国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

全球特提斯域煤系烴源巖發(fā)育特征及其控制因素

2021-11-03 06:47黃志龍譚思哲李志遠(yuǎn)郭小波潘永帥
煤田地質(zhì)與勘探 2021年5期
關(guān)鍵詞:烴源盆地油氣

屈 童,黃志龍,王 瑞,譚思哲,李志遠(yuǎn),郭小波,趙 靜,潘永帥

全球特提斯域煤系烴源巖發(fā)育特征及其控制因素

屈 童1,2,黃志龍1,2,王 瑞1,2,譚思哲3,李志遠(yuǎn)1,2,郭小波4,趙 靜1,2,潘永帥1,2

(1. 中國石油大學(xué)(北京) 油氣資源與探測國家重點實驗室,北京 102249;2. 中國石油大學(xué)(北京) 地球科學(xué)學(xué)院,北京 102249;3. 中海石油(中國)有限公司上海分公司,上海 200335;4. 西安石油大學(xué) 地球科學(xué)與工程學(xué)院,陜西 西安 710065)

特提斯域構(gòu)造活動背景控制下發(fā)育一系列煤系烴源巖發(fā)育盆地,且環(huán)太平洋帶古近紀(jì)和新近紀(jì)煤多以“富氫”為特征,生烴潛力巨大,這一類煤系是我國東南沿海含油氣盆地重要的烴源巖,因此,對特提斯背景下的煤系烴源巖發(fā)育特征及其控制因素進行系統(tǒng)總結(jié)尤為重要。通過系統(tǒng)分析特提斯域煤系烴源巖的發(fā)育時代、環(huán)境、地球化學(xué)特征及生物標(biāo)志化合物特征,歸納總結(jié)影響煤系烴源巖發(fā)育的控制因素,明確煤系烴源巖的有利發(fā)育條件及優(yōu)質(zhì)源巖形成的控制因素。結(jié)果表明:特提斯域控制下的煤系烴源巖主要發(fā)育于東南亞沿海地區(qū)拉張背景下的盆地,多發(fā)育于斷陷時期的海陸過渡相沉積環(huán)境,發(fā)育年代與特提斯構(gòu)造活動時期吻合;煤系烴源巖發(fā)育受古植物、古環(huán)境、巖相古地理、陸源有機質(zhì)供給、構(gòu)造活動強度、沉積–沉降速率等多因素共同控制,各因素相互聯(lián)系,相互影響,將其歸納為母源因素、構(gòu)造–沉積因素及保存因素3類;富含殼質(zhì)組和富氫鏡質(zhì)體的植物類型是富氫煤形成的必要母源條件,有利的聚煤環(huán)境及穩(wěn)定構(gòu)造背景是煤系烴源巖大規(guī)模發(fā)育的關(guān)鍵因素,合適的水體條件和還原環(huán)境是有機質(zhì)得以保存的重要因素;我國東南沿海盆地煤系烴源巖生烴潛力巨大,東海盆地西湖凹陷煤系富含樹脂體,珠江口盆地煤系富含孢子及花粉,瓊東南盆地發(fā)育廣泛的煤系泥巖,勘探前景巨大。

特提斯域;煤系烴源巖;分布特征;發(fā)育特征;控制因素

特提斯域演化對重建巖相古地理與油氣勘探具有重要意義,前人關(guān)于特提斯域含油氣盆地分布、油氣成藏特征、烴源巖形成環(huán)境與發(fā)育特征及其影響因素已有大量研究[6-7,9,13-18],主要認(rèn)為煤系烴源巖發(fā)育受控于沉積–沉降速率、邊界斷層規(guī)模、陸源有機質(zhì)供給、有機質(zhì)保存條件、構(gòu)造活動強度、巖相古地理條件等因素[16-20]。不同盆地煤系烴源巖發(fā)育的控制因素也有所差異,田楊等[21](2019)在對東海盆地西湖凹陷平湖組煤系烴源巖發(fā)育模式的研究中認(rèn)為,煤系烴源巖主要受沉積–沉降速率、母質(zhì)來源及有機質(zhì)保存條件的控制,而沈文超[22](2018)則認(rèn)為西湖凹陷平湖組煤系烴源巖主要受古氣候、古植物、古構(gòu)造及古地理因素控制;周寶昌[20](1983)研究鄂爾多斯盆地侏羅紀(jì)煤系源巖發(fā)育規(guī)律時認(rèn)為,其發(fā)育主要受構(gòu)造、巖相古地理及古河道控制;劉玉虎等[23](2012)認(rèn)為吐哈盆地侏羅紀(jì)煤系烴源巖主要受沉積古地理和古氣候控制;任佳宇等[24](2015)認(rèn)為瓊東南盆地北部坳陷帶崖城組煤系烴源巖主要受構(gòu)造活動強度及沉降速率控制,吳飄等[19](2019)認(rèn)為瓊東南盆地崖城組烴源巖也受陸源有機質(zhì)輸入的控制;楊婷等[16](2017)在對北卡那封盆地(North Carnarvon Basin)煤系烴源巖發(fā)育特征的研究中認(rèn)為,煤系烴源巖發(fā)育主要受沉積環(huán)境的影響。煤系烴源巖發(fā)育的影響因素較多,不同學(xué)者考慮的因素錯綜復(fù)雜,且諸多因素相互重疊,如邊界斷層規(guī)模與沉積–沉降速率有直接關(guān)系,邊界斷層規(guī)模越大,沉積–沉降速率也越大,兩者所表達(dá)的含義是相同的。近年來隨著我國東南沿海盆地油氣勘探開發(fā)的推進,海上鉆井較少制約烴源巖的研究,因此,對特提斯背景控制下的煤系烴源巖特征及其控制因素的系統(tǒng)梳理與總結(jié)尤為重要。筆者通過大量調(diào)研,分析特提斯背景下的煤系烴源巖發(fā)育規(guī)律,總結(jié)梳理煤系烴源巖發(fā)育的控制因素,進而明確優(yōu)質(zhì)烴源巖的發(fā)育背景及有利因素,以期促進我國沿海盆地?zé)N源巖評價、優(yōu)質(zhì)烴源巖精準(zhǔn)預(yù)測及煤系資源開發(fā)。

1 煤系烴源巖內(nèi)涵

20世紀(jì)60年代末期,煤成烴理論的提出引起了學(xué)者們對煤系烴源巖的關(guān)注[25-26],之后煤源巖、煤系烴源巖等術(shù)語頻繁出現(xiàn)。煤系烴源巖是指成煤環(huán)境下形成的具有生烴能力、已經(jīng)生成并排出了或者正在生成和排出石油和天然氣的含煤地層,主要包括煤、炭質(zhì)泥巖和泥巖3種巖性,同一套煤系烴源巖通常包括這3種巖性中的幾種或一種[27-28]。在海陸過渡環(huán)境中,煤系烴源巖向海的方向通常過渡為富含陸源有機質(zhì)的泥巖,也可作為有效的烴源巖。

2 煤系烴源巖發(fā)育盆地的分布

在板塊運動過程中,特提斯域的范圍也在隨之演變。中生代時華北板塊、哈薩克板塊與歐洲板塊之間的大洋體系及勞亞大陸與岡瓦納大陸之間的大洋體系共同構(gòu)成了古特提斯域[6,11],這一時期形成了一系列的煤系烴源巖發(fā)育盆地,如我國西部的塔里木盆地和準(zhǔn)噶爾盆地,土庫曼斯坦的卡拉庫姆盆地(Kalakumu Basin)及澳大利亞西北大陸架的北卡那封盆地(North Carnarvon Basin)等。之后華北板塊、哈薩克板塊與歐洲板塊閉合形成歐亞板塊,歐亞板塊、北美洲板塊與南部非洲板塊、南美洲板塊之間的大洋體系形成了現(xiàn)今的新特提斯域,這一時期現(xiàn)代深水含油氣盆地大量發(fā)育于這一構(gòu)造域內(nèi)[29-30],而煤系烴源巖多發(fā)育于我國東南沿海、馬來西亞及新加坡以東及環(huán)印度尼西亞地區(qū),如我國東海盆地、瓊東南盆地、馬來西亞東部馬來盆地(Malay Basin)、泰國灣盆地(Gulf of Thailand Basin)、印度尼西亞打拉根盆地(Tarakan Basin)、庫泰盆地(Kutai Basin)等??偟膩碚f,煤系烴源巖主要發(fā)育于東南亞沿海地區(qū),沿大陸邊緣呈帶狀分布(圖1)。本次研究共調(diào)研特提斯域內(nèi)煤系烴源巖發(fā)育的盆地33個、42套煤系,煤系烴源巖主要發(fā)育于弧后盆地、被動大陸邊緣裂谷盆地及陸內(nèi)裂陷盆地等區(qū)域拉張應(yīng)力場控制下的盆地,多發(fā)育于斷陷時期的海陸過渡相沉積環(huán)境(圖2)。

圖1 特提斯域煤系烴源巖發(fā)育盆地分布

圖2 煤系烴源巖發(fā)育的盆地類型、構(gòu)造和沉積環(huán)境統(tǒng)計直方圖

3 煤系烴源巖特征

3.1 煤系烴源巖發(fā)育時代與環(huán)境

煤系烴源巖是重要的生烴源巖,煤系烴源巖發(fā)育盆地資源量巨大,如中蘇門答臘盆地(Central Sumatra Basin)、文萊–沙巴盆地(Brunei-Sabah Basin)、庫泰盆地等均為世界級富油氣盆地[31-33]。煤系烴源巖在特提斯域廣泛分布,發(fā)育時代為石炭系–新近系,主要發(fā)育于侏羅系、始新統(tǒng)–中新統(tǒng)(圖3),其發(fā)育時代與特提斯域活動時期相吻合,晚古生代至中生代古特提斯活動時期,煤系烴源巖主要發(fā)育于侏羅系,晚中生代至新生代新特提斯活動時期,煤系烴源巖主要發(fā)育于始新統(tǒng)–中新統(tǒng)(表1)。區(qū)域上,由西北向東南方向,煤系烴源巖發(fā)育時代逐漸變新,這與板塊活動的先后順序有關(guān),石炭–二疊紀(jì)煤系烴源巖主要發(fā)育于華北板塊和哈薩克板塊交匯處,如準(zhǔn)噶爾盆地;三疊–侏羅紀(jì)煤系烴源巖主要發(fā)育于華北板塊中西部、歐洲板塊東部及澳大利亞西北緣,如塔里木、卡拉庫姆、北卡那封盆地等;新生代煤系烴源巖則主要發(fā)育于東南沿海及環(huán)印度尼西亞伸展區(qū)內(nèi),如瓊東南、珠江口、庫泰盆地等。由于煤系烴源巖的發(fā)育與陸源物質(zhì)的供應(yīng)息息相關(guān),因此,其主要發(fā)育于陸相及海陸過渡相沉積環(huán)境,陸相沉積環(huán)境中多發(fā)育于低能靜水的湖泊沼澤,而海陸過渡相主要發(fā)育于潮坪、潟湖、三角洲平原–前緣等環(huán)境,向淺海方向發(fā)育受限(表1)。

3.2 煤系烴源巖地球化學(xué)特征

煤系烴源巖巖性多樣,通常包括煤、炭質(zhì)泥巖及泥巖,因此其有機碳含量也變化較大,泥巖TOC最低小于0.1%,煤TOC可高達(dá)83.09%(表2),煤和炭質(zhì)泥巖通常有機碳含量較高,是盆地內(nèi)重要的生烴源巖,在我國東海盆地西湖凹陷、南海文萊–沙巴盆地均已證實煤和炭質(zhì)泥巖是主要的生油源巖[33,62],煤系泥巖由于富含陸源有機質(zhì)也可作為有效的生烴源巖,如瓊東南盆地崖南凹陷、澳大利亞北卡那封盆地、布勞斯盆地(Browse Basin)均已證實富含陸源有機質(zhì)的泥巖是盆地內(nèi)的有效生氣源巖[58,86,89]。

圖3 煤系烴源巖發(fā)育時代地層統(tǒng)計直方圖

煤系烴源巖干酪根類型多樣,以Ⅱ–Ⅲ型干酪根為主,部分盆地可發(fā)育Ⅰ型干酪根,如彭世洛(Phitsanulok)、中蘇門答臘、西納土納(West Natuna)等盆地,這些盆地主要位于南海及環(huán)印度尼西亞海域等利于浮游藻類輸入的地區(qū)。值得注意的是,近海盆地煤系烴源巖以Ⅱ2、Ⅲ型為主,但也有部分煤和煤系泥巖質(zhì)量較好,可達(dá)Ⅱ1型(圖4),部分盆地的煤甚至可達(dá)Ⅰ型,如東海盆地西湖凹陷、馬來盆地、文萊–沙巴盆地[62,68,90],這類煤系烴源巖是盆地內(nèi)重要油氣來源。煤在低成熟–成熟階段通??缮稍突蚰鲇?,且煤活化能通常更低,生烴時間更早,可為盆地提供大量的原油來源,如東海盆地西湖凹陷、中蘇門答臘盆地、東納土納盆地(East Natuna Basin)內(nèi)低熟–成熟階段的煤及炭質(zhì)泥巖是盆地內(nèi)石油的重要來源[32,62,73],煤系泥巖有機質(zhì)多為Ⅱ2、Ⅲ型,有機質(zhì)豐度取決于陸源物質(zhì)的供給程度,是各個含油氣盆地重要的源巖(表2)。

表1 特提斯域煤系烴源巖發(fā)育盆地及層位特征統(tǒng)計結(jié)果

續(xù)表

注:*表示探明地質(zhì)儲量。

表2 特提斯域煤系烴源巖發(fā)育特征

續(xù)表

續(xù)表

圖4 特提斯域煤系烴源巖發(fā)育盆地的煤系泥巖和煤有機質(zhì)類型判別(數(shù)據(jù)自文獻[31,53,58,60,62,66,68,72,77,93-94,110,116-118])

3.3 煤系烴源巖生物標(biāo)志化合物特征

煤系烴源巖的發(fā)育與陸源植物的輸入密切相關(guān),因此常具有高姥/植比(姥鮫烷/植烷)、C29甾烷優(yōu)勢及大量奧利烷、杜松烷等陸源指示化合物。高姥/植比反映氧化條件下的陸相有機質(zhì)輸入,瓊東南、珠江口、東海西湖凹陷、欽敦(Chindwin)、北卡那封、文萊–沙巴、曾母等盆地煤系均具有高姥/植比的特征[16,22,77,119-121],欽敦盆地、瓊東南盆地、東海西湖凹陷煤系烴源巖姥植比普遍大于3.0[19,22,120],珠江口盆地恩平組煤系源巖姥植比最高甚至可達(dá)9.07[119]。煤系源巖多具C29甾烷優(yōu)勢,反映陸源有機質(zhì)的輸入,在諸多盆地該特征普遍較為明顯(圖5)。此外,煤系烴源巖通常具有較高的奧利烷、8β-補身烷、扁枝烷、海松烷及五環(huán)三萜烷等化合物,這些化合物均可作為陸源植物輸入的標(biāo)志[122],在欽敦盆地、珠江口盆地珠二坳陷、瓊東南盆地、曾母盆地、北蘇門答臘盆地、馬來盆地等均以奧利烷優(yōu)勢為特征[19,63,68,77,119-120],在瓊東南盆地、曾母盆地、馬來盆地煤系烴源巖中也富含雙杜松烷[19,68,77],在東海盆地西湖凹陷煤系中存在著高含量的8β(H)-半日花烷、4β(H)-19-降異海松烷、朽松木烷、異海松烷、16β(H)-貝殼杉烷、松香烷等二萜類化合物及五環(huán)三萜烷,這些化合物均指示了陸源沉積有機質(zhì)的賦存[22]。

圖5 典型煤系烴源巖生物標(biāo)志化合物飽和烴質(zhì)譜m/z 217圖(自文獻[62,119-121])

4 煤系烴源巖發(fā)育控制因素

在整理分析前人研究認(rèn)識的基礎(chǔ)上,筆者認(rèn)為煤系烴源巖發(fā)育的控制因素可分為母源因素、構(gòu)造與沉積因素、保存因素三大類。母源因素主要包括古植物、陸源碎屑及陸源有機質(zhì)供給等,構(gòu)造與沉積因素主要包括巖相古地理、構(gòu)造活動強度、沉積–沉降速率等因素,保存因素主要包括古環(huán)境條件和成巖作用。各因素相互聯(lián)系、相互影響,其他因素通過對以上因素的控制而影響煤系烴源巖的發(fā)育。

4.1 母源因素

古植物及陸源物質(zhì)供給主要決定煤系烴源巖的有機質(zhì)豐度及類型。古植被的繁盛程度很大程度上決定煤系烴源巖是否發(fā)育,而古植被與古氣候直接相關(guān),通常濕熱氣候帶植被利于煤系烴源巖的形成[123]。北卡那封盆地三疊系時期處于中高緯度潮濕氣候帶,草本沼澤逐漸發(fā)展為森林沼澤,使得煤系烴源巖大量發(fā)育[16];東海盆地西湖凹陷孢粉相顯示,從平湖組至花港組濕熱氣候帶植物逐漸減少,從而導(dǎo)致平湖組聚煤好于花港組[22];瓊東南盆地崖城期氣候濕熱,大型植被發(fā)育使得陸源有機質(zhì)輸入充足,促使煤系烴源巖較為發(fā)育[19]。同時古植被的類型決定了煤系烴源巖的類型及生烴潛力,曾母盆地及文萊–沙巴盆地煤系烴源巖的母質(zhì)來源是紅樹林[121],紅樹林來源的有機質(zhì)具有富殼質(zhì)組和富氫鏡質(zhì)體的特征,因此曾母盆地和文萊–沙巴盆地煤系烴源巖有機質(zhì)類型較好,含大量Ⅱ型干酪根,有些煤干酪根甚至為Ⅰ型(表2),生油能力強,使得這兩個盆地十分富油。

綜上所述,我國在林下套種中草藥的栽培方面重視程度較高,很多區(qū)域工作的開展,都能夠取得較好的效果。日后,應(yīng)繼續(xù)在林下套種中草藥的栽培方面深入研究,不斷的提高工作的可靠性、可行性,減少錯誤的操作。與此同時,林下套種中草藥的栽培多項內(nèi)容必須保持較高的協(xié)調(diào)性,爭取創(chuàng)造出更高的價值。

陸源碎屑及陸源有機質(zhì)的供給量直接決定了煤系泥巖及富陸源有機質(zhì)泥巖的有機質(zhì)豐度,陸源物質(zhì)的供應(yīng)又受水動力強度、類型及搬運距離等因素影響[124]。孟加拉盆地(Bengal Basin)遠(yuǎn)離陸架區(qū),陸源有機質(zhì)供應(yīng)不足使得有機質(zhì)含量降低[125],北卡那封盆地近物源處由于沖刷作用過強使得煤系泥巖有機質(zhì)豐度低,在遠(yuǎn)端三角洲有機質(zhì)豐度達(dá)到高值,之后由于水動力逐漸減弱,陸源有機質(zhì)含量呈減少趨勢,且在河流與海水交鋒區(qū)不利于陸源有機質(zhì)的沉積(圖6)[84];在曾母盆地由于陸源物質(zhì)呈近岸富集的特征,富陸源有機質(zhì)泥巖有機質(zhì)豐度較低[121],在鄂爾多斯盆地、瓊東南盆地、馬來盆地等均有同種現(xiàn)象[19-20,77]。

綜上可知,古植物、陸源碎屑及陸源有機質(zhì)供給等母源因素控制著煤系烴源巖有機質(zhì)的性質(zhì),包括有機質(zhì)類型及豐度,濕熱氣候條件下廣泛分布大型植被有利于煤系烴源巖的形成,紅樹林等富含殼質(zhì)組和富氫鏡質(zhì)體的植物類型有利于傾油型富氫煤的形成,充足的陸源有機質(zhì)供給是高豐度煤系泥巖及富陸源有機質(zhì)泥巖發(fā)育的關(guān)鍵條件。

4.2 構(gòu)造與沉積因素

巖相古地理條件包括古地理單元分布及巖相分布,控制著煤系烴源巖的差異發(fā)育。古地理單元受古地貌的控制,由于地勢的不均一性,通常存在多個聚煤中心,如東海西湖凹陷、鄂爾多斯盆地、吐哈盆地、北卡那封盆地[16,20,22-23]。煤系烴源巖通常發(fā)育于湖泊、三角洲、河流河道間、潮坪、潟湖等低能靜水環(huán)境[23,99,126],而相對動蕩水體、不利于泥炭化的環(huán)境中則形成煤系泥巖[22,99],因此,沉積環(huán)境的差異造成煤系烴源巖的巖性差異,如鄂爾多斯盆地侏羅紀(jì)由湖區(qū)向盆地邊緣呈淺湖–湖沼–河沼的沖積平原地貌,淺湖相發(fā)育煤系泥巖,煤層欠發(fā)育,由湖沼相向河沼相煤層逐漸發(fā)育[20],在巖相古地理條件控制下,巖性的有序分布決定了其生烴潛力的差異。

圖6 北卡那封盆地Mungaroo組三角洲陸源有機質(zhì)分布模式(據(jù)李丹等[84],2014改)

構(gòu)造活動弱有利于煤層的發(fā)育,通常構(gòu)造活動相對較弱、地層穩(wěn)定沉降有利于厚層連續(xù)煤層的形成,構(gòu)造活動頻繁、地層沉降不穩(wěn)定條件下形成的煤層多具薄、多、散(單層厚度薄、層數(shù)多、橫向連續(xù)性差)的特征。珠江口盆地白云凹陷構(gòu)造活動比瓊東南盆地北部坳陷帶弱,地層沉降更為穩(wěn)定,因此白云凹陷煤層具有厚層連續(xù)的特征,而瓊東南盆地煤層具有橫向連續(xù)性差、厚度薄、層數(shù)多的特征[24];北卡那封盆地三疊系受盆地持續(xù)性構(gòu)造沉降的影響使得煤層平面分布面積廣、厚度大[16];準(zhǔn)噶爾盆地、柴達(dá)木盆地、吐哈盆地等陸內(nèi)盆地相對穩(wěn)定,發(fā)育厚層穩(wěn)定煤層[23,39],而陸緣盆地受板塊運動影響構(gòu)造頻繁,多具薄、多、散的特征[127-129]。

合適的沉積–沉降速率有利于煤系烴源巖的發(fā)育。沉降速率控制可容納空間的增加速率,進一步控制烴源巖的發(fā)育,沉降速率過大導(dǎo)致水體深度大,不利于泥炭的發(fā)育,沉降速率過小暴露環(huán)境氧化性強容易破壞烴源巖的發(fā)育,因此合適的沉積–沉降速率利于煤系烴源巖的發(fā)育。緬甸盆地群煤系烴源巖發(fā)育于始新統(tǒng)中期,為持續(xù)水進的中期,合適的水體深度使得煤系烴源巖普遍發(fā)育[54];東亞特提斯域煤系烴源巖均發(fā)育于裂谷2幕及后裂谷期(圖7)[17,130],裂谷2幕為裂陷鼎盛時期,沉積–沉降速率較大,煤系烴源巖發(fā)育范圍相對較局限,多發(fā)育于近物源斜坡帶水深合適的地區(qū),如我國瓊東南盆地崖南凹陷崖城組、東海盆地西湖凹陷平湖組、澳大利亞西北大陸架北卡那封盆地三疊世Mungaroo組,煤系源巖均發(fā)育于近物源斜坡帶或三角洲平原地區(qū)[19,22,84];后裂谷時期多為裂陷向坳陷轉(zhuǎn)換的階段,裂陷作用相對較弱,主要發(fā)育三角洲平原沼澤或濱岸平原煤系烴源巖,如文萊–沙巴盆地中新統(tǒng)煤系烴源巖[130]。

圖7 東亞特提斯域煤系烴源巖發(fā)育構(gòu)造區(qū)及時期分布(據(jù)楊明慧等[130],修改)

綜上可知,巖相古地理、構(gòu)造活動強度、沉積–沉降速率等構(gòu)造–沉積因素控制著煤系烴源巖的發(fā)育特征。湖泊沼澤、三角洲平原沼澤、潟湖沼澤等環(huán)境是有利的聚煤環(huán)境,常常形成聚煤中心;構(gòu)造活動相對較弱、地層穩(wěn)定沉降有利于厚層連續(xù)煤層的形成,合適的沉積–沉降速率及合適的水深是煤系烴源巖發(fā)育的必要條件。

4.3 保存因素

古環(huán)境條件和成巖作用決定了煤系烴源巖是否能夠保存,古環(huán)境條件包括古水體鹽度、pH、Eh、氧化還原條件等,同樣也受控于古氣候。水體鹽度、pH值及Eh值可通過對沉積物及有機質(zhì)本身的改造進而影響有機質(zhì)的賦存,水體鹽度降低、pH的適度增加和Eh的降低有利于有機質(zhì)的保存[124],盧雙舫等[131](2008)認(rèn)為只有在Eh值小于0的還原環(huán)境中有機質(zhì)才能得以保存。成巖作用同樣可以對有機質(zhì)進行改造,張成君等[132](2012)、A. L. Lamb等[133](2004)認(rèn)為成巖作用能降低沉積物的C/N比,使得有機質(zhì)發(fā)生降解,但針對成巖作用對有機質(zhì)保存的控制作用的具體研究目前仍然較少。因此,低鹽度、低Eh及合適pH的水體條件及還原環(huán)境是煤系烴源巖得以保存的有利環(huán)境。

5 我國沿海盆地煤系烴源巖生烴潛力分析

我國近海特提斯域聚煤盆地主要位于東南沿海地區(qū),包括東海陸架盆地、珠江口盆地、瓊東南盆地等(圖1)。我國東南沿海盆地聚煤層系相對較為發(fā)育,煤的有機質(zhì)類型整體以Ⅱ1、Ⅱ2型為主(圖4b),可作為主要的生油源巖,東海盆地西湖凹陷西部斜坡帶已有相關(guān)油田的發(fā)現(xiàn)[134-135],煤系泥巖以Ⅱ2、Ⅲ型為主(圖4a),可作為有效的氣源巖,瓊東南盆地崖城組已證實富陸源有機質(zhì)泥巖,對崖13-1氣田也有一定的貢獻[58]。特提斯域背景下的煤系烴源巖發(fā)育盆地油氣資源量豐富,中蘇門答臘、庫泰盆地更有世界級大油氣田的發(fā)現(xiàn),而我國東南沿海瓊東南盆地、珠江口盆地及西湖凹陷煤系烴源巖生烴潛力較其他盆地并不差(圖8),且西湖凹陷煤及炭質(zhì)泥巖樹脂體含量較高[62],珠江口盆地煤系源巖富含孢子及花粉[60],致使西湖凹陷及珠江口盆地煤生油潛力相對較大。因此,我國東南沿海盆地?zé)N源巖條件十分可觀,勘探前景巨大。

6 結(jié)論

a. 全球特提斯域煤系烴源巖發(fā)育的盆地主要位于東南亞沿海地區(qū),煤系烴源巖主要發(fā)育于弧后盆地、被動大陸邊緣裂谷盆地及陸內(nèi)裂陷盆地等區(qū)域拉張應(yīng)力場控制下的盆地,多發(fā)育于斷陷時期的海陸過渡相沉積環(huán)境,主要發(fā)育于侏羅系、始新統(tǒng)–中新統(tǒng)。煤系烴源巖以Ⅱ2、Ⅲ型為主,部分可達(dá)Ⅱ1型,甚至I型,常具有高姥植比、C29甾烷優(yōu)勢特征,富含奧利烷、海松烷、杜松烷等陸源指示化合物。

圖8 煤系烴源巖TOC含量與S1+S2關(guān)系(數(shù)據(jù)自文獻[19,31-32,58,60,62,66,75,93,110,116-117,121])

b. 煤系烴源巖發(fā)育受母源因素、構(gòu)造與沉積因素和保存因素控制,母源因素控制著煤系烴源巖的質(zhì)量,濕熱氣候條件下廣泛分布大型植被有利于煤系烴源巖的形成,紅樹林等富含殼質(zhì)組和富氫鏡質(zhì)組的植物類型有利于傾油型富氫煤的形成,充足的陸源有機質(zhì)供給是高豐度煤系泥巖及富陸源有機質(zhì)泥巖發(fā)育的關(guān)鍵條件;構(gòu)造–沉積因素控制著煤系烴源巖的發(fā)育程度,湖泊沼澤、三角洲平原沼澤、潟湖沼澤等環(huán)境常形成聚煤中心,構(gòu)造活動相對較弱、地層穩(wěn)定沉降、合適的沉積–沉降速率及合適的水深是煤系烴源巖發(fā)育的必要條件;低鹽度、低Eh及合適pH的水體條件及還原環(huán)境是煤系烴源巖得以保存的有利環(huán)境。這對鉆井較少的海上盆地的烴源巖評價及烴源巖預(yù)測有重要意義。

c. 我國東南沿海瓊東南盆地、珠江口盆地及西湖凹陷煤系烴源巖生烴潛力巨大,但不同盆地煤系烴源巖仍各具特色,如西湖凹陷煤系烴源巖富樹脂體,珠江口盆地富孢子及花粉,不同的母質(zhì)特征其生烴潛力及傾油/傾氣性皆有差異,這一方面需結(jié)合不同盆地背景特征進一步深入研究。

[1] 陳智梁. 特提斯地質(zhì)一百年[J]. 特提斯地質(zhì),1994,18:1–22.

CHEN Zhiliang. One hundred years of Tethys geology[J]. Tethyan geology,1994,18:1–22.

[2] 潘桂棠. 全球洋-陸轉(zhuǎn)換中的特提斯演化[J]. 特提斯地質(zhì),1994,18:23–40.

PAN Guitang. The evolution of Tethys in the global ocean continent transition[J]. Tethyan geology,1994,18:23–40.

[3] MEULENKAMP J E,SISSINGH W. Tertiary palaeogeography and tectonostratigraphic evolution of the Northern and Southern Peri-Tethys platforms and the intermediate domains of the African-Eurasian convergent plate boundary zone[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2003,196(1/2):209–228.

[4] WANG Zhongwei,WANG Jian,F(xiàn)U Xiugen,et al. Sedimentary successions and onset of the Mesozoic Qiangtang rift basin(Northern Tibet),Southwest China:Insights on the Paleo- and Meso-Tethys evolution[J]. Marine and Petroleum Geology,2019,102:657–679.

[5] BORRUEL-ABADíA V,LóPEZ-GóMEZ J,DE LA HORRA R,et al. Climate changes during the Early-Middle Triassic transition in the E. Iberian plate and their palaeogeographic significance in the western Tethys continental domain[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2015,440:671–689.

[6] 甘克文. 特提斯域的演化和油氣分布[J]. 海相油氣地質(zhì),2000,5(3/4):21–29.

GAN Kewen. Evolution and hydrocarbon distribution of Tethys domain[J]. Marine Origin Petroleum Geology,2000,5(3/4):21–29.

[7] 丘東洲,謝淵,李曉清,等. 亞洲特提斯域巖相古地理與油氣聚集地質(zhì)特征[J]. 海相油氣地質(zhì),2009,14(2):41–51.

QIU Dongzhou,XIE Yuan,LI Xiaoqing,et al. Geological characteristics of lithofacies paleogeography and hydrocarbon accumulation in Asian Tethyan tectonic domain[J]. Marine Origin Petroleum Geology,2009,14(2):41–51.

[8] 吳福元,萬博,趙亮,等. 特提斯地球動力學(xué)[J]. 巖石學(xué)報,2020,36(6):1627–1674.

WU Fuyuan,WAN Bo,ZHAO Liang,et al. Tethys geodynamics[J]. Acta Petrologica Sinica,2020,36(6):1627–1674.

[9] 丘東洲. 亞洲特提斯域油氣聚集地質(zhì)特征[J]. 沉積與特提斯地質(zhì),2007,27(2):1–8.

QIU Dongzhou. Geological characteristics of the hydrocarbon accumulation in the Tethyan tectonic domain[J]. Sedimentary Geology and Tethyan Geology,2007,27(2):1–8.

[10] KLEMME H D,ULMISHEK G F. Effective petroleum source rocks of the world:Stratigraphic distribution and controlling depositional factors[J]. The American Association of Petroleum Geologists Bulletion,1991,75(12):1809–1851.

[11] 葉和飛,羅建寧,李永鐵,等. 特提斯構(gòu)造域與油氣勘探[J]. 沉積與特提斯地質(zhì),2000,20(1):1–27.

YE Hefei,LUO Jianning,LI Yongtie,et al. Tethyan tectonic domain and petroleum exploration[J]. Sedimentary Geology and Tethyan Geology,2000,20(1):1–27.

[12] 李思田,路鳳香,林暢松,等. 中國東部及其鄰區(qū)中、新生代盆地演化及地球動力學(xué)背景[M]. 武漢:中國地質(zhì)大學(xué)出版社,1997.

LI Sitian,LU Fengxiang,LIN Changsong,et al. Mesozoic Cenozoic basin evolution and geodynamic background in eastern China and its adjacent areas[M]. Wuhan:China University of Geosciences Press,1997.

[13] LI Sanzhong,ZHAO Shujuan,LIU Xin,et al. Closure of the Proto-Tethys ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia[J]. Earth Science Reviews,2018,186:37–75.

[14] 赫鵬飛,曹華. 北非地區(qū)特提斯洋演化特征及對油氣成藏的控制[J]. 內(nèi)蒙古石油化工,2018,1(5):120–124.

HE Pengfei,CAO Hua. Evolution characteristics of Tethys ocean and its control on hydrocarbon accumulation in North Africa[J]. Inner Mongolia Petrochemical Industry,2018,1(5):120–124.

[15] 赫鵬飛,周航輝. 北非特提斯域油氣地質(zhì)特征及勘探方向[J]. 石油化工應(yīng)用,2018,37(8):73–77.

HE Pengfei,ZHOU Hanghui. Petroleum geology characteristics and exploration prospect in the North Africa Tethyan tectonic domain[J]. Petrochemical Industry Application,2018,37(8):73–77.

[16] 楊婷,康洪全,劉東旭,等. 北卡那封盆地沉積演化規(guī)律與烴源巖發(fā)育特征[J]. 西南石油大學(xué)學(xué)報(自然科學(xué)版),2017,39(5):81–91.

YANG Ting,KANG Hongquan,LIU Dongxu,et al. The sedimentary facies evolution and the development characteristics of source rocks’ in North Carnarvon Basin,Australia[J]. Journal of Southwest Petroleum University(Science & Technology Edition),2017,39(5):81–91.

[17] 劉志峰,楊東升,王升蘭,等. 中國近海盆地三幕裂陷有序性及其油氣勘探意義[J]. 海洋工程裝備與技術(shù),2019,6(增刊1):283–292.

LIU Zhifeng,YANG Dongsheng,WANG Shenglan,et al. Sequence of rifting in three episodes of offshore basins in China and its significance for oil and gas exploration[J]. Ocean Engineering Equipment and Technology,2019,6(Sup.1):283–292.

[18] LI Yang,ZHANG Jinliang,LIU Yang,et al. Organic geochemistry,distribution and hydrocarbon potential of source rocks in the Paleocene,Lishui Sag,East China Sea Shelf Basin[J]. Marine and Petroleum Geology,2019,107:382–396.

[19] 吳飄,侯讀杰,甘軍,等. 瓊東南盆地深水東區(qū)漸新統(tǒng)烴源巖發(fā)育模式[J]. 沉積學(xué)報,2019,37(3):633–647.

WU Piao,HOU Dujie,GAN Jun,et al. Developmental model of Oligocene source rock in the Eastern deep-water area of Qiongdongnan Basin[J]. Acta Sedimentologica Sinica,2019,37(3):633–647.

[20] 周寶昌. 鄂爾多斯盆地侏羅紀(jì)聚煤規(guī)律[J]. 陜西地質(zhì),1983,1(1):38–46.

ZHOU Baochang. Jurassic coal accumulation rule in Ordos Basin[J]. Geology of Shaanxi,1983,1(1):38–46.

[21] 田楊,葉加仁,雷闖,等. 斷陷盆地海陸過渡相烴源巖發(fā)育模式:以西湖凹陷平湖組為例[J]. 地球科學(xué),2019,44(3):898–908.

TIAN Yang,YE Jiaren,LEI Chuang,et al. Hydrocarbon source rock development model of marine terrestrial transitional facies in fault basin:A case study of Pinghu Formation in Xihu Sag[J]. Editorial Committee of Earth Science,2019,44(3):898–908.

[22] 沈文超. 西湖凹陷古近系煤的聚集模式及沉積有機相研究[D]. 北京:中國礦業(yè)大學(xué)(北京),2018.

SHEN Wenchao. The coal accumulation model and sedimentary organic facies of Paleogene coal in the Xihu Depression[D]. Beijing:China University of Mining and Technology(Beijing),2018.

[23] 劉玉虎,趙丹丹,劉興旺,等. 吐哈侏羅紀(jì)原型盆地演化對烴源巖分布的控制[J]. 西南石油大學(xué)學(xué)報(自然科學(xué)版),2012,34(4):29–39.

LIU Yuhu,ZHAO Dandan,LIU Xingwang,et al. The control of the evolution of Turpan Hami Jurassic prototype basin on the distribution of source rocks[J]. Journal of Southwest Petroleum University(Natural Science Edition),2012,34(4):29–39.

[24] 任佳宇,姜波,屈爭輝,等. 東海與南海北部盆地構(gòu)造演化及其構(gòu)造控煤特征[J]. 煤炭技術(shù),2015,34(5):99–102.

REN Jiayu,JIANG Bo,QU Zhenghui,et al. Tectonic evolution and control of coal with contrast of East China Sea and Northern South China Sea[J]. Coal Technology,2015,34(5):99–102.

[25] 李榮西. 九十年代煤系烴源巖研究新進展[J]. 地質(zhì)科技情報,2000,19(4):55–59.

LI Rongxi. Achievements of the coal source rock research in last ten years[J]. Bulletin of Geological Science and Technology,2000,19(4):55–59.

[26] 黃第藩. 成烴理論的發(fā)展:(Ⅱ)煤成油及其初次運移模式[J]. 地球科學(xué)進展,1996,11(5):432–438.

HUANG Difan. Advances in hydrocarbon generation theory:(Ⅱ)Oils from coal and its primary migration model[J]. Advances in Earth Science,1996,11(5):432–438.

[27] 柳廣弟. 石油地質(zhì)學(xué)[M]. 北京:石油工業(yè)出版社,2009.

LIU Guangdi. Petroleum geology[M]. Beijing:Petroleum Industry Press,2009.

[28] 孫金山,劉國宏,孫明安,等. 庫車坳陷侏羅系煤系烴源巖評價[J]. 西南石油大學(xué)學(xué)報(自然科學(xué)版),2003,25(6):1–4.

SUN Jinshan,LIU Guohong,SUN Ming’an,et al. Source rock evaluation of coal-measures strata in Kuqa Depression of Tarim Basin[J]. Journal of Southwest Petroleum University(Science & Technology Edition),2003,25(6):1–4.

[29] 張功成,米立軍,屈紅軍,等. 全球深水盆地群分布格局與油氣特征[J]. 石油學(xué)報,2011,32(3):369–378.

ZHANG Gongcheng,MI Lijun,QU Hongjun,et al. A basic distributional framework of global deepwater basins and hydrocarbon characteristics[J]. Acta Petrolei Sinica,2011,32(3):369–378.

[30] 屈紅軍,張功成. 全球深水富油氣盆地分布格局及成藏主控因素[J]. 天然氣地球科學(xué),2017,28(10):1478–1487.

QU Hongjun,ZHANG Gongcheng. Distribution framework and main factors controlling hydrocarbon accumulation of global oil and gas-rich deepwater basins[J]. Natural Gas Geoscience,2017,28(10):1478–1487.

[31] 劉鳳鳴. 庫泰盆地石油地質(zhì)特征與油氣資源評價[D]. 北京:中國石油大學(xué)(北京),2017:7–36.

LIU Fengming. Petroleum geological characteristics and evaluation of oil and gas resources in Kutai Basin[D]. Beijing:China University of Petroleum(Beijing),2017:7–36.

[32] 楊磊. 中蘇門答臘盆地石油地質(zhì)特征與油氣勘探潛力[J]. 新疆石油地質(zhì),2011,32(3):329–331.

YANG Lei. Petroleum geology and exploration potential analysis in Central Sumatra Basin[J]. Xinjiang Petroleum Geology,2011,32(3):329–331.

[33] 劉世翔,趙志剛,謝曉軍,等. 文萊–沙巴盆地油氣地質(zhì)特征及勘探前景[J]. 科學(xué)技術(shù)與工程,2018,18(4):29–34.

LIU Shixiang,ZHAO Zhigang,XIE Xiaojun,et al. Petroleum geology and exploration prospects of Wenlai-Shaba Basin[J]. Science Technology and Engineering,2018,18(4):29–34.

[34] 羅金海,周新源,邱斌,等. 塔里木–卡拉庫姆地區(qū)的油氣地質(zhì)特征與區(qū)域地質(zhì)演化[J]. 地質(zhì)論評,2005,51(4):409–415.

LUO Jinhai,ZHOU Xinyuan,QIU Bin,et al. Petroleum geology and geological evolution of the Tarim-Karakum and Adjacent Areas[J]. Geological Review,2005,51(4):409–415.

[35] 白國平,殷進垠. 中亞卡拉庫姆盆地油氣分布特征與成藏模式[J].古地理學(xué)報,2007,9(3):293–301.

BAI Guoping,YIN Jinyin. Distribution characteristics and accumulation model for oil and gas in Karakum Basin,Central Asia[J]. Journal of Palaeogeography,2007,9(3):293–301.

[36] 張強,張光亞,李曰俊,等. 卡拉庫姆盆地晚二疊世—三疊紀(jì)的構(gòu)造屬性討論[J]. 地質(zhì)科學(xué),2016,51(1):157–164.

ZHANG Qiang,ZHANG Guangya,LI Yuejun,et al. Discussion on structural attributes of Late Permian Triassic in Karakum Basin[J]. Chinese Journal of Geology,2016,51(1):157–164.

[37] 尹繼全,賈承造,王春生,等. 阿富汗–塔吉克盆地油氣地質(zhì)特征及勘探方向[J]. 海相油氣地質(zhì),2015,20(4):43–48.

YIN Jiquan,JIA Chengzao,WANG Chunsheng,et al. Petroleum geological characteristics and exploration direction of Afghanistan Tajik Basin[J]. Marine Origin Petroleum Geology,2015,20(4):43–48.

[38] 李劍,姜正龍,羅霞,等. 準(zhǔn)噶爾盆地煤系烴源巖及煤成氣地球化學(xué)特征[J]. 石油勘探與開發(fā),2009,36(3):365–374.

LI Jian,JIANG Zhenglong,LUO Xia,et al. Geochemical characteristics of coal-measure source rocks and coal-derived gas in Junggar Basin,NW China[J]. Petroleum Exploration and Development,2009,36(3):365–374.

[39] 趙才順. 準(zhǔn)噶爾盆地腹部及周緣地區(qū)石炭系構(gòu)造特征[D]. 北京:中國地質(zhì)大學(xué)(北京),2010.

ZHAO caishun. Structural characteristics of carboniferous system in the hinterland and periphery of Junggar Basin[D]. Beijing:China University of Geosciences(Beijing),2010.

[40] 吳金才. 準(zhǔn)噶爾盆地腹部侏羅系層序地層學(xué)研究與隱蔽圈閉識別[D]. 成都:成都理工大學(xué),2005.

WU Jincai. Jurassic sequence stratigraphy and subtle trap identification in the hinterland of Junggar Basin[D]. Chengdu:Chengdu University of Technology,2005.

[41] 吳孔友,查明,王緒龍,等. 準(zhǔn)噶爾盆地構(gòu)造演化與動力學(xué)背景再認(rèn)識[J]. 地球?qū)W報,2005,26(3):217–222.

WU kongyou,ZHA Ming,WANG Xulong,et al. Further researches on the tectonic evolution and dynamic setting of the Junggar Basin[J]. Acta Geoscientia Sinica,2005,26(3):217–222.

[42] 茍紅光,張品,佘家朝,等. 吐哈盆地石油地質(zhì)條件、資源潛力及勘探方向[J]. 海相油氣地質(zhì),2019,24(2):85–96.

GOU Hongguang,ZHANG Pin,SHE Jiachao,et al. Petroleum geological conditions,resource potential and exploration direction in Turpan-Hami Basin[J]. Marine Origin Petroleum Geology,2019,24(2):85–96.

[43] 賈承造. 塔里木盆地構(gòu)造特征與油氣聚集規(guī)律[J]. 新疆石油地質(zhì),1999,20(3):3–9.

JIA Chengzao. Structural characteristics and oil/gas accumulative regularity in Tarim Basin[J]. Xinjiang Petroleum Geology,1999,20(3):3–9.

[44] 田光榮,李紅哲,白亞東,等. 柴達(dá)木盆地侏羅系煤系烴源巖生烴潛力分類評價[J]. 煤田地質(zhì)與勘探,2018,46(5):73–80.

TIAN Guangrong,LI Hongzhe,BAI Yadong,et al. Classification and evaluation of the hydrocarbon generation potential of Jurassic coal measures of Qaidam Basin[J]. Coal Geology & Exploration,2018,46(5):73–80.

[45] 馮喬,付鎖堂,張小莉,等. 柴達(dá)木盆地及鄰區(qū)侏羅紀(jì)原型盆地恢復(fù)及油氣勘探前景[J]. 地學(xué)前緣,2019,26(1):44–58.

FENG Qiao,F(xiàn)U Suotang,ZHANG Xiaoli,et al. Jurassic prototype basin restoration and hydrocarbon exploration prospect in the Qaidam Basin and its adjacent area[J]. Earth & Science Frontiers,2019,26(1):44–58.

[46] 白云來,王新民,劉化清,等. 鄂爾多斯盆地西部邊界的確定及其地球動力學(xué)背景[J]. 地質(zhì)學(xué)報,2006,80(6):792–813.

BAI Yunlai,WANG Xinmin,LIU Huaqing,et al. Determination of the borderline of the Western Ordos Basin and its geodynamics background[J]. Acta Geologica Sinica,2006,80(6):792–813.

[47] 劉潔琪. 煤系烴源巖天然氣成藏過程研究:以鄂爾多斯盆地東部山西組為例[D]. 西安:西安石油大學(xué),2017.

LIU Jieqi. Study on natural gas accumulation process of coal measure source rocks:A case study of Shanxi Formation in Eastern Ordos Basin[D]. Xi’an:Xi’an University of Petroleum,2017.

[48] 梁敏,王輝,梁輝,等. 鄂爾多斯盆地山西組煤系烴源巖特征研究[J]. 地下水,2018,40(2):93–95.

LIANG Min,WANG Hui,LIANG Hui,et al. Coalbed gas and shale gas resource prospect study of Heyang-Hancheng Area[J]. Ground Water,2018,40(2):93–95.

[49] 張泓,晉香蘭,李貴紅,等. 鄂爾多斯盆地侏羅紀(jì)–白堊紀(jì)原始面貌與古地理演化[J]. 古地理學(xué)報,2008,10(1):1–11.

ZHANG Hong,JIN Xianglan,LI Guihong,et al. Original features and palaeogeographic evolution during the Jurassic-Cretaceous in Ordos Basin[J]. Journal of Palaeogeography,2008,10(1):1–11.

[50] 駱宗強,劉鐵樹,襲著綱. 孟加拉國孟加拉盆地油氣勘探潛力分析[J]. 中國石油勘探,2012,17(2):67–73.

LUO Zongqiang,LIU Tieshu,WANG Zhugang. Analysis of oil and gas exploration potential in Bengal Basin,Bangladesh[J]. China Petroleum Exploration,2012,17(2):67–73.

[51] 客偉利,童曉光. 孟加拉盆地油氣地質(zhì)特征與勘探潛力[J]. 西安石油大學(xué)學(xué)報(自然科學(xué)版),2013,28(5):15–20.

KE Weili,TONG Xiaoguang. Petroleum geological characteristics and exploration potential of Bengal Basin[J]. Journal of Xi’an Shiyou University(Natural Science),2013,28(5):15–20.

[52] 賴生華,麻建明,廖林. 緬甸中央沉降帶Chindwin盆地油氣勘探潛力[J]. 天然氣工業(yè),2005,25(11):21–24.

LAI Shenghua,MA Jianming,LIAO Lin. The oil-gas exploration potential of Chindwin sag in the central basin in Burma[J]. Natural Gas Industry,2005,25(11):21–24.

[53] 楊磊. 緬甸D區(qū)塊油氣成藏條件分析[D]. 成都:成都理工大學(xué),2011.

YANG Lei. Analysis of hydrocarbon accumulation conditions in Block D of Myanmar[D]. Chengdu:Chengdu University of Technology,2011.

[54] 李運振,呂明,白海強,等. 緬甸欽敦–睡寶盆地火山島弧帶沉積環(huán)境分析[J]. 沉積與特提斯地質(zhì),2013,33(3):48–55.

LI Yunzhen,LYU Ming,BAI Haiqiang,et al. Sedimentary environments of the volcanic island arc zone in the Chindwin-Shwebo Basin,Myanmar[J]. Sedimentary Geology and Tethyan Geology,2013,33(3):48–55.

[55] 王營,辛仁臣. 緬甸含油氣盆地群形成演化及其地球動力學(xué)背景[J]. 地質(zhì)科技通報,2021,40(1):27–35.

WANG Ying,XIN Renchen. Formation and evolution of petroliferous basins in Myanmar and their geodynamic background[J]. Bulletin of Geological Science and Technology,2021,40(1):27–35.

[56] 張云逸. 泰國彭世洛盆地與泰國灣盆地油氣地質(zhì)特征對比[D]. 北京:中國石油大學(xué)(北京),2016:7–29.

ZHANG Yunyi. Comparison of petroleum geological characteristics between Pengshiluo Basin and Gulf of Thailand Basin in Thailand[D]. Beijing:China University of Petroleum(Beijing),2016.

[57] CHANTRAPRASERT S,UTITSAN S. Origin of synchronous extension and inversion in a rift basin:The Phitsanulok Basin,central Thailand[J]. Journal of Asian Earth Sciences,2021:104774.

[58] 胡忠良. 瓊東南盆地崖南凹陷烴源巖生烴動力學(xué)和油氣成藏研究[D]. 廣州:中國科學(xué)院研究生院(廣州地球化學(xué)研究所),2005.

HU Zhongliang. Hydrocarbon generation dynamics and hydrocarbon accumulation of source rocks in Yannan sag,Qiongdongnan Basin[D]. Guangzhou:Graduate School of Chinese Academy of Sciences(Guangzhou Institute of Geochemistry),2005.

[59] 寇才修. 南海北部海區(qū)珠江口盆地前漸新統(tǒng)找油的新領(lǐng)域[J]. 海洋地質(zhì)與第四紀(jì)地質(zhì),1984,4(2):41–47.

KOU Caixiu. A new field for oil exploration in the pre Oligocene of the Pearl River Mouth Basin in the northern South China Sea[J]. Marine Geology Quaternary Geology,1984,4(2):41–47.

[60] 李燕,鄧運華,李友川,等. 珠江口盆地河流—三角洲體系煤系烴源巖發(fā)育特征及有利相帶[J]. 東北石油大學(xué)學(xué)報,2016,40(1):62–71.

LI Yan,DENG Yunhua,LI Youchuan,et al. Development characteristics and favorable facies zones of coal measure source rocks in river delta system of Pearl River Mouth Basin[J]. Journal of Northeast Petroleum University,2016,40(1):62–71.

[61] 李曉龍,許長海,高順莉,等. 東海晚中生代巖漿弧與陸緣匯聚作用:碎屑鋯石U-Pb年代約束[J]. 地質(zhì)學(xué)報,2020,94(2):480–490.

LI Xiaolong,XU Changhai,GAO Shunli,et al. Late Mesozoic magmatic arc of continental margin:Constraints from detrital zircon U-Pb data,East China Sea[J]. Acta Geologica Sinica,2020,94(2):480–490.

[62] 蔣一鳴,刁慧,曾文倩. 東海盆地西湖凹陷平湖組煤系烴源巖條件及成烴模式[J]. 地質(zhì)科技通報,2020,39(3):30–39.

JIANG Yiming,DIAO Hui,ZENG Wenqian. Source rock conditions and hydrocarbon generation model of Pinghu Formation in Xihu Sag,Donghai Basin[J]. Bulletin of Geological Science and Technology,2020,39(3):30–39.

[63] RODRIGUEZ N D,PAUL PHILP R. Productivity and paleoclimatic controls on source rock character in the Aman Trough,north central Sumatra,Indonesia[J]. Organic Geochemistry,2012,45:18–28.

[64] 黃眾,胡孝林,郭剛,等. 蘇門答臘裂谷盆地帶構(gòu)造分帶及其成藏模式[J]. 海洋地質(zhì)前沿,2018,34(8):61–67.

HUANG Zhong,HU Xiaolin,GUO Gang,et al. Structural zonation and hydrocarbon accumulation model of the Sumatra back arc rift basin[J]. Marine Geology Frontiers,2018,34(8):61–67.

[65] LUNT P. Partitioned transtensional Cenozoic stratigraphic development of North Sumatra[J]. Marine and Petroleum Geology,2019,106:1–16.

[66] 袁浩,張廷山,王海峰,等. 南蘇門答臘盆地M區(qū)塊古近系烴源巖特征及評價[J]. 天然氣地球科學(xué),2012,23(4):646–653.

YUAN Hao,ZHANG Tingshan,WANG Haifeng,et al. Characteristics and evaluation of Paleogene source rocks in block m of South Sumatra Basin[J]. Natural Gas Geoscience,2012,23(4):646–653.

[67] 趙旭. 南蘇門答臘盆地WJ區(qū)裂陷期沉積層序及古構(gòu)造控制[D]. 北京:中國地質(zhì)大學(xué)(北京),2020.

ZHAO Xu. Sedimentary sequence and paleotectonic control during rifting in WJ area of South Sumatra Basin[D]. Beijing:China University of Geosciences(Beijing),2020.

[68] 王永臻. 馬來盆地石油地質(zhì)條件及成藏主控因素分析[D]. 北京:中國地質(zhì)大學(xué)(北京),2011.

WANG Yongzhen. Petroleum geological conditions and main controlling factors of hydrocarbon accumulation in Malay Basin[D]. Beijing:China University of Geosciences(Beijing),2011.

[69] 譙漢生,于興河. 裂谷盆地石油地質(zhì)[M]. 北京:石油工業(yè)出版社,2004.

QIAO Hansheng,YU Xinghe. Petroleum geology of rift basin[M]. Beijing:Petroleum Industry Press,2004.

[70] 孫桂華,高紅芳,彭學(xué)超,等. 越南南部湄公盆地地質(zhì)構(gòu)造與沉積特征[J]. 海洋地質(zhì)與第四紀(jì)地質(zhì),2010,30(6):25–33.

SUN Guihua,GAO Hongfang,PENG Xuechao,et al. Geological structure and sedimentary characteristics of Mekong Basin in southern Vietnam[J]. Marine Geology Quaternary Geology,2010,30(6):25–33.

[71] 錢光華,樊開意. 萬安盆地地質(zhì)構(gòu)造及演化特征[J]. 中國海上油氣(地質(zhì)),1997,11(2):1–7.

QIAN Guanghua,F(xiàn)AN Kaiyi. The geological tectonic and it's evolution in Wan’an Basin[J]. Offshore Oil and Gas(Geology) of China,1997,11(2):1–7.

[72] 張厚和,赫栓柱,劉鵬,等. 萬安盆地油氣地質(zhì)特征及其資源潛力新認(rèn)識[J]. 石油實驗地質(zhì),2017,39(5):625–632.

ZHANG Houhe,HE Shuanzhu,LIU Peng,et al. New understanding of oil and gas geological characteristics and resource potential in Wan’an Basin[J]. Petroleum Geology and Experiment,2017,39(5):625–632.

[73] 劉海. 東、西納土納盆地石油地質(zhì)特征及對比研究[D]. 北京:中國地質(zhì)大學(xué)(北京),2012.

LIU Hai. Petroleum geological characteristics and comparative study of East and West Natuna Basins[D]. Beijing:China University of Geosciences(Beijing),2012.

[74] 倪仕琪,王志欣,劉鳳鳴,等. 印度尼西亞西納土納盆地油氣地質(zhì)特征與分布規(guī)律[J]. 海洋地質(zhì)前沿,2017,33(2):26–34.

NI Shiqi,WANG Zhixin,LIU Fengming,et al. Geological characteristics and distribution pattern of petroleum in West Natuna Basin,Indonesia[J]. Marine Geology Frontiers,2017,33(2):26–34.

[75] LUNT P. A reappraisal of the Cenozoic stratigraphy of the Malay and West Natuna Basins[J]. Journal of Asian Earth Sciences:X,2021,5:100044.

[76] DOUST H,NOBLE R A. Petroleum systems of Indonesia[J]. Marine and Petroleum Geology,2008,25:103–129.

[77] 張厚和,赫栓柱,劉鵬,等. 曾母盆地?zé)N源巖評價及油源探討[J]. 礦物巖石地球化學(xué)通報,2017,36(3):466–475.

ZHANG Houhe,HE Shuanzhu,LIU Peng,et al. Evaluation of source rocks and oil-source correlation of Zengmu Basin[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2017,36(3):466–475.

[78] 郭志峰,胡孝林,郭剛,等. 印尼打拉根盆地油氣成藏特征與主控因素[J]. 海相油氣地質(zhì),2018,23(2):83–89.

GUO Zhifeng,HU Xiaolin,GUO Gang,et al. Hydrocarbon accumulation characteristics and main controlling factors in Dalagan Basin,Indonesia[J]. Marine Origin Petroleum Geology,2018,23(2):83–89.

[79] SATYANA A H,NUGROHO D,SURANTOKO I. Tectonic controls on the hydrocarbon habitats of the Barito,Kutei,and Tarakan Basins,Eastern Kalimantan,Indonesia:Major dissimilarities in adjoining basins[J]. Journal of Asian Earth Sciences,1999,17(1-2):99–122.

[80] 張強,呂福亮,毛超林,等. 印度尼西亞庫泰盆地油氣地質(zhì)特征及勘探方向[J]. 海相油氣地質(zhì),2012,17(4):8–15.

ZHANG Qiang,LYU Fuliang,MAO Chaolin,et al. Petroleum geology and exploration prospect in Kutai Basin,Indonesia[J]. Marine Origin Petroleum Geology,2012,17(4):8–15.

[81] 陳榕,賀敬博. 印度尼西亞富有機質(zhì)頁巖分布情況與頁巖氣資源潛力[J]. 中國礦業(yè),2018,27(S1):164–168.

CHEN Rong,HE Jingbo. Distribution of organic shale and shale gas resource potential in Indonesia[J]. China Mining Magazine,2018,27(S1):164–168.

[82] 楊福忠,羅良,賈東,等. 印尼東爪哇盆地新生代構(gòu)造演化[J]. 高校地質(zhì)學(xué)報,2011,17(2):240–248.

YANG Fuzhong,LUO Liang,JIA Dong,et al. Cenozoic Tectonic Evolution of the East Java Basin,Indonesia[J]. Geological Journal of China Universities,2011,17(2):240–248.

[83] 襲著綱,胡孝林,方勇,等. 印度尼西亞北塞蘭盆地構(gòu)造演化及其對油氣成藏條件的控制[J]. 中國石油勘探,2016,21(6):91–97.

XI Zhugang,HU Xiaolin,F(xiàn)ANG Yong,et al. Tectonic evolution of North Seram Basin,Indonesia,and its control over hydrocarbon accumulation conditions[J]. China Petroleum Exploration,2016,21(6):91–97.

[84] 李丹,楊香華,常吟善,等. 澳大利亞北卡那封盆地中上三疊統(tǒng)Mungaroo三角洲陸源有機質(zhì)分布特征[J]. 古地理學(xué)報,2014,16(2):193–204.

LI Dan,YANG Xianghua,CHANG Yinshan,et al. Distribution characteristics of terrigenous organic matter in the middle upper Triassic Mungaroo delta of North Carnarvon basin,Australia[J]. Journal of Palaeogeography,2014,16(2):193–204.

[85] 許曉明,于水,駱宗強,等. 北卡那封盆地與波拿巴盆地大氣田形成條件對比研究[J]. 石油天然氣學(xué)報,2014,36(2):6–11.

XU Xiaoming,YU Shui,LUO Zongqiang,et al. Comparative study on formation conditions of large gas fields in North Carnarvon basin and Bonaparte Basin[J]. Journal of Oil and Gas Technology,2014,36(2):6–11.

[86] 姜雄鷹,傅志飛. 澳大利亞布勞斯盆地構(gòu)造地質(zhì)特征及勘探潛力[J]. 石油天然氣學(xué)報,2010,32(2):54–57.

JIANG Xiongying,F(xiàn)U Zhifei. Petroleum geological features and exploration potential of Browse Basin in Australia[J]. Journal of Oil and Gas Technology,2010,32(2):54–57.

[87] 王云. 澳大利亞西北陸架深水區(qū)布勞斯盆地油氣地質(zhì)特征研究[J]. 地下水,2018,40(1):121–123.

WANG Yun. Oil and gas geological characteristics of Braus basin in deep water area of northwest shelf,Australia[J]. Ground Water,2018,40(1):121–123.

[88] 侯宇光,何生,楊香華,等. 澳大利亞波拿巴盆地大陸邊緣裂陷期海陸過渡相烴源巖地球化學(xué)特征與發(fā)育模式[J]. 石油實驗地質(zhì),2015,37(3):374–382.

HOU Yuguang,HE Sheng,YANG Xianghua,et al. Geochemical characteristics and development model of transitional source rocks during the continental margin rifting stage,Bonaparte Basin,Australia[J]. Petroleum Geology and Experiment,2015,37(3):374–382.

[89] 白國平,殷進垠. 澳大利亞北卡那封盆地油氣地質(zhì)特征及勘探潛力分析[J]. 石油實驗地質(zhì),2007,29(3):253–258.

BAI Guoping,YIN Jinyin. Petroleum geological features and exploration potential analyses of north Carnavon Basin,Australia[J]. Petroleum Geology and Experiment,2007,29(3):253–258.

[90] 姚永堅,呂彩麗,康永尚,等. 東南亞地區(qū)烴源巖特征與主控因素[J]. 地球科學(xué),2013,38(2):367–378.

YAO Yongjian,LYU Caili,KANG Yongshang,et al. Characteristics of hydrocarbon source rocks and their main controlling factors in Southeast Asia[J]. Earth Science,2013,38(2):367–378.

[91] 邱楠生,王緒龍,楊海波,等. 準(zhǔn)噶爾盆地地溫分布特征[J]. 地質(zhì)科學(xué),2001,36(3):350–358.

QIU Nansheng,WANG Xulong,YANG Haibo,et al. The characteristics of temperature distribution in the Junggar Basin[J]. Chinese Journal of Geology,2001,36 (3):350–358.

[92] 張世煥,王志勇,張朝富. 吐哈盆地煤系烴源巖特征與油氣分布關(guān)系初探[J]. 新疆石油地質(zhì),1996,17(1):29–33.

ZHANG Shihuan,WANG Zhiyong,ZHANG Chaofu. Preliminery study on the relation between the coal source rock characteristics and oilgas distribution in Turpan-Hami Basin[J]. Xinjiang Petroleum Geology,1996,17(1):29–33.

[93] 吳志遠(yuǎn). 十三間房及周圍地區(qū)煤系烴源巖評價及油氣成藏機制研究[D]. 北京:中國礦業(yè)大學(xué)(北京),2017.

WU Zhiyuan. Evaluation of coal measure source rocks and Study on hydrocarbon accumulation mechanism in Shisanjianfang and surrounding areas[D]. Beijing:China University of Mining and Technology(Beijing),2017.

[94] 黨犇,趙虹,姜常義. 塔里木盆地東北部侏羅系烴源巖特征及初步評價[J]. 地球科學(xué)與環(huán)境學(xué)報,2004,26(1):1–5.

DANG Ben,ZHAO Hong,JIANG Changyi. Preliminary studies and characteristics of the Jurassic hydrocarbon source rocks in the northern Tarim Basin[J]. Journal of Earch Sciences and Environment,2004,26(1):1–5.

[95] 潘泉涌. 塔里木盆地臺盆區(qū)地溫梯度分布特征[J]. 內(nèi)蒙古石油化工,2018,44(10):52–55.

PAN Quanyong. Geotemperature gradient distribution of Tarim Basin,Northwest,China[J]. Inner Mongolia Petrochemical Industry,2018,44(10):52–55.

[96] 李宗星,高俊,李文飛,等. 柴達(dá)木盆地地溫場分布特征及控制因素[J]. 地學(xué)前緣,2016,23(5):23–32.

LI Zongxing,GAO Jun,LI Wenfei,et al. The characteristics of geothermal field and controlling factors in Qaidam Basin,Northwest China[J]. Earth Science Frontiers,2016,23(5):23–32.

[97] 任戰(zhàn)利. 利用磷灰石裂變徑跡法研究鄂爾多斯盆地地?zé)崾穂J]. 地球物理學(xué)報,1995,38(3):339–349.

REN Zhanli. Study on geothermal history of Ordos Basin by apatite fission track method[J]. Chinese Journal of Geophysics,1995,38(3):339–349.

[98] 郭佩,劉池洋,王建強,等. 寧南地區(qū)石炭系沉積演化及烴源巖評價[J]. 地質(zhì)科技情報,2015,34(3):15–23.

GUO Pei,LIU Chiyang,WANG Jianqiang,et al. Carboniferous sedimentary evolution of southern Ningxia and its source rock evaluation[J]. Bulletin of Geological Science and Technology,2015,34(3):15–23.

[99] 晉香蘭,張慧. 鄂爾多斯盆地東北部侏羅紀(jì)煤系烴源巖的分布特征[J]. 中國煤炭地質(zhì),2010,22(1):15–19.

JIN Xianglan,ZHANG Hui. Distributing features of Jurassic coal measures hydrocarbon source rock in Northeastern Ordos Basin[J]. Coal Geology of China,2010,22(1):15–19.

[100] 黃文輝,敖衛(wèi)華,肖秀玲,等. 鄂爾多斯盆地侏羅紀(jì)含煤巖系生烴潛力評價[J]. 煤炭學(xué)報,2011,36(3):461–467.

HUANG Wenhui,AO Weihua,XIAO Xiuling,et al. Hydrocarbon generation potential evaluation of Jurassic coal bearing strata in Ordos Basin[J]. Journal of China Coal Society,2011,36(3):461–467.

[101] 客偉利,童曉光,溫志新,等. 孟加拉灣西側(cè)盆地群油氣地質(zhì)特征與勘探潛力[J]. 西南石油大學(xué)學(xué)報(自然科學(xué)版),2014,36(6):9–17.

KE Weili,TONG Xiaoguang,WEN Zhixin,et al. Petroleum geological characteristics and exploration potential of West Bengal Basin Group[J]. Journal of Southwest Petroleum University(Natural Science Edition),2014,36(6):9–17.

[102] 胡圣標(biāo),龍祖烈,朱俊章,等. 珠江口盆地地溫場特征及構(gòu)造–熱演化[J]. 石油學(xué)報,2019,40(增刊1):178–187.

HU shengbiao,LONG Zulie,ZHU Junzhang,et al. Characteristics of geothermal field and tectonic thermal evolution of Pearl River Mouth Basin[J]. Acta Petrolei Sinica,2019,40(Sup.1):178–187.

[103] 朱明,張向濤,黃玉平,等. 珠江口盆地?zé)N源巖特征及資源潛力[J]. 石油學(xué)報,2019,40(增刊1):53–68.

ZHU Ming,ZHANG Xiangtao,HUANG Yuping,et al. Characteristics and resource potential of source rocks in Pearl River Mouth Basin[J]. Acta Petrolei Sinica,2019,40(Sup.1):53–68.

[104] YANG Shuchun,HU Shengbiao,CAI Dongsheng,et al. Present-day heat flow,thermal history and tectonic subsidence of the East China Sea Basin[J]. Marine and Petroleum Geology,2004,21:1095–1105.

[105] 馮曉杰,蔡東升. 東海陸架盆地中新生代構(gòu)造演化對烴源巖分布的控制作用[J]. 中國海上油氣,2006,18(6):372–375.

FENG Xiaojie,CAI Dongsheng. Controls of Mesozoic and Cenozoic tectonic evolution on source rock distribution in East China Sea Shelf Basin[J]. China Offshore Oil and Gas,2006,18(6):372–375.

[106] 曹冰. 西湖凹陷中央反轉(zhuǎn)構(gòu)造帶花港組致密砂巖儲層埋藏史–熱史[J]. 成都理工大學(xué)學(xué)報(自然科學(xué)版),2016,43(4):405–414.

CAO Bing. Study of burial and thermal history of Huagang Formation tight sandstone reservoir in central reversal structural belt,Xihu Depression,East China Sea[J]. Journal of Chengdu University of Technology(Science & Technology Edition),2016,43(4):405–414.

[107] 田鑫. 印尼南蘇門答臘盆地油氣成藏規(guī)律研究及油氣藏精細(xì)勘探[D]. 成都:成都理工大學(xué),2016.

TIAN Xin. Study on hydrocarbon accumulation and fine exploration in South Sumatra Basin,Indonesia[D]. Chengdu:Chengdu University of Technology,2016.

[108] 劉振湖,吳進民. 南海萬安盆地油氣地質(zhì)特征[J]. 中國海上油氣(地質(zhì)),1997,11(3):1–8.

LIU Zhenhu,WU Jinmin. Petroleum geology of Wan’an Basin,South China Sea[J]. China Offshore Oil and Gas,1997,11(3):1–8.

[109] CURIALE J,LIN R,DECKER J. Isotopic and molecular characteristics of Miocene-reservoired oils of the Kutei Basin,Indonesia[J]. Organic Geochemistry,2005,36:405–424.

[110] 魯銀濤,欒錫武,史卜慶,等. 加里曼丹島庫泰盆地海相成藏組合特征及油氣富集區(qū)分帶性分析[J]. 海洋科學(xué),2019,43(1):38–49.

LU Yintao,LUAN Xiwu,SHI Buqing,et al. Characteristics of Lower Miocene marine petroleum play and prospective petroleum accumulation region in the Kutei Basin,the Kalimantan Island[J]. Marine Science,2019,43(1):38–49.

[111] TODD S,DUNN M,BARWISE A. Characterizing petroleum charge systems in the tertiary of SE Asia[J]. Petroleum Geology of Southeast Asia,1997,126:25–47.

[112] 張家青. 澳大利亞西北大陸架油氣地質(zhì)特征及勘探潛力:以北卡那封盆地為例[J]. 內(nèi)蒙古石油化工,2011,37(9):186–190.

ZHUANG Jiaqing. Petroleum geological characteristics and exploration potential of Northwest continental shelf in Australia:A case study of North Carnarvon Basin[J]. Inner Mongolia Petrochemical Industry,2011,37(9):186–190.

[113] 李燕. 澳大利亞北卡那封盆地含油氣系統(tǒng)分析與資源評價[D]. 北京:中國石油大學(xué)(北京),2018.

LI Yan. Petroleum system analysis and resource evaluation of North Carnarvon basin,Australia[D]. Beijing:China University of Petroleum(Beijing),2018.

[114] 龔承林,王英民,崔剛,等. 北波拿巴盆地構(gòu)造演化與層序地層學(xué)[J]. 海洋地質(zhì)與第四紀(jì)地質(zhì),2010,30(2):103–109.

GONG Chenglin,WANG Yingmin,CUI Gang,et al. Structural evolution and sequence stratigraphy of North Bonaparte Basin[J]. Marine Geology Quaternary Geology,2010,30(2):103–109.

[115] 段威,侯宇光,何生,等. 澳大利亞波拿巴盆地Petrel次盆古生界頁巖有機質(zhì)熱演化的差異及其地質(zhì)意義[J]. 中國石油大學(xué)學(xué)報(自然科學(xué)版),2013,37(6):17–23.

DUAN Wei,HOU Yuguang,HE Sheng,et al. Thermal evolution differences and its geological significances of organic matter of Paleozoic shale in Petrel subbasin,Bonaparte Basin,Australia[J]. Journal of China University of Petroleum(Edition of Natural Science),2013,37(6):17–23.

[116] 于會娟,妥進才,劉洛夫,等. 柴達(dá)木盆地東部地區(qū)侏羅系烴源巖地球化學(xué)特征及生烴潛力評價[J]. 沉積學(xué)報,2000,18(1):132–138.

YU Huijuan,TUO Jincai,LIU Luofu,et al. Geochemical characteristics and evaluation on hydrocarbon generation potentials of source rocks in Jurassic Eastern Qaidam Basin[J]. Acta Sedimentologica Sinica,2000,18(1):132–138.

[117] 肖賢明,劉德漢,傅家謨. 我國聚煤盆地煤系烴源巖生烴評價與成烴模式[J]. 沉積學(xué)報,1996,14(增刊1):10–17.

XIAO Xianming,LIU Dehan,F(xiàn)U Jiamo. The evaluation of coal-measure source rocks of coal-bearing basins in China and their hydrocarbon-generating models[J]. Acta Sedimentologica Sinica,1996,14(Sup.1):10–17.

[118] 雷闖,葉加仁,王修平,等. 澳大利亞北波拿巴盆地Plover組烴源巖特征及熱演化[J]. 地質(zhì)科技情報,2011,30(1):108–113.

LEI Chuang,YE Jiaren,WANG Xiuping,et al. Characteristics and thermal evolution of source rocks of Plover Formation in the Northern Bonaparte Basin,Australia[J]. Bulletin of Geological Science and Technology,2011,30(1):108–113.

[119] 李劭杰. 南海北部盆地煤系烴源巖形成模式研究[D]. 武漢:中國地質(zhì)大學(xué),2015.

LI Shaojie. Study on the formation model of coal measure source rocks in the northern basin of South China Sea[D]. Wuhan:China University of Geosciences,2015.

[120] 鮮志堯. 緬甸D區(qū)塊烴源巖有機地球化學(xué)特征及油氣源對比[D]. 成都:成都理工大學(xué),2012.

XIAN Zhiyao. Organic geochemical characteristics and oil-gas source correlation of source rocks in Block D of Myanmar[D]. Chengdu:Chengdu University of Technology,2012.

[121] 蘭蕾. 南海南部盆地?zé)N源巖特征及其對含油氣性的影響[J]. 地質(zhì)科技情報,2019,38(4):23–29.

LAN Lei. Characteristics of source rocks in the southern basin of the South China Sea and their influence on petroliferous properties[J]. Bulletin of Geological Science and Technology,2019,38(4):23–29.

[122] 彼得斯 K E,沃爾特斯 C C,莫爾多萬 J M. 生物標(biāo)志化合物指南第二版–下冊[M]. 北京:石油工業(yè)出版社,1995.

PETERS K E,WALTERS C C,MORWAN J M. Guide to biomarkers,Second Edition-Volume Ⅱ[M]. Beijing:Petroleum Industry Press,1995.

[123] 薛沛霖. 山西晚古生代的聚煤歷程[J]. 化石,2018(3):28–30.

XUE Peilin. Coal accumulation process of Late Paleozoic in Shanxi[J]. Fossil,2018(3):28–30.

[124] 屈童,高崗,徐新德,等. 三角洲—淺海沉積體系陸源有機質(zhì)分布控制因素[J]. 沉積學(xué)報,2020,38(3):648–660.

QU Tong,GAO Gang,XU Xinde,et al. Control factors of terrestrial organic matter distribution in delta-shallow sea sedimentary system[J]. Acta Sedimentologica Sinica,2020,38(3):648–660.

[125] 韓冰,李學(xué)杰,呂建榮,等. 孟加拉灣深水盆地油氣勘探潛力[J]. 海洋地質(zhì)前沿,2012,28(4):50–56.

HAN Bing,LI Xuejie,LYU Jianrong,et al. Petroleum exploration potential of bay of Bengal deep water basin[J]. Marine Geology Frontiers,2012,28(4):50–56.

[126] 蔣一鳴,邵龍義,李帥,等. 西湖凹陷平湖構(gòu)造帶平湖組沉積體系及層序地層研究[J]. 現(xiàn)代地質(zhì),2020,34(1):141–153.

JIANG Yiming,SHAO Longyi,LI Shuai,et al. Deposition system and stratigraphy of Pinghu formation in Pinghu Tectonic Belt,Xihu Sag[J]. Geoscience,2020,34(1):141–153.

[127] 李居云,姜波,屈爭輝,等. 東海西湖凹陷構(gòu)造演化及控煤作用[J]. 煤田地質(zhì)與勘探,2016,44(5):22–27.

LI juyun,JIANG Bo,QU Zhenghui,et al. Tectonic evolution and control of coal in Donghai Xihu sag[J]. Coal Geology & Exploration,2016,44(5):22–27.

[128] 宮賀晏. 珠江口盆地珠三坳陷構(gòu)造演化及其對煤系烴源巖的控制[D]. 徐州:中國礦業(yè)大學(xué),2014.

GONG Heyan. Tectonic evolution of Zhusan depression in Pearl River Mouth Basin and its control on coal measures source rocks[D]. Xuzhou:China University of Mining and Technology,2014.

[129] 熊斌輝,王春紅,張錦偉,等. 西湖凹陷古近系平湖組煤層分布及油氣意義[J]. 海洋石油,2007,27(3):27–33.

XIONG Binhui,WANG Chunhong,ZHANG Jinwei,et al. The distribution and exploration implications of coal beds of Pinghu Formation,Paleologene in Xihu Sag[J]. Offshore Oil,2007,27(3):27–33.

[130] 楊明慧,張厚和,廖宗寶,等. 南海南沙海域沉積盆地構(gòu)造演化與油氣成藏規(guī)律[J]. 大地構(gòu)造與成礦學(xué),2017,41(4):710–720.

YANG Minghui,ZHANG Houhe,LIAO Zongbao,et al. Tectonic evolution and hydrocarbon accumulation of the sedimentary basins in Nansha Sea Waters(South China Sea)[J]. Geotectonica et Metallogenia,2017,41(4):710–720.

[131] 盧雙舫,張敏. 油氣地球化學(xué)[M]. 北京:石油工業(yè)出版社,2008.

LU Shuangfang,ZHANG Min. Petroleum geochemistry[M]. Beijing:Petroleum Industry Press,2008.

[132] 張成君,張菀漪,樊榮,等. 湖泊環(huán)境早期成巖作用對沉積物中有機質(zhì)C/N和碳同位素組成的影響[J]. 地球環(huán)境學(xué)報,2012,3(4):1005–1012.

ZHANG Chengjun,ZHANG Wanyi,F(xiàn)AN Rong,et al. Effect of early diagenesis in lake environment on C/N and carbon isotope composition of organic matter in sediments[J]. Journal of Earth Environment,2012,3(4):1005–1012.

[133] LAMB A L,LENG M J,UMER MOHAMMED M,et al. Holocene climate and vegetation change in the Main Ethiopian Rift Valley,inferred from the composition(C/N and δ13C) of lacustrine organic matter[J]. Quaternary Science Reviews,2004,23:881–891.

[134] 仝志剛,賀清,趙志剛,等. 從油氣賦存狀態(tài)分析油氣充注能力:以東海西湖凹陷平湖油氣田為例[J]. 中國海上油氣,2011,23(3):154–157.

TONG Zhigang,HE Qing,ZHAO Zhigang,et al. Analyzing hydrocarbon charges from hydrocarbon occurrences:a case of Pinghu oil and gas field in Xihu sag,East China sea[J]. China Offshore Oil and Gas,2011,23(3):154–157.

[135] 單超,葉加仁,曹強,等. 西湖凹陷孔雀亭氣田成藏主控因素[J]. 海洋地質(zhì)與第四紀(jì)地質(zhì),2015,35(1):135–144.

SHAN Chao,YE Jiaren,CAO Qiang,et al. Controlling factors for gas accumulation in Kongqueting Gas Field of Xihu Sag[J]. Marine Geology & Quaternary Geology,2015,35(1):135–144.

Development characteristics and controlling factors of coal-measure source rocks in the global Tethys region

QU Tong1,2, HUANG Zhilong1,2, WANG Rui1,2, TAN Sizhe3, LI Zhiyuan1,2,GUO Xiaobo4, ZHAO Jing1,2, PAN Yongshuai1,2

(1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China; 2. College of Geosciences, China University of Petroleum(Beijing), Beijing 102249, China; 3. Shanghai Branch, CNOOC(China) Co., Ltd., Shanghai 200335, China; 4. School of Earth Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China)

Under the control of tectonic activity in the Tethys region, a series of basins with coal measure source rocks developed, and the Tertiary coal in the circum Pacific belt is characterized by "hydrogen-rich" and has great hydrocarbon generation potential.This type of coal measure strata is an important source rock in petroliferous basins along the southeast coast of China.Therefore, it is particularly important to systematically analyze the development characteristics and controlling factors of coal measure source rocks under the Tethys background. Based on the systematic analysis of the development age, environments, geochemical characteristics and biomarker characteristics of the coal measure source rocks in the Tethys region, the controlling factors affecting the development of the coal-measure source rocks are summarized, and the favorable development conditions and controlling factors of high-quality coal-measure source rocks are clarified. The research results show that the coal-measure source rocks under the control of the Tethyan region are mainly developed in the basins under the extensional background of the coastal areas of Southeast Asia, mostly in the marine-terrestrial transitional facies sedimentary environment during the rifting period, and the development age is consistent with the period of Tethys tectonic activity.The development of coal-measures source rocks is controlled by many factors, such as paleovegetation, paleoenvironment, lithofacies paleogeography, terrigenous organic matter supply, tectonic activity intensity, sedimentation rate and so on. The factors are interrelated and influence each other, which can be divided into three types: parent source factor, tectonic-sedimentation factor and preservation factor.The plant types rich in the chitinous and hydrogen-rich vitrinites are the necessary parent source conditions for the formation of hydrogen-rich coal. The favorable coal accumulation environment and stable tectonic background are the key factors for the large-scale development of coal measure source rocks. Appropriate water conditions and reduction environment are important factors for the preservation of organic matter. The coal measure source rocks in the southeast coastal basins of China have great hydrocarbon generation potential. The coal measure source rocks are rich in resin in the Xihu Sag of the East China Sea basin, the coal measure source rocks are rich in spores and pollen in the Pearl River Mouth Basin, and the coal measure mudstone is widely developed in Qiongdongnan Basin, which has great exploration prospect.

Tethys region; coal-measure source rock; distribution characteristics; development characteristics; controlling factors

移動閱讀

語音講解

P618.13

A

1001-1986(2021)05-0114-18

2021-06-16;

2021-08-15

國家自然科學(xué)基金面上項目(41472111)

屈童,1994年生,男,陜西咸陽人,博士研究生,研究方向為油氣成藏與分布規(guī)律. E-mail:qutong1994@sina.com

黃志龍,1962年生,男,浙江諸暨人,博士,教授,博士生導(dǎo)師,從事油氣藏形成與分布等方面的教學(xué)和研究工作. E-mail:huang5288@163.com

屈童,黃志龍,王瑞,等. 全球特提斯域煤系烴源巖發(fā)育特征及其控制因素[J]. 煤田地質(zhì)與勘探,2021,49(5):114–131. doi: 10.3969/j.issn.1001-1986.2021.05.013

QU Tong,HUANG Zhilong,WANG Rui,et al. Development characteristics and controlling factors of coal-measure source rocks in the global Tethys region[J]. Coal Geology & Exploration,2021,49(5):114–131. doi: 10.3969/j.issn. 1001-1986.2021.05.013

(責(zé)任編輯 范章群)

猜你喜歡
烴源盆地油氣
基于譜元法的三維盆地-子盆地共振初步研究
川西坳陷優(yōu)質(zhì)烴源巖的識別及分布特征
震源深度對二維盆地放大的影響研究*
二連盆地伊和烏蘇凹陷烴源巖地球化學(xué)特征與生烴潛力
川東北地區(qū)陸相烴源巖評價
《油氣地質(zhì)與采收率》第六屆編委會
《非常規(guī)油氣》第二屆青年編委征集通知
松遼盆地南部深層中-高演化階段烴源巖品質(zhì)評價標(biāo)準(zhǔn)探討
盆地是怎樣形成的
2013全球主要油氣發(fā)現(xiàn)
龙里县| 英山县| 八宿县| 伊吾县| 华蓥市| 扶沟县| 池州市| 买车| 通渭县| 寿阳县| 湘潭县| 台南市| 鄂托克前旗| 肇庆市| 汉源县| 勐海县| 长武县| 隆子县| 聂荣县| 双流县| 周宁县| 浮梁县| 大城县| 平塘县| 紫金县| 运城市| 桃源县| 四平市| 哈密市| 穆棱市| 修文县| 杭州市| 钟山县| 会宁县| 南宁市| 东光县| 南昌县| 崇明县| 商都县| 肇源县| 太谷县|