劉 琪,汪韋峻,羅 斌,王厚柱,張志軍
高鹽礦井水深部轉(zhuǎn)移存儲(chǔ)介質(zhì)特征與水動(dòng)力演化規(guī)律
劉 琪1,汪韋峻1,羅 斌1,王厚柱2,3,張志軍4
(1. 中國(guó)礦業(yè)大學(xué) 資源與地球科學(xué)學(xué)院,江蘇 徐州 221116;2. 中國(guó)中煤能源集團(tuán)有限公司,北京 100120; 3. 中國(guó)礦業(yè)大學(xué)(北京) 地球科學(xué)與測(cè)繪工程學(xué)院,北京 100083;4. 中國(guó)煤炭地質(zhì)總局勘察研究總院,北京 100039)
高鹽礦井水處理及排放是近幾年影響煤炭高效開(kāi)采的重要因素之一,選擇開(kāi)采煤層底板下深部適當(dāng)?shù)暮畬?,將高鹽礦井水進(jìn)行異位轉(zhuǎn)移存儲(chǔ)是一種值得探索的礦井水排放減量方法。以鄂爾多斯盆地X礦為例,分析認(rèn)為開(kāi)采煤層以下寶塔山砂巖和深層劉家溝組砂巖地層具備轉(zhuǎn)移存儲(chǔ)空間。采取壓汞實(shí)驗(yàn)和巖石力學(xué)分析研究2組地層介質(zhì)特征;采用水位自然恢復(fù)試驗(yàn)、壓水試驗(yàn)和數(shù)值模擬等手段研究水文地質(zhì)參數(shù)和水動(dòng)力場(chǎng)特征。結(jié)果表明:寶塔山砂巖孔隙率為6.57%~19.89%,儲(chǔ)水潛力大但距離開(kāi)采煤層過(guò)近,轉(zhuǎn)移存儲(chǔ)礦井水可能引起底板突水威脅,現(xiàn)今開(kāi)采階段不考慮作為轉(zhuǎn)移存儲(chǔ)目的層;劉家溝組孔隙率為4.18%~ 7.49%,原始狀態(tài)下滲透系數(shù)為5.31×10–6m/d,注水壓裂后為0.008 14~0.015 27 m/d,滲透能力大幅提升并可保持穩(wěn)定;MODFLOW模擬結(jié)果表明,劉家溝組含水層在長(zhǎng)期轉(zhuǎn)移存儲(chǔ)礦井水方面具備較好前景。
礦井水處理;礦井水深部轉(zhuǎn)移存儲(chǔ);介質(zhì)特征;壓裂增透;鄂爾多斯盆地
我國(guó)化石能源呈現(xiàn)多煤少油少氣的特征,煤炭在現(xiàn)在和未來(lái)一段時(shí)間內(nèi)都是我國(guó)能源消費(fèi)的主體之一[1]。隨著我國(guó)煤炭開(kāi)發(fā)重心逐步向西部干旱半干旱地區(qū)轉(zhuǎn)移,部分礦區(qū)呈現(xiàn)富煤少水特征,但也有多個(gè)礦區(qū)礦井水量大、含鹽量偏高,因此,探索礦井水的處理、減排方法十分必要。
保水采煤自20世紀(jì)末提出后,在保護(hù)我國(guó)西北干旱半干旱地區(qū)水資源完整方面做出突出貢獻(xiàn)[2]。在煤炭開(kāi)采過(guò)程中,煤層頂板產(chǎn)生失穩(wěn)垮落,垮落巖體上形成導(dǎo)水裂隙;當(dāng)煤層距離含水層近,裂隙導(dǎo)通上方直接充水含水層時(shí),水沿裂隙向下進(jìn)入開(kāi)采工作面、巷道,被礦井排出地表,使含水層失水;當(dāng)失水量超過(guò)含水層自穩(wěn)定限度后會(huì)形成當(dāng)?shù)厮Y源不可逆缺失[3-5]。在干旱半干旱缺水礦區(qū),為保護(hù)受煤層開(kāi)采影響的淺部含水層中地下水資源的可利用性,邵飛燕[6]提出將淺部含水層地下水向煤層底板以下含水層中進(jìn)行“轉(zhuǎn)移存儲(chǔ)”的技術(shù)思路。武強(qiáng)等[7-8]基于礦山開(kāi)采過(guò)程中礦井水量大但利用程度不高的情況提出“煤–水”雙資源型礦井開(kāi)采技術(shù)方法,以梧桐莊礦突水治理為例,對(duì)礦井水進(jìn)行控制、處理、利用、回灌與生態(tài)環(huán)?!拔逦灰惑w”的優(yōu)化結(jié)合。我國(guó)要求水資源短缺礦區(qū)礦井水利用率要達(dá)到100%,高鹽礦井水減量減排是實(shí)現(xiàn)礦井水零排放的重要途徑。目前,高鹽礦井水處理多集中在礦井水中鹽分消除[9],達(dá)標(biāo)后作為礦區(qū)生產(chǎn)、生活和生態(tài)用水。此外,地下水轉(zhuǎn)移存儲(chǔ)也是一種有效處理高鹽礦井水的手段[10]。國(guó)外較先開(kāi)展地下水轉(zhuǎn)移存儲(chǔ)研究[11-12],我國(guó)主要集中在近地表地層和采空區(qū)[13-14],深部轉(zhuǎn)移存儲(chǔ)進(jìn)行過(guò)CO2封存相關(guān)的研究與實(shí)踐,如神華CCS示范工程[15],其主要注入層位為劉家溝組、石千峰組、山西組、石盒子組和馬家溝組,工程結(jié)果表明,鄂爾多斯盆地三疊系劉家溝組是地質(zhì)封存CO2的良好儲(chǔ)層,至今未發(fā)生泄露;說(shuō)明劉家溝組具有一定的轉(zhuǎn)移存儲(chǔ)潛力。
為保障鄂爾多斯盆地X礦安全高效開(kāi)采煤炭資源,實(shí)現(xiàn)高鹽礦井水減量減排,開(kāi)展高鹽礦井水異位轉(zhuǎn)移存儲(chǔ)儲(chǔ)層的水文地質(zhì)結(jié)構(gòu)特征和介質(zhì)特征研究,通過(guò)對(duì)比分析研究區(qū)寶塔山砂巖與劉家溝組砂巖的介質(zhì)特征與水動(dòng)力學(xué)特征,優(yōu)選目的層,并對(duì)礦井水回灌后的水動(dòng)力影響進(jìn)行了模擬,以期指導(dǎo)礦井水回灌工程的實(shí)際運(yùn)行。
研究區(qū)X礦位于鄂爾多斯盆地,屬大陸性沙漠氣候。含煤地層為侏羅系延安組,含煤5組(2、3、4、5、6煤組),最低可開(kāi)采煤層為6-2中煤層。現(xiàn)開(kāi)采煤層為3-1煤,礦井涌水量已達(dá)1 900 m3/h,礦化度最高為2 g/L。該礦現(xiàn)有礦井水處理方法有深度處理與中轉(zhuǎn)水池蒸餾結(jié)晶法、化工用水、矸石處理用水和離層注漿用水,但以上水處理方式已趨于飽和,難以滿足開(kāi)采需要。
轉(zhuǎn)移存儲(chǔ)目的層選取應(yīng)滿足以下2點(diǎn)準(zhǔn)則:①?gòu)暮畬咏橘|(zhì)特征方面,要求目的層必須分布穩(wěn)定,厚度較大,具有一定程度的孔隙、裂隙發(fā)育,以提供儲(chǔ)水空間;②從水文地質(zhì)結(jié)構(gòu)方面,位于煤層底板以下較大深度,以免受開(kāi)采頂?shù)装迤茐膸в绊懀也荒茉斐傻装逋凰kU(xiǎn)性增大,最好為相對(duì)封閉的獨(dú)立水文地質(zhì)單元。
3-1煤直接充水含水層為頂板直羅組砂巖孔隙、裂隙含水層和延安組砂巖孔隙、裂隙含水層。延安組下段發(fā)育寶塔山中粗砂巖,已有研究表明,寶塔山砂巖孔隙發(fā)育,滲透性好,具有相當(dāng)大的儲(chǔ)水空間[16-17];三疊系劉家溝組主要由細(xì)砂巖、砂質(zhì)泥巖組成,研究區(qū)內(nèi)劉家溝組距離3-1煤1 200 m以上;據(jù)文獻(xiàn)[18],鄂爾多斯盆地劉家溝組砂巖段裂隙發(fā)育,鉆井液周期性漏失,堵漏27次,漏失量最大達(dá)4 621 m3,這與CCS示范工程模擬結(jié)果[15]相吻合。寶塔山砂巖、劉家溝組砂巖與最低可開(kāi)采煤層6-2中煤層距離如圖1所示。
依據(jù)轉(zhuǎn)移存儲(chǔ)目的層選取準(zhǔn)則,分析研究區(qū)含水層介質(zhì)特征和水文地質(zhì)條件,選擇煤層下儲(chǔ)水空間用以轉(zhuǎn)移存儲(chǔ)礦井水,鉆孔揭露延安組底部寶塔山砂巖厚47.1 m、三疊系劉家溝組地層厚416.4 m,儲(chǔ)水空間大,提出寶塔山砂巖段和深部劉家溝組砂巖段作為轉(zhuǎn)移存儲(chǔ)層備選目標(biāo)。
圖1 開(kāi)采煤層下地層柱狀圖
轉(zhuǎn)移存儲(chǔ)層的儲(chǔ)水空間直接決定了其原始狀態(tài)下的可轉(zhuǎn)移存儲(chǔ)量,轉(zhuǎn)移存儲(chǔ)層砂巖的介質(zhì)特征直接影響轉(zhuǎn)移存儲(chǔ)層的儲(chǔ)水空間大小[19]。研究區(qū)寶塔山砂巖為粗砂巖和含礫粗砂巖,距離6-2中煤近。劉家溝組成巖時(shí)代較煤層早,主要為砂巖。收集寶塔山砂巖和劉家溝組巖心樣本13組,測(cè)試孔隙率及孔徑小于100 nm、100~10 000 nm和大于10 000 nm孔隙占比(表1),獲取研究區(qū)轉(zhuǎn)移存儲(chǔ)層的含水介質(zhì)條件。
已有研究表明,含水介質(zhì)孔隙多少和大小都會(huì)對(duì)地下水運(yùn)動(dòng)造成顯著影響(表2)[20]。測(cè)試結(jié)果表明,寶塔山砂巖孔隙率均值為14.53%,重力水可以運(yùn)動(dòng)的孔隙占比平均為88.69%,最低為82.45%,其中100~10 000 nm孔隙占比平均為74.87%,表明寶塔山砂巖孔隙多位于這一級(jí)別,重力水可在較高水頭下運(yùn)動(dòng),作為儲(chǔ)層轉(zhuǎn)移存儲(chǔ)礦井水潛力巨大。劉家溝組砂巖孔隙率均值為5.50%,重力水可以運(yùn)動(dòng)的孔隙占比平均為74.22%,較寶塔山砂巖總孔隙率小,重力水可以運(yùn)動(dòng)的孔徑占比小,相當(dāng)一部分孔隙充滿結(jié)合水,表明在原始狀態(tài)下,寶塔山砂巖在單位空間內(nèi)轉(zhuǎn)移存儲(chǔ)礦井水潛力優(yōu)于劉家溝組地層。
在長(zhǎng)期轉(zhuǎn)移存儲(chǔ)過(guò)程中,轉(zhuǎn)移存儲(chǔ)層的抗壓能力也會(huì)影響其儲(chǔ)水潛力,這是由于轉(zhuǎn)移存儲(chǔ)過(guò)程中轉(zhuǎn)移存儲(chǔ)層水位上升導(dǎo)致回注井孔周圍巖層受壓產(chǎn)生不同程度的破裂,部分新裂隙產(chǎn)生、部分原有微裂隙擴(kuò)張形成裂隙網(wǎng)絡(luò),進(jìn)一步增大儲(chǔ)水潛力。對(duì)寶塔山砂巖4組樣本和劉家溝組砂巖13組樣本進(jìn)行單軸抗壓強(qiáng)度測(cè)試,結(jié)果如圖2所示;黏土含量等物性參數(shù)測(cè)試結(jié)果見(jiàn)表1。
表1 目標(biāo)轉(zhuǎn)移存儲(chǔ)層孔隙分布及黏土含量
注:數(shù)據(jù)表示最小~最大值/平均值。
表2 微孔隙結(jié)構(gòu)特征[20]
結(jié)果表明,原始狀態(tài)下寶塔山砂巖飽和抗壓強(qiáng)度低于劉家溝組砂巖;在長(zhǎng)期轉(zhuǎn)移存儲(chǔ)飽和含水條件下,轉(zhuǎn)移存儲(chǔ)層抗壓強(qiáng)度均降低,寶塔山砂巖抗壓強(qiáng)度從32.1~60.2 MPa降低到22.6~44.3 MPa;劉家溝組巖層抗壓強(qiáng)度從59.7~114.0 MPa降低到30.0~66.1 MPa,劉家溝組降低顯著。對(duì)劉家溝組樣本進(jìn)行X射線衍射得到黏土礦物平均質(zhì)量分?jǐn)?shù)17.45%,最高為23.50%。已有研究表明黏土含量的存在會(huì)弱化砂巖強(qiáng)度,其中含少量或大量泥質(zhì)的砂巖,其單軸抗壓強(qiáng)度較不含泥質(zhì)砂巖分別折減了22%和4%[21]。劉家溝組砂巖為泥質(zhì)膠結(jié),抗壓強(qiáng)度較低,在飽和含水與受壓雙重耦合下易發(fā)生開(kāi)裂,增大原巖滲透性。
圖2 單軸抗壓強(qiáng)度測(cè)試結(jié)果
根據(jù)鉆孔取心及物探分析,延安組中含2、3、4、5、6煤組,寶塔山砂巖距6-2中煤僅8~10 m,受采動(dòng)影響,煤層開(kāi)采擾動(dòng)裂隙現(xiàn)已導(dǎo)通直羅組含水層,導(dǎo)致寶塔山砂巖無(wú)穩(wěn)定蓋層,某些開(kāi)采侏羅紀(jì)煤田下組煤的煤礦,寶塔山砂巖甚至作為充水含水層考慮并進(jìn)行疏放水可行性研究,證明煤層開(kāi)采存在垂直裂隙導(dǎo)通含水層,寶塔山砂巖作為轉(zhuǎn)移存儲(chǔ)層時(shí),礦井水會(huì)產(chǎn)生沿裂隙擴(kuò)散逃逸的風(fēng)險(xiǎn)。
劉家溝組上段與和尚溝組主要以泥巖、砂質(zhì)泥巖和粉砂巖為主,厚度達(dá)180 m。鄂爾多斯盆地屬于我國(guó)典型的克拉通盆地,地殼穩(wěn)定,地震活動(dòng)微弱,研究區(qū)內(nèi)和尚溝組蓋層和劉家溝組上段不發(fā)育垂向裂隙,具有十分良好的封蓋作用。
表3 轉(zhuǎn)移存儲(chǔ)層礦井水水質(zhì)
根據(jù)區(qū)域內(nèi)寶塔山砂巖放水試驗(yàn)顯示,寶塔山砂巖含水層水位1 180.10~1 200.33 m,滲透系數(shù)為0.105 7~2.024 7 m/d。根據(jù)《煤礦防治水細(xì)則》中突水系數(shù)法安全水頭值計(jì)算公式,對(duì)寶塔山砂巖段進(jìn)行允許最大水位計(jì)算:
式中:s為底板隔水層安全水頭值,MPa;為底板隔水層厚度,取8~10 m;s為臨界突水系數(shù),取0.1 MPa/m。
計(jì)算得到最低可開(kāi)采煤層6-2中煤層可承受寶塔山砂巖含水層最大安全水壓為0.8~1.0 MPa,研究區(qū)寶塔山砂巖頂界高程440~470 m,因此,允許水位為520~570 m,在不影響未來(lái)開(kāi)采6-2中煤條件下,寶塔山砂巖含水層還需疏降水位,因此,寶塔山砂巖段可存儲(chǔ)量十分有限。在現(xiàn)開(kāi)采階段,寶塔山砂巖段不考慮作為轉(zhuǎn)移存儲(chǔ)層存儲(chǔ)高鹽礦井水,可作為該礦綠色閉坑后礦井水的轉(zhuǎn)移存儲(chǔ)層,形成分布式地下水庫(kù)等[22]。
針對(duì)劉家溝組進(jìn)行自然水位恢復(fù)試驗(yàn)、水力壓裂和多期次注水試驗(yàn),得到研究區(qū)域內(nèi)劉家溝組的滲透性和富水性。2019年12月21日至12月29日對(duì)MC-1試驗(yàn)回注孔進(jìn)行自然水位恢復(fù)觀測(cè)(圖3),洗井階段,劉家溝組無(wú)水反出;為準(zhǔn)確檢測(cè)水位變化,在洗井結(jié)束后注水至水位–213.10 m開(kāi)始觀測(cè),得到水位恢復(fù)速率為5 cm/h,推測(cè)劉家溝組砂巖含水層靜水位約–100 m。
利用Aquifer Test軟件微水試驗(yàn)中Bouwer & Rice方法計(jì)算原巖狀態(tài)下劉家溝組的滲透系數(shù),具體計(jì)算公式如下:
式中:rc為井管半徑;y0=y(t0)為初始時(shí)刻水位;yt=y(t)為t時(shí)刻后水位;rw為過(guò)濾段鉆孔有效半徑;L為篩管長(zhǎng)度;R/rw為水流長(zhǎng)度;R為影響半徑;t為時(shí)間。
利用MC-1孔近似自然水位恢復(fù)數(shù)據(jù),代入式(2)計(jì)算得到劉家溝組的滲透系數(shù)為5.31× 10–6m/d,表明劉家溝組原始狀態(tài)下為弱滲貧水含水層,總體呈現(xiàn)弱地下水循環(huán)交替;而劉家溝組地下水TDS極高,表明在原巖條件下劉家溝組地下水基本處于停滯狀態(tài)。
為滿足礦區(qū)轉(zhuǎn)移存儲(chǔ)水量的需要,對(duì)劉家溝組開(kāi)展水力壓裂試驗(yàn)進(jìn)行局部增透,共進(jìn)行6次注水試驗(yàn)。根據(jù)注水試驗(yàn)觀測(cè)數(shù)據(jù),劉家溝組在后期穩(wěn)定階段滿足地下水向承壓水完整井的穩(wěn)定運(yùn)動(dòng)條件,即符合圓島模型假設(shè)(廣義):無(wú)限含水層,產(chǎn)狀水平、等厚、均質(zhì)、各向同性;長(zhǎng)時(shí)間抽水后會(huì)出現(xiàn)似穩(wěn)定狀態(tài),取為影響半徑。則有:
式中:h為含水層厚度,m,取309 m;w為降深,m;為流量,m3/h;w取53.5 mm。
除第2次注水試驗(yàn)水壓波動(dòng)外,依據(jù)5次注水試驗(yàn)穩(wěn)定階段進(jìn)行水文地質(zhì)參數(shù)計(jì)算(表4),得到劉家溝組經(jīng)水力壓裂后滲透系數(shù)為0.008 14~ 0.015 27 m/d。相較劉家溝組原始滲透系數(shù)增大幾個(gè)數(shù)量級(jí),表明水力壓裂局部增透可明顯改善劉家溝組水文地質(zhì)條件。
前期注水試驗(yàn)初步掌握劉家溝組的水文地質(zhì)參數(shù)。在長(zhǎng)期轉(zhuǎn)移存儲(chǔ)礦井水過(guò)程中,劉家溝組的水文地質(zhì)條件可能會(huì)發(fā)生變化。為獲取高強(qiáng)度、持續(xù)性注水條件下劉家溝組的流場(chǎng)演化及水壓變化規(guī)律,利用2020年3月8日至4月30日礦井水回注數(shù)據(jù)(圖4),分析劉家溝組地層變化情況。
表4 注水試驗(yàn)求參成果
圖4 注水井井口水壓和注水量變化曲線
在水力壓裂試驗(yàn)后進(jìn)行試回灌,并獲得相關(guān)數(shù)據(jù),利用式(3)再次進(jìn)行參數(shù)計(jì)算,得到試回灌階段滲透系數(shù)為0.009 11~0.016 93 m/d,與壓裂階段滲透系數(shù)差別較小,證明回注地層壓裂后保持穩(wěn)定,劉家溝組壓裂后轉(zhuǎn)移存儲(chǔ)礦井水的潛力較大。
分析結(jié)果表示,在為期2個(gè)月的回灌過(guò)程中,轉(zhuǎn)移存儲(chǔ)層劉家溝組的滲透系數(shù)基本穩(wěn)定,說(shuō)明介質(zhì)特征也基本穩(wěn)定,壓裂后劉家溝組不再產(chǎn)生二次裂隙擴(kuò)展,介質(zhì)條件穩(wěn)定,壓裂后也有較好的轉(zhuǎn)移存儲(chǔ)空間,頂?shù)装迳w層發(fā)育較好,未發(fā)生泄露。
基于以上分析,利用MODFLOW模擬長(zhǎng)期轉(zhuǎn)移存儲(chǔ)下劉家溝組的流場(chǎng)變化情況,用于定量分析和預(yù)測(cè)長(zhǎng)期轉(zhuǎn)移存儲(chǔ)條件下儲(chǔ)層的水動(dòng)力場(chǎng)變化情況。研究區(qū)劉家溝組在鄂爾多斯盆地區(qū)域發(fā)育穩(wěn)定連續(xù),構(gòu)造不發(fā)育,在實(shí)際數(shù)值模擬過(guò)程中,取100(為影響半徑)作為模擬邊界(零流量邊界)。根據(jù)現(xiàn)有資料,對(duì)劉家溝組進(jìn)行有限單元網(wǎng)格剖分,并對(duì)影響半徑內(nèi)進(jìn)行網(wǎng)格加密,共計(jì)剖分網(wǎng)格數(shù)10 147個(gè),模擬步長(zhǎng)為1 d。因回注孔MC-1無(wú)觀測(cè)孔,采用石油井田在周邊地區(qū)的水力壓裂影響范圍經(jīng)驗(yàn)值700 m進(jìn)行計(jì)算。利用2個(gè)月實(shí)際資料進(jìn)行參數(shù)率定,設(shè)置在壓裂影響范圍內(nèi)滲透系數(shù)為0.011 m/d,壓裂影響范圍外為5.31×10–6m/d,初始水位 –100 m,回灌量2 400 m3/d,模擬時(shí)間60 d。得到回注60 d后流場(chǎng)變化情況(圖5),在設(shè)置回灌量下,井口水位達(dá)到773 m,圖4中實(shí)際觀測(cè)壓力7.5 MPa,表明模型參數(shù)設(shè)置較為合理。
圖5 模擬60、180和360 d后劉家溝組流場(chǎng)變化
模擬結(jié)果表明,模擬時(shí)間為60 d時(shí),轉(zhuǎn)移存儲(chǔ)水體擴(kuò)散半徑達(dá)到274 m;模擬時(shí)間為180 d時(shí),轉(zhuǎn)移存儲(chǔ)水體擴(kuò)散半徑達(dá)到472 m;模擬時(shí)間360 d時(shí),轉(zhuǎn)移存儲(chǔ)水體擴(kuò)散半徑達(dá)到665 m。在單口井轉(zhuǎn)移存儲(chǔ)1 a情況下,轉(zhuǎn)移存儲(chǔ)水體擴(kuò)散半徑接近壓裂半徑,表明劉家溝組的轉(zhuǎn)移存儲(chǔ)礦井水前景較好,可作為該礦處理礦井水,實(shí)現(xiàn)礦井水減量減排,轉(zhuǎn)移存儲(chǔ)水資源的一種新途徑。
a. 轉(zhuǎn)移存儲(chǔ)目的層選取的兩點(diǎn)準(zhǔn)則為:目的層必須分布穩(wěn)定,厚度較大,具有一定的孔隙、裂隙發(fā)育程度,以提供儲(chǔ)水空間;位于煤層底板以下較大深度,以免受開(kāi)采擾動(dòng),最好為相對(duì)封閉的獨(dú)立水文地質(zhì)單元?;谝陨蠝?zhǔn)則,在鄂爾多斯盆地X礦內(nèi)選擇延安組寶塔山砂巖和劉家溝組砂巖作為備選轉(zhuǎn)移存儲(chǔ)層。
b.寶塔山砂巖段厚度47.1 m,平均孔隙率為14.53%,其中重力水可移動(dòng)的孔隙占比88.69%,但距離煤層近,無(wú)穩(wěn)定蓋層,轉(zhuǎn)移存儲(chǔ)高鹽礦井水會(huì)產(chǎn)生垂向擴(kuò)散逃逸的風(fēng)險(xiǎn);劉家溝組總厚416.4 m,砂巖段厚度309 m,平均孔隙率為5.50%,其中重力水可運(yùn)動(dòng)的孔隙占比74.22%,原生條件下孔隙發(fā)育較差,但存在水力壓裂的可能,對(duì)煤層開(kāi)采無(wú)影響,更適合用于礦井水的轉(zhuǎn)移存儲(chǔ)。
c.劉家溝組水力壓裂局部增透后滲透系數(shù)增大到0.008 14~0.015 27 m/d,在長(zhǎng)期注水試驗(yàn)條件下滲透系數(shù)不發(fā)生明顯變化,保證壓裂后介質(zhì)特征基本穩(wěn)定。長(zhǎng)期轉(zhuǎn)移存儲(chǔ)數(shù)值模擬結(jié)果表明,劉家溝組具有較為良好的轉(zhuǎn)移存儲(chǔ)礦井水前景。
d.寶塔山砂巖可考慮作為該礦閉坑后的礦井水轉(zhuǎn)移存儲(chǔ)層,與已采煤工作面形成采空區(qū)+寶塔山砂巖含水層聯(lián)合分布式地下水庫(kù),合理調(diào)蓄當(dāng)?shù)厮Y源。
[1] 謝和平,吳立新,鄭德志. 2025年中國(guó)能源消費(fèi)及煤炭需求預(yù)測(cè)[J]. 煤炭學(xué)報(bào),2019,44(7):1949–1960.
XIE Heping,WU Lixin,ZHENG Dezhi. Prediction on the energy consumption and coal demand of China in 2025[J]. Journal of China Coal Society,2019,44(7):1949–1960.
[2] 范立民,馬雄德,蔣澤泉,等. 保水采煤研究30年回顧與展望[J]. 煤炭科學(xué)技術(shù),2019,47(7):1–30.
FAN Limin,MA Xiongde,JIANG Zequan,et al. Review and thirty years prospect of research on water-preserved coal mining[J]. Coal Science and Technology,2019,47(7):1–30.
[3] 繆協(xié)興,王安,孫亞軍,等. 干旱半干旱礦區(qū)水資源保護(hù)性采煤基礎(chǔ)與應(yīng)用研究[J]. 巖石力學(xué)與工程學(xué)報(bào),2009,28(2):217–227.
MIAO Xiexing,WANG An,SUN Yajun,et al. Research on basic theory of mining with water resources protection and its application to arid and semi-arid mining areas[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(2):217–227.
[4] 王厚柱,王樺. 鄂爾多斯侏羅紀(jì)煤田巨厚頂板砂巖含水層區(qū)域治理技術(shù)研究[J]. 煤炭工程,2019,51(10):96–101.
WANG Houzhu,WANG Hua. Study on regional control technology for ultra-thick sandstone aquifer of Jurassic coal seam roof in Ordos coalfield[J]. Coal Engineering,2019,51(10):96–101.
[5] 張念龍,靳德武,邵東梅. 采煤排水對(duì)區(qū)域水資源的影響:以山西陽(yáng)武河流域上游煤礦區(qū)為例[J]. 煤田地質(zhì)與勘探,2008,36(4):50–53.
ZHANG Nianlong,JIN Dewu,SHAO Dongmei. Affection analysis of coal mining drainage for regional water resources:Taking coal mining area of upper reaches of Yangwu river valley as example[J].Coal Geology & Exploration,2008,36(4):50–53.
[6] 邵飛燕. 含水層轉(zhuǎn)移存儲(chǔ)技術(shù)在神東礦區(qū)保水采煤研究中的應(yīng)用[D]. 徐州:中國(guó)礦業(yè)大學(xué),2008.
SHAO Feiyan. Application of aquifer transfer storage technology in Shendong mining area[D]. Xuzhou:China University of Mining and Technology,2008.
[7] 武強(qiáng),王志強(qiáng),郭周克,等. 礦井水控制、處理、利用、回灌與生態(tài)環(huán)保五位一體優(yōu)化結(jié)合研究[J]. 中國(guó)煤炭,2010,36(2):109–112.
WU Qiang,WANG Zhiqiang,GUO Zhouke,et al. A research on an optimized five-in-one combination of mine water control, treatment,utilization,back-filling and environment friendly treatment[J]. China Coal,2010,36(2):109–112.
[8] 武強(qiáng),申建軍,王洋. “煤–水”雙資源型礦井開(kāi)采技術(shù)方法與工程應(yīng)用[J]. 煤炭學(xué)報(bào),2017,42(1):8–16.
WU Qiang,SHEN Jianjun,WANG Yang. Mining techniques and engineering application for “Coal Water”dual-resources mine[J]. Journal of China Coal Society,2017,42(1):8–16.
[9] 孫亞軍,陳歌,徐智敏,等. 我國(guó)煤礦區(qū)水環(huán)境現(xiàn)狀及礦井水處理利用研究進(jìn)展[J]. 煤炭學(xué)報(bào),2020,45(1):304–316.
SUN Yajun,CHEN Ge,XU Zhimin,et al. Research progress of water environment,treatment and utilization in coal mining areas of China[J]. Journal of China Coal Society,2020,45(1):304–316.
[10] 鐘偉,高振記,臧雅瓊. 工業(yè)有害廢液地下灌注國(guó)內(nèi)外研究現(xiàn)狀分析[J]. 環(huán)境工程技術(shù)學(xué)報(bào),2013,3(3):208–214.
ZHONG Wei,GAO Zhenji,ZANG Yaqiong. Review of research on underground injection technology for industrial hazardous waste disposal both at home and abroad[J].Journal of Environmental Engineering Technology,2013,3(3):208–214.
[11] KIM W Y. Induced seismicity associated with fluid injection into a deep well in Youngstown,Ohio[J]. Journal of Geophysical Research:Solid Earth,2013,118(7):3506–3518.
[12] SARIPALLI K P,SHARMA M M,BRYANT S L. Modeling injection well performance during deep-well injection of liquid wastes[J]. Journal of Hydrology,2000,227(1/2/3/4):41–55.
[13] 杜新強(qiáng),路瑩,冶雪艷,等. 地下水人工回灌過(guò)程中介質(zhì)堵塞與水質(zhì)變化研究進(jìn)展[J]. 黑龍江大學(xué)工程學(xué)報(bào),2018,9(2): 1–6.
DU Xinqiang,LU Ying,YE Xueyan,et al. Advances on porous medium clogging and water quality change during artificial recharge of groundwater[J].Journal of Engineering of Heilongjiang University,2018,9(2):1–6.
[14] 顧大釗,張勇,曹志國(guó). 我國(guó)煤炭開(kāi)采水資源保護(hù)利用技術(shù)研究進(jìn)展[J]. 煤炭科學(xué)技術(shù),2016,44(1):1–7.
GU Dazhao,ZHANG Yong,CAO Zhiguo. Technical progress of water resource protection and utilization by coal mining in China[J]. Coal Science and Technology,2016,44(1):1–7.
[15] 刁玉杰. 神華CCS示范工程場(chǎng)地儲(chǔ)層表征與CO2運(yùn)移規(guī)律研究[D]. 北京:中國(guó)礦業(yè)大學(xué)(北京),2017.
DIAO Yujie. Study on the reservoir characterization and CO2migration underground in the Shenhua CCS demonstration project site[D]. Beijing:China University of Mining and Technology(Beijing),2017.
[16] 呂玉廣,劉寶開(kāi),趙寶峰,等. 侏羅系寶塔山砂巖水文地質(zhì)特征與解危開(kāi)采研究:以新上海一號(hào)煤礦為例[J]. 煤田地質(zhì)與勘探,2020,48(6):170–178.
LYU Yuguang,LIU Baokai,ZHAO Baofeng,et al. Hydrogeological characteristics and danger-solving mining of Jurassic Baotashan sandstone:A case study in New Shanghai No.l coal mine[J]. Coal Geology & Exploration,2020,48(6):170–178.
[17] 李德彬. 侏羅系煤田寶塔山砂巖含水層疏放水可行性研究[J]. 煤炭工程,2019,51(2):92–96.
LI Debin. Study on the feasibility of water drainage for the Baotashan sandstone aquifer in Jurassic coal field[J]. Coal Engineering,2019,51(2):92–96.
[18] 戰(zhàn)沙,張金功,席輝. 鄂爾多斯盆地蘇里格地區(qū)上古生界主要裂縫的測(cè)井識(shí)別[J]. 內(nèi)蒙古石油化工,2010,36(10):64–66.
ZHAN Sha,ZHANG Jin’gong,XI Hui. Log identification of main fractures in the Upper Paleozoic in Sulige area,Ordos Basin[J].Inner Mongolia Petrochemical Industry,2010,36(10):64–66.
[19] 王蘇健,馮潔,侯恩科,等. 砂巖微觀孔隙結(jié)構(gòu)類型及其對(duì)含水層富水性的影響:以檸條塔井田為例[J]. 煤炭學(xué)報(bào),2020,45(9):3236–3244.
WANG Sujian,F(xiàn)ENG Jie,HOU Enke,et al. Microscopic pore structure types of sandstone and its effects on aquifer water abundance:Taking in Ningtiaota coal mine as an example[J]. Journal of China Coal Society,2020,45(9):3236–3244.
[20] 徐智敏,高尚,孫亞軍,等. 西部典型侏羅系富煤區(qū)含水介質(zhì)條件與水動(dòng)力學(xué)特征[J]. 煤炭學(xué)報(bào),2017,42(2):444–451.
XU Zhimin,GAO Shang,SUN Yajun,et al. A study of conditions of water bearing media and water dynamics in typical Jurassic coal rich regions in western China[J]. Journal of China Coal Society,2017,42(2):444–451.
[21] 韓應(yīng)偉,王國(guó)偉,馬宏發(fā). 泥質(zhì)含量對(duì)砂巖力學(xué)性質(zhì)及其破壞特征的影響規(guī)律研究[J]. 煤礦安全,2019,50(4):46–49.
HAN Yingwei,WANG Guowei,MA Hongfa. Influence of argillaceous content on mechanical properties and failure characteristics of sandstone[J]. Safety in Coal Mines,2019,50(4):46–49.
[22] 劉埔,孫亞軍. 閉坑礦井地下水污染及其防治技術(shù)探討[J]. 礦業(yè)研究與開(kāi)發(fā),2011,31(4):91–95.
LIU Pu,SUN Yajun. Discussion on groundwater pollution caused by abandoned mines and its controlling techniques[J]. Mining Research and Development,2011,31(4):91–95.
Medium characteristics and hydrodynamic evolution law of high salinity mine water recharge in deep well
LIU Qi1, WANG Weijun1, LUO Bin1, WANG Houzhu2,3, ZHANG Zhijun4
(1. School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China; 2. China National Coal Group Corporation, Beijing 100120, China; 3. College of Geoscience and Surveying Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China; 4. General Prospecting Institute, China National Administration of Coal Geology, Beijing 100039, China)
The treatment and discharge of high salt mine water is one of the important factors affecting efficient coal mining in recent years. It is a worth exploring method to reduce the discharge of mine water by selecting the appropriate aquifer under the floor of the coal seam and transferring the high salt mine water to other places. Taking the X mine in the Ordos Basin as an example, the Baotashan sandstone and the deep Liujiagou Formation sandstone formation below the coal seam have transfer storage space. By mercury intrusion experiment and rock mechanics analysis, the two groups of formations were analyzed for medium characteristics; the water level natural recovery test, water pressure test and numerical simulation were used to study the hydrogeological parameters and hydrodynamic field.The research results show that Baotashan sandstone has a porosity of 6.57%-19.89%, which has great water storage potential but is too close to the mining coal seam. The transfer and storage of mine water may cause the threat of water inrush from the floor, so the current mining stage is not considered as a transfer storage layer. The permeability of Liujiagou Formation is 4.18%-7.49% and the permeability coefficient is 5.31×10-6m/d in the original state. After water injection and fracturing, the hydrogeological parameters of the Liujiagou Formation are 0.008 14-0.015 27 m/d. The permeability is greatly improved and can be maintained in a stable state. MODFLOW numerical simulation results show that the Liujiagou Formation has a good prospect in the long-term transfer and storage of mine water.
mine water treatment;transfer mine water storage; media characteristics; hydraulic fracturing; Ordos Basin
移動(dòng)閱讀
語(yǔ)音講解
TD74;TD82
A
1001-1986(2021)05-0029-07
2021-01-29;
2021-08-10
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019YFC1805400)
劉琪,1998年生,男,山西呂梁人,碩士研究生,研究方向?yàn)樗牡刭|(zhì)與工程地質(zhì).E-mail:ts20010098a31ld@cumt.edu.cn
劉琪,汪韋峻,羅斌,等. 高鹽礦井水深部轉(zhuǎn)移存儲(chǔ)介質(zhì)特征與水動(dòng)力演化規(guī)律[J]. 煤田地質(zhì)與勘探,2021,49(5):29–35. doi: 10.3969/j.issn.1001-1986.2021.05.003
LIU Qi,WANG Weijun,LUO Bin,et al. Medium characteristics and hydrodynamic evolution law of high salinity mine water recharge in deep well[J]. Coal Geology & Exploration,2021,49(5):29–35. doi: 10.3969/j.issn.1001- 1986.2021. 05.003
(責(zé)任編輯 周建軍)