方向上的液滴層中心軸線對(duì)稱,以該軸線作分界面,液滴層上下兩部分的各項(xiàng)性能參數(shù)應(yīng)對(duì)稱一致,則T(κD-κ)=T(κ)、Eev(κD-κ)=Eev(κ)。所以,式(10)可簡化為:

(11)

對(duì)qLOSS進(jìn)行積分,即可得到一定時(shí)間段內(nèi)飛行長度為y=vt0的液滴層蒸發(fā)損失速率QLOSS:

(12)

LDR在實(shí)際運(yùn)行中加載的液滴工質(zhì)稍多于所需的液滴工質(zhì)量,額外加載的工質(zhì)決定了液滴層的壽命。假設(shè)系統(tǒng)額外加載10%的液滴層工質(zhì),液滴飛行速度為10 m/s,系統(tǒng)壽命可寫為:

tlife=10%ρLSDvt/QLOSS

(13)

式中:v為液滴飛行速度;t為飛行時(shí)間。

2 程序開發(fā)及校核

2.1 LDFAC程序開發(fā)

基于上述數(shù)學(xué)物理模型,采用FORTRAN編程開發(fā)了高溫液滴流輻射換熱及蒸發(fā)特性分析程序LDFAC(圖3)。程序采用有限元方法對(duì)模型進(jìn)行求解。

圖3 LDFAC計(jì)算流程Fig.3 Calculation process for LDFAC

程序計(jì)算流程如下:首先通過用戶輸入,獲取LDR的運(yùn)行參數(shù)、液滴物性參數(shù)和程序計(jì)算所需參數(shù)。之后設(shè)定沿飛行方向上第1列液滴層的初始溫度T0和源函數(shù)I(κ,t)的迭代初始值I(κ,t)(0)。隨后進(jìn)入計(jì)算模塊,根據(jù)式(5)進(jìn)行迭代,當(dāng)相鄰兩次迭代中源函數(shù)的相對(duì)誤差小于10-6時(shí),認(rèn)為該控制體中的源函數(shù)數(shù)值為真實(shí)數(shù)值。通過每個(gè)控制體中源函數(shù)Ii(κ,t)的數(shù)值,由式(4)得到輻射熱流密度偏微分項(xiàng)?q/?κ的數(shù)值。再通過向前差分得到飛行方向上下一列控制體的溫度分布。之后對(duì)其再次進(jìn)行迭代,循環(huán)往復(fù),直至將所有控制體的溫度計(jì)算完畢。得到液滴層的溫度分布之后,由式(9)求得每個(gè)控制體的飽和蒸氣壓pV,進(jìn)而通過式(8)求出每個(gè)控制體的蒸發(fā)率,最后通過式(12)求得整個(gè)液滴層的蒸發(fā)損失速率QLOSS。通過液滴層的QLOSS進(jìn)而計(jì)算出LDR的系統(tǒng)壽命。

2.2 LDFAC校核

為驗(yàn)證LDFAC計(jì)算結(jié)果的準(zhǔn)確性,使用DC705硅油,將程序計(jì)算結(jié)果與文獻(xiàn)[15]中的計(jì)算結(jié)果進(jìn)行對(duì)比,校核所選用的工況為液滴工質(zhì)初始溫度320 K、液滴層光學(xué)厚度κD=10、長度50 m。將該工況下LDFAC計(jì)算得到的液滴收集器入口處液滴層溫度T分布情況與文獻(xiàn)中的計(jì)算結(jié)果進(jìn)行比對(duì),如圖4a所示,最大相對(duì)誤差為1.9%,平均相對(duì)誤差為0.4%。將液滴層QLOSS與文獻(xiàn)中的計(jì)算結(jié)果進(jìn)行比對(duì),如圖4b所示,最大相對(duì)誤差為4.1%,平均相對(duì)誤差為1.6%。

圖4 液滴層溫度和蒸發(fā)損失速率校核結(jié)果Fig.4 Check results of droplet layer temperature and evaporation loss rate

3 結(jié)果及分析

使用LDFAC對(duì)裝載DC705硅油液滴的LDR性能進(jìn)行計(jì)算分析,選用了光學(xué)厚度κD為10、8、6、5、4、3、2、1、0.6、0.3等10種液滴層,液滴層流出液滴發(fā)生器時(shí)的初始溫度分別為300 K和320 K,其他參數(shù)均選用LDR穩(wěn)態(tài)工況下的參數(shù)。液滴層溫度隨飛行距離的變化如圖5a所示,進(jìn)入液滴收集器入口時(shí)的溫度分布如圖5b所示??煽闯觯旱螌拥臏囟入S飛行距離呈非線性下降,飛行距離越遠(yuǎn),溫度下降速率逐漸減緩,當(dāng)液滴層光學(xué)厚度較厚時(shí),液滴層中心部分的溫度幾乎沒有明顯下降,當(dāng)液滴層光學(xué)厚度減小到5之后,液滴層中心溫度才會(huì)有較為明顯的下降,下降程度隨光學(xué)厚度的減小而增大。由于液滴層的溫度分布以液滴層中心光學(xué)厚度處為界限呈對(duì)稱分布,因此為表示液滴層溫度分布的不均勻性,定義溫度分布偏移因子σ為:

圖5 液滴層溫度分布Fig.5 Distribution of droplet layer temperature

(14)

溫度分布偏移因子可很好描述液滴層外表面溫度與液滴層中心溫度之間的偏移情況。不同光學(xué)厚度的液滴層的溫度分布偏移因子列于表1??煽闯觯旱螌庸鈱W(xué)厚度越厚,其溫度分布不均勻性也就越大。光學(xué)厚度較厚時(shí),液滴層光學(xué)厚度的減少并不會(huì)迅速改善溫度分布的不均勻性,當(dāng)液滴層的光學(xué)厚度小于5時(shí),隨著光學(xué)厚度的減小,液滴層的溫度分布偏移因子會(huì)逐漸減小,當(dāng)液滴層光學(xué)厚度較薄時(shí),液滴層的溫度分布較為均勻。

表1 溫度分布偏移因子Table 1 Temperature distribution offset factor

液滴層平均溫度列于表2。由表2可知,液滴層的光學(xué)厚度越厚,其平均溫度越高。隨著光學(xué)厚度的下降,起初平均溫度的下降程度并不大,在光學(xué)厚度下降到一定程度之后,液滴層的平均溫度才會(huì)迅速下降,主要原因是只有液滴層的光學(xué)厚度下降到一定程度之后,液滴層內(nèi)部的傳熱性能才會(huì)得到較大改善。

表2 液滴層平均溫度Table 2 Average temperature of droplet layer

單位質(zhì)量工質(zhì)輻射能量特性曲線示于圖6。由圖6a可看出,隨著光學(xué)厚度的增大,單位質(zhì)量工質(zhì)對(duì)外輻射能量減小,這是由于液滴層較厚時(shí)內(nèi)部的液滴工質(zhì)對(duì)外較難輻射熱量,輻射熱量主要來自液滴層邊緣。由圖6b可看出,單位質(zhì)量工質(zhì)輻射能量隨液滴層長度增長而線性增大。

圖6 單位質(zhì)量工質(zhì)輻射能量特性曲線Fig.6 Radiation energy characteristic curve of unit mass working medium

液滴層蒸發(fā)損失速率特性曲線示于圖7。由圖7a可看出,光學(xué)厚度較小時(shí),隨著光學(xué)厚度的增加,液滴層蒸發(fā)損失速率迅速增大。光學(xué)厚度增至5后,蒸發(fā)損失速率幾乎不隨光學(xué)厚度而變化。因此若想保持液滴層的蒸發(fā)損失速率較小,應(yīng)使液滴層的光學(xué)厚度在滿足工作要求的情況下盡量減小。由圖7b可看出,隨著液滴層長度的增加,蒸發(fā)損失速率在逐步增大。

圖7 液滴層蒸發(fā)損失速率特性曲線Fig.7 Characteristic curve of droplet evaporation loss rate

LDR系統(tǒng)壽命特性曲線示于圖8。由圖8a可看出,隨著液滴層光學(xué)厚度的增加,LDR的系統(tǒng)壽命逐步增加。由圖8b可看出,隨著液滴層長度的增加,系統(tǒng)壽命呈下降趨勢。不同初始溫度下LDR的系統(tǒng)壽命平均值列于表3??煽闯觯跏紲囟让拷档?0 K,輻射器的系統(tǒng)壽命會(huì)增長約450%,因此若想延長LDR的系統(tǒng)壽命,應(yīng)在滿足工況的情況下盡可能降低工作溫度。

表3 LDR平均系統(tǒng)壽命Table 3 Average system life of LDR

圖8 LDR系統(tǒng)壽命特性曲線 Fig.8 Characteristic curve of LDR system life

4 結(jié)論

開發(fā)了適用于高溫液滴流的輻射換熱及蒸發(fā)特性分析程序LDFAC,并進(jìn)行了校核,使用該程序?qū)ρb載DC705硅油液滴的矩形LDR進(jìn)行了分析,主要結(jié)論如下。

1) 液滴層光學(xué)厚度較大時(shí),液滴層內(nèi)部的溫度分布非常不均勻,液滴層中心的溫度幾乎沒有降低,而液滴層接近外表面部分的溫度下降較為明顯。

2) 單位質(zhì)量的液滴工質(zhì)對(duì)空間熱輻射的能力隨光學(xué)厚度的增加而減弱,隨飛行距離的增加而線性增強(qiáng)。

3) 液滴層蒸發(fā)損失速率對(duì)工作溫度最為敏感,光學(xué)厚度κD<2時(shí),κD對(duì)蒸發(fā)損失速率影響較大,但當(dāng)κD>5時(shí),蒸發(fā)損失速率逐漸趨近于穩(wěn)定。液滴層的蒸發(fā)損失率隨飛行長度的增加而線性增長。

4) 溫度對(duì)LDR的系統(tǒng)壽命有著較大影響,溫度每降低10 K,系統(tǒng)壽命可提高約450%,同時(shí),液滴層光學(xué)厚度越大,系統(tǒng)壽命也越長。

猜你喜歡
工質(zhì)液滴光學(xué)
海洋溫差能發(fā)電熱力循環(huán)系統(tǒng)的工質(zhì)優(yōu)選
滑輪組的裝配
光學(xué)常見考題逐個(gè)擊破
采用R1234ze(E)/R245fa的非共沸混合工質(zhì)有機(jī)朗肯循環(huán)系統(tǒng)實(shí)驗(yàn)研究
液滴間相互碰撞融合與破碎的實(shí)驗(yàn)研究
噴淋液滴在空氣環(huán)境下的運(yùn)動(dòng)特性
采用二元非共沸工質(zhì)的有機(jī)朗肯循環(huán)熱力學(xué)分析
采用二元非共沸工質(zhì)的有機(jī)朗肯循環(huán)熱力學(xué)分析
若干低GWP 純工質(zhì)在空調(diào)系統(tǒng)上的應(yīng)用分析
光學(xué)遙感壓縮成像技術(shù)
闽清县| 贵港市| 灵台县| 镇巴县| 合山市| 奉新县| 新竹市| 肥东县| 贵阳市| 前郭尔| 塔城市| 宣化县| 正蓝旗| 台安县| 海宁市| 上思县| 兰考县| 巨野县| 华安县| 赞皇县| 衡南县| 青浦区| 邮箱| 永顺县| 博野县| 临武县| 桃园县| 保山市| 冀州市| 遂昌县| 蒙山县| 腾冲县| 汽车| 怀宁县| 云龙县| 蒙自县| 武功县| 山阳县| 三穗县| 宜昌市| 海伦市|