国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

禾荔特晚熟焦核突變體GLL-1全基因組變異分析

2021-11-03 11:11丁峰李浩然王金英彭宏祥何新華黃小雄李平鐘敏芝覃燕張樹(shù)偉
關(guān)鍵詞:荔枝

丁峰 李浩然 王金英 彭宏祥 何新華 黃小雄 李平 鐘敏芝 覃燕 張樹(shù)偉

摘要:【目的】探究禾荔特晚熟焦核突變體GLL-1的全基因組變異情況,為調(diào)控荔枝果實(shí)成熟期、解析焦核發(fā)生分子機(jī)制及選育焦核品種提供理論支持。【方法】通過(guò)荔枝種質(zhì)資源普查發(fā)現(xiàn)1個(gè)禾荔特晚熟焦核突變體GLL-1,對(duì)禾荔和GLL-1開(kāi)展全基因組重測(cè)序(測(cè)序深度50×),對(duì)比分析GLL-1全基因組變異情況?!窘Y(jié)果】與禾荔相比,GLL-1果實(shí)明顯較大,品質(zhì)優(yōu)良,特晚熟,種子變?yōu)榻购耍墒陈拭黠@提高。從GLL-1基因組獲得320858674個(gè)高質(zhì)量的Clean reads,定位到荔枝參考基因組的高質(zhì)量Clean reads數(shù)占比為96.07%,正確識(shí)別率大于Q20的堿基占比為96.48%,正確識(shí)別率大于Q30的堿基占比為91.38%,基因組GC含量為35.28%,覆蓋度(大于1×的堿基占比)為97.62%。檢測(cè)到9306084個(gè)單核苷酸多態(tài)性(SNP)位點(diǎn)和759887個(gè)小片段插入和缺失(Indel)位點(diǎn),共導(dǎo)致12621個(gè)基因發(fā)生變異,其中發(fā)生非同義SNP突變的基因8451個(gè),發(fā)生Indel的基因4170個(gè)。許多與花色素苷生物合成相關(guān)的MYB、bHLH、WD40轉(zhuǎn)錄因子家族基因及參與ABA信號(hào)轉(zhuǎn)導(dǎo)的重要家族基因(bZIP、WRKY、MAPK及PPR)均發(fā)生突變?!窘Y(jié)論】MYB、bHLH、WD40、bZIP、WRKY、MAPK及PPR等家族基因的突變可能是導(dǎo)致GLL-1果實(shí)特晚熟及焦核發(fā)生的一個(gè)主要原因,推測(cè)其在調(diào)控荔枝果實(shí)發(fā)育和焦核發(fā)生中發(fā)揮關(guān)鍵作用。

關(guān)鍵詞: 荔枝;焦核突變體;全基因組重測(cè)序;變異分析;SNP;Indel

中圖分類(lèi)號(hào): S667.103.6? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2021)07-1780-10

Genome-wide variation analysis of the aborted-seeded and

late-maturing mutant GLL-1 from Heli

DING Feng1,2,3, LI Hao-ran1, WANG Jin-ying3, PENG Hong-xiang2, HE Xin-hua3,

HUANG Xiao-xiong1, LI Ping4, ZHONG Min-zhi4, QIN Yan4, ZHANG Shu-wei1,2*

(1Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory,Nanning? 530007, China; 2 Horticultural Research Institute, Guangxi Academy of Agricultural Sciences,Nanning? 530007, China; 3 College of Agriculture/State Key Laboratory for Conservation and Utilization of Subtropical

Agro-bioresources, Guangxi University, Nanning? 530004, China; 4Agricultural Technology

Extension Station of Madong,Guiping, Guangxi? 537200, China)

Abstract:【Objective】The present study aimed to study the genome-wide variation situation of Lihe super late-matu-ring aborted-seeded mutant GLL-1, and provide theoretical basis for regulating the ripening period of litchi fruit, analy-zing Molecular mechanisms of aborted-seeds, and breeding of aborted-seeded litchi varieties. 【Method】Through the survey of litchi germplasm resources, Lihe super late-maturing aborted-seeded mutant GLL-1 was found, whole-genome resequencing of cultivars Heli and GLL-1 with 50× depth was conducted, and GLL-1 whole-genome variation situations were compared. 【Result】Compared with Heli, the GLL-1 fruit was obviously larger, with good quality, especially late ripening, seeds became into aborted-seeds, the edible rate was greatly improved. Obtained a total of 320858674 high qua-lity clean reads from GLL-1 genome,of which 96.07% were located in the reference genome of litchi,and the percentage of bases with the correct recognition rate greater than Q20 was 96.48%. The percentage of bases with the correct recognition rate greater than Q30 was 91.38%; the genomic GC content was 35.28%,97.62% of bases with a depth of more than 1× were covered. The results revealed 9306084 single nucleotide polymorphisms(SNPs) and 759887 insertion and deletion of small fragments(Indels),which conferred 12621 mutant genes. A total of 8451 non-synonymous SNP mutations and 4170 Indel genes were identified. It was worth noting that many anthocyanin biosynthesis associated? transcription factor family genes including MYB,bHLH and WD40 and important family genes involving in ABA signal transduction including bZIP,WRKY,MAPK and PPR were mutated. 【Conclusion】Mutations in family genes,including MYB,bHLH,WD40,bZIP,WRKY,MAPK and PPR,may be a major cause of the super late ripening and the aborted-seeded traits of GLL-1 fruit,which play a key role in regulating litchi fruit development and aborted-seeded traits.

Key words: litchi; aborted-seed mutant; whole-genome resequencing; mutation analysis; SNP;Indel

Foundation item:National Natural Science Foundation of China(32060659); Guangxi Natural Science Foundation(2017GXNSFAA198350,2018GXNSFAA050089,2018GXNSFAA294034)

0 引言

【研究意義】荔枝(Litchi chinensis Sonn.)為無(wú)患子科(Sapindaceae)荔枝屬(Litchi Sonn.)亞熱帶常綠果樹(shù),起源于我國(guó),因其果實(shí)形、色、香、味俱佳和營(yíng)養(yǎng)豐富而被譽(yù)稱(chēng)為“嶺南果王”“人間仙果”及“佛果”等。目前我國(guó)是荔枝的最大生產(chǎn)國(guó),主產(chǎn)區(qū)分布在廣東、廣西及海南等地,隨著荔枝產(chǎn)業(yè)的快速發(fā)展,產(chǎn)業(yè)結(jié)構(gòu)問(wèn)題日益突出,尤其是各主產(chǎn)區(qū)品種栽培結(jié)構(gòu)不合理,特早熟和特晚熟品種所占比例很小,而中熟品種所占比例較大,再加上荔枝6、7月份采后保鮮難,導(dǎo)致廣大果農(nóng)豐產(chǎn)年而不豐收,消減了果農(nóng)栽培荔枝的積極性,出現(xiàn)了荔枝果園無(wú)人管理現(xiàn)象,嚴(yán)重影響我國(guó)荔枝產(chǎn)業(yè)的發(fā)展。造成上述結(jié)果的主要原因是缺乏品質(zhì)優(yōu)良的特早熟和特晚熟荔枝品種。由于荔枝熟期育種缺乏基礎(chǔ)理論指導(dǎo),導(dǎo)致品種選育進(jìn)程慢。因此,以禾荔及其特晚熟焦核芽變新種質(zhì)GLL-1為材料,通過(guò)重測(cè)序挖掘調(diào)控荔枝果實(shí)發(fā)育速度和焦核發(fā)生的基因,為今后荔枝的熟期育種及焦核品種的選育提供基因資源和材料支撐。【前人研究進(jìn)展】荔枝果皮著色直觀(guān)反映了果實(shí)成熟進(jìn)程,其實(shí)質(zhì)是一個(gè)花色素苷合成積累的過(guò)程,最終成熟時(shí)果皮呈現(xiàn)出鮮艷的紅色。在此過(guò)程中,MYB、bHLH(Basic helix-loop-helix)和WD40三大類(lèi)轉(zhuǎn)錄因子相互作用形成MBW復(fù)合體(MYB-bHLH-WD40)共同調(diào)控花色素苷的生物合成(Baudry et al.,2004;Zimmermann et al.,2004;Xu et al.,2015)。已有研究證實(shí),MYB轉(zhuǎn)錄因子在擬南芥、蘿卜等植物花色素苷積累過(guò)程中發(fā)揮關(guān)鍵作用(Borevitz et al.,2000;Zuluaga et al.,2008;Lim et al.,2016)。bHLH轉(zhuǎn)錄因子在調(diào)控植物花色素苷生物合成中也發(fā)揮關(guān)鍵作用,如擬南芥bHLH轉(zhuǎn)錄因子突變體tt8、eg3和egl3幼苗和種皮花色素苷積累量明顯減少(Nesi et al.,2000;Zhang et al.,2003);蘋(píng)果MdbHLH3和MdbHLH33可與MYB轉(zhuǎn)錄因子互作,進(jìn)而調(diào)控果實(shí)花色素苷的合成(Espley et al.,2007;Xie et al.,2012)。WD40蛋白是調(diào)控花色素苷生物合成的另一個(gè)重要轉(zhuǎn)錄因子,如矮牽牛PhAN11是第一個(gè)發(fā)現(xiàn)的參與花色素苷合成調(diào)控的WD40蛋白(de Vetten et al.,1997);擬南芥WD40蛋白ttg1突變體種子的花色素苷合成顯著受抑制(Walker et al.,1999);在果樹(shù)中,蘋(píng)果MdTTG1、石榴PgWD40、VvWDR1(葡萄)等WD40蛋白均參與其果實(shí)花色素苷的生物合成(Brueggemann et al.,2010;Matus et al.,2010;Ben-Simhon et al.,2011)。在荔枝果皮著色研究方面,Lai等(2014,2015,2016)采用轉(zhuǎn)錄組測(cè)序技術(shù)分析荔枝果皮成熟過(guò)程中基因轉(zhuǎn)錄本的變化,研究發(fā)現(xiàn)有2個(gè)LcbHLH轉(zhuǎn)錄因子能與LcMYB1轉(zhuǎn)錄因子相互作用調(diào)控荔枝果皮花色素苷的積累。由于荔枝種子敗育變?yōu)榻购耍沟每墒陈蚀蠓岣?,深受廣大消費(fèi)者的親睞,因此,焦核是評(píng)估荔枝果實(shí)品質(zhì)的一個(gè)重要指標(biāo)。研究發(fā)現(xiàn),焦核品種幼胚中的脫落酸(ABA)含量急劇上升改變生長(zhǎng)促進(jìn)物質(zhì)與生長(zhǎng)抑制物質(zhì)的正常配比,是導(dǎo)致其胚敗育的一個(gè)重要原因(周碧燕等,1998;張以順等,2003),表明ABA在荔枝種子敗育發(fā)生過(guò)程中發(fā)揮關(guān)鍵作用?!颈狙芯壳腥朦c(diǎn)】隨著高通量測(cè)序技術(shù)的快速發(fā)展,不同作物全基因組測(cè)序工作相繼完成,目前已對(duì)水稻(Hiroki et al.,2013)、菜豆(Jeremy et al.,2014)、大豆(Qi et al.,2014)及番茄(Lin et al.,2014)等作物進(jìn)行遺傳分析。荔枝全基因組測(cè)序也已完成,使荔枝全基因組水平的遺傳分析成為可能。但目前鮮見(jiàn)有關(guān)荔枝果實(shí)成熟期的調(diào)控機(jī)制及種子焦核發(fā)生機(jī)制的研究報(bào)道,其主要原因在于缺乏理想的試材。而本研究發(fā)現(xiàn)的禾荔特晚熟焦核突變體GLL-1可為荔枝果實(shí)成熟期的調(diào)控機(jī)制及焦核發(fā)生機(jī)制研究提供重要試材?!緮M解決的關(guān)鍵問(wèn)題】以禾荔和GLL-1為試材,通過(guò)基因組重測(cè)序手段分析禾荔特晚熟焦核突變體GLL-1的全基因組變異情況,為荔枝果實(shí)成熟期調(diào)控及種子焦核發(fā)生機(jī)制的研究打下理論基礎(chǔ)。

1 材料與方法

1. 1 試驗(yàn)材料

供試禾荔母樹(shù)(高空壓條苗)及其焦核突變體GLL-1的幼葉采自廣西桂平市麻垌鎮(zhèn)的荔枝果園(東經(jīng)110°9′,北緯23°8′)。DL2000 DNA Marker、瓊脂糖和植物DNA提取試劑盒購(gòu)自生工生物工程(上海)股份有限公司。主要儀器設(shè)備:紫外可見(jiàn)分光光度計(jì)UV5Nano(METTLER TOLEDO,瑞士)、電泳儀1645050(Bio-Rad,美國(guó))、HiSeqTM 2500測(cè)序儀(Illumina,美國(guó))。

1. 2 試驗(yàn)方法

1. 2. 1 GLL-1生物學(xué)特性觀(guān)測(cè) 從GLL-1枝條采集接穗進(jìn)行高接換種試驗(yàn),連續(xù)6年(2015─2020年)對(duì)GLL-1果實(shí)主要性狀進(jìn)行觀(guān)測(cè)和評(píng)價(jià),并與禾荔果實(shí)進(jìn)行比較。

1. 2. 2 禾荔和GLL-1全基因組重測(cè)序 采用植物DNA提取試劑盒分別提取禾荔和GLL-1的幼葉總DNA,具體步驟參照其說(shuō)明書(shū),并利用紫外分光光度計(jì)測(cè)定其純度和濃度,1.0%瓊脂糖凝膠電泳檢測(cè)其完整性。將檢測(cè)合格的總DNA樣品交至深圳華大基因股份有限公司進(jìn)行全基因組重測(cè)序,具體步驟:(1)對(duì)DNA進(jìn)行片段化及純化、末端修復(fù)、3?端加A及連接測(cè)序接頭;(2)通過(guò)1.0%瓊脂糖凝膠電泳進(jìn)行片段大小的選擇,進(jìn)行PCR擴(kuò)增構(gòu)建測(cè)序文庫(kù);(3)利用Illumina HiSeqTM 2500測(cè)序儀進(jìn)行測(cè)序,測(cè)序深度為50×。從基因組測(cè)序數(shù)據(jù)中過(guò)濾去除低質(zhì)量的reads得到高質(zhì)量的Clean reads,用于后續(xù)的生物信息學(xué)分析。

1. 2. 3 GLL-1基因組變異檢測(cè)及注釋 分別將禾荔和GLL-1的Clean reads與荔枝參考基因組(http://litchidb.genomics.cn/page/species/index.jsp)進(jìn)行比對(duì),使用GATK進(jìn)行單核苷酸多態(tài)性(SNP)和小片段插入和缺失(Indel)位點(diǎn)檢測(cè)(McKenna et al.,2014),并通過(guò)二者比較分析GLL-1的SNP和Indel變異情況。使用SnpEff對(duì)GLL-1變異的SNP和Indel位點(diǎn)進(jìn)行注釋。

1. 2. 4 GLL-1變異基因分析 通過(guò)生物信息學(xué)方法分析挖掘GLL-1與禾荔間的非同義突變SNP及編碼區(qū)(CDS)InDel的基因,再通過(guò)BLAST將變異基因與NR、SwissProt、GO、COG及KEGG等數(shù)據(jù)庫(kù)進(jìn)行比對(duì),從而獲得基因功能注釋?zhuān)ˋltschul et al.,1997;Ashburner et al.,2000;Tatusov et al.,2000;Minoru et al.,2004;鄧泱泱等,2006)。

2 結(jié)果與分析

2. 1 禾荔和GLL-1生物學(xué)特性比較結(jié)果

據(jù)近6年的表型觀(guān)察,發(fā)現(xiàn)禾荔和GLL-1的花期均為4月中旬左右,但兩者果實(shí)發(fā)育進(jìn)度不同,禾荔果實(shí)成熟期在7月中下旬,而GLL-1果實(shí)成熟期在8月上中旬,相差約15 d左右(圖1和圖2);GLL-1果實(shí)較大,平均單果重24 g左右,而禾荔平均單果重19 g左右;禾荔果皮龜裂片平滑,而GLL-1果皮龜裂片錐尖狀突起(圖3);GLL-1果實(shí)焦核率高達(dá)92%左右,而禾荔只有4%左右(圖3);GLL-1種子變?yōu)榻购撕罂墒陈拭黠@提高,達(dá)83%左右,而禾荔種子不變成焦核,可食率僅為73%左右,說(shuō)明GLL-1為特晚熟優(yōu)稀芽變荔枝新種質(zhì)。

2. 2 禾荔和GLL-1的全基因組重測(cè)序結(jié)果

利用Illunima HiSeqTM 2500分別對(duì)禾荔和GLL-1幼葉DNA進(jìn)行全基因組重測(cè)序。禾荔全基因組重測(cè)序結(jié)果(表1)顯示,去除帶接頭或低質(zhì)量的reads后共獲得336185710個(gè)Clean reads,定位到荔枝參考基因組的Clean reads占比為95.53%;正確識(shí)別率大于Q20的堿基占比97.61%,正確識(shí)別率大于Q30的堿基占比為93.91%;基因組GC含量為35.34%,覆蓋度(大于1×的堿基占比)為96.78%。GLL-1基因組重測(cè)序結(jié)果(表1)顯示,去除帶接頭或低質(zhì)量的reads后共獲得320858674個(gè)Clean reads,定位到荔枝參考基因組的Clean reads占比為96.07%;正確識(shí)別率大于Q20的堿基占比為96.48%,正確識(shí)別率大于Q30的堿基占比為91.38%;基因組GC含量為35.28%;樣品平均覆蓋深度50×,覆蓋深度大于1×的堿基占比為97.62%。

2. 3 GLL-1基因組變異位點(diǎn)檢測(cè)及注釋結(jié)果

根據(jù)禾荔和GLL-1的Clean reads在荔枝參考基因組進(jìn)行變異檢測(cè),結(jié)果表明GLL-1共發(fā)現(xiàn)10065971個(gè)變異(Variant)位點(diǎn),包括9306084個(gè)SNP位點(diǎn)和759887個(gè)Indel位點(diǎn);SNP位點(diǎn)中,轉(zhuǎn)換類(lèi)型(Transition,Ti)的SNP位點(diǎn)有6684053個(gè),顛換類(lèi)型(Transversion,Tv)的SNP位點(diǎn)有2622031個(gè);雜合SNP位點(diǎn)有1260043個(gè),純合SNP位點(diǎn)有8046041個(gè),雜合率為15.66%。

使用GATK對(duì)GLL-1基因組變異位點(diǎn)進(jìn)行注釋?zhuān)Y(jié)果(表2)顯示,位于CDS序列的SNP位點(diǎn)共計(jì)301822個(gè),其中同義突變120761個(gè),非同義突變181061個(gè);位于CDS序列的Indel位點(diǎn)共計(jì)8926個(gè),其中包括非3個(gè)堿基的整數(shù)倍核苷酸缺失突變3204個(gè),3個(gè)堿基的整數(shù)倍核苷酸缺失突變1779個(gè),非3個(gè)堿基的整數(shù)倍核苷酸插入突變2353個(gè),3個(gè)堿基的整數(shù)倍核苷酸插入突變1590個(gè);終止密碼子丟失突變1134個(gè)?;诒?注釋信息,經(jīng)生物信息學(xué)分析發(fā)現(xiàn),這些變異共導(dǎo)致12621個(gè)基因發(fā)生突變,其中發(fā)生非同義SNP突變的基因8451個(gè),發(fā)生Indel的基因4170個(gè)。

2. 4 GLL-1變異基因分析結(jié)果

KEGG通路富集分析結(jié)果顯示,與禾荔基因組相比,GLL-1有115個(gè)植物激素信號(hào)傳導(dǎo)相關(guān)的基因發(fā)生變異。針對(duì)GLL-1芽變后成熟期比禾荔明顯延遲(主要體現(xiàn)在果皮花色素苷生物合成變慢)及種子變?yōu)榻购瞬挥奶匦?,?duì)相關(guān)候選基因進(jìn)行挖掘,其中重點(diǎn)挖掘啟動(dòng)子區(qū)域或外顯子區(qū)域發(fā)生突變的基因,尤其是參與調(diào)控花色素苷生物合成的MYB、bHLH和WD40三大類(lèi)轉(zhuǎn)錄因子家族基因,結(jié)果(表3)發(fā)現(xiàn),GLL-1突變體MYB轉(zhuǎn)錄因子家族中有15個(gè)基因發(fā)生突變,其中12個(gè)基因啟動(dòng)子區(qū)域發(fā)生了SNP突變,2個(gè)基因啟動(dòng)子區(qū)域發(fā)生了缺失突變,還有一個(gè)基因外顯子區(qū)域發(fā)生了SNP突變;bHLH轉(zhuǎn)錄因子家族中有11個(gè)基因發(fā)生突變,其中5個(gè)基因啟動(dòng)子區(qū)域發(fā)生了SNP突變,2個(gè)基因啟動(dòng)子區(qū)域發(fā)生了缺失突變,3個(gè)基因外顯子區(qū)域發(fā)生了SNP突變,還有1個(gè)基因啟動(dòng)子區(qū)域同時(shí)發(fā)生了SNP突變和缺失突變;WD40轉(zhuǎn)錄因子家族中有3個(gè)基因發(fā)生突變,均為啟動(dòng)子區(qū)域發(fā)生了SNP突變。

由表4可知,GLL-1突變體ABA信號(hào)轉(zhuǎn)導(dǎo)通路中15個(gè)關(guān)鍵基因發(fā)生了突變,如2個(gè)bZIP轉(zhuǎn)錄因子基因的啟動(dòng)子區(qū)域發(fā)生了SNP突變;5個(gè)WRKY轉(zhuǎn)錄因子基因中,有3個(gè)基因的啟動(dòng)子區(qū)域發(fā)生了SNP突變,有1個(gè)基因的啟動(dòng)子區(qū)域發(fā)生缺失突變,有1個(gè)基因的啟動(dòng)子區(qū)域發(fā)生插入突變;5個(gè)MAPK基因中,有4個(gè)基因的啟動(dòng)子區(qū)域發(fā)生了SNP突變,有1個(gè)基因的外顯子區(qū)域發(fā)生了SNP突變;3個(gè)PPR轉(zhuǎn)錄因子基因中,有2個(gè)基因的啟動(dòng)子區(qū)域分別發(fā)生了SNP突變及缺失突變,1個(gè)基因的外顯子區(qū)域發(fā)生了SNP突變。以上這些基因的突變可能是造成GLL-1果實(shí)相關(guān)性狀改變的重要原因,故推測(cè)ABA在荔枝種子焦核發(fā)生過(guò)程中起關(guān)鍵作用。

3 討論

本研究通過(guò)生物學(xué)特性觀(guān)察發(fā)現(xiàn),與禾荔相比,其芽變新種質(zhì)GLL-1果實(shí)明顯較大,品質(zhì)優(yōu)良,特晚熟,種子變?yōu)榻购?,可食率明顯提高,同時(shí)保存了禾荔豐產(chǎn)、穩(wěn)產(chǎn)的特性,屬特晚熟優(yōu)稀荔枝種質(zhì)資源,適合在晚熟荔枝產(chǎn)區(qū)推廣種植,為今后荔枝早、中、晚熟栽培品種結(jié)構(gòu)的優(yōu)化,延長(zhǎng)鮮果產(chǎn)品供應(yīng)期提供品種支撐,以提高荔枝產(chǎn)業(yè)經(jīng)濟(jì)效益。同時(shí),在今后的荔枝雜交育種及研究工作中,GLL-1既可作為父本用于選育特晚熟和焦核優(yōu)良品種,也可作為研究荔枝果實(shí)發(fā)育快慢和焦核發(fā)生的重要材料。荔枝果皮著色是一個(gè)花色素苷生物合成積累的過(guò)程,著色快慢代表果實(shí)發(fā)育的快慢。本研究為了盡量減少測(cè)序的假陽(yáng)性,以50×的荔枝基因組測(cè)序深度開(kāi)展重測(cè)序試驗(yàn),獲得在啟動(dòng)子區(qū)域和外顯子區(qū)域發(fā)生突變的MYB、bHLH和WD40轉(zhuǎn)錄因子基因,其數(shù)量分別為15、11和3個(gè),推測(cè)MYB、bHLH和WD40三大類(lèi)轉(zhuǎn)錄因子在調(diào)控花色素苷的生物合成過(guò)程中發(fā)揮關(guān)鍵作用。該結(jié)論在其他物種中也得到證實(shí)。如轉(zhuǎn)基因擬南芥中過(guò)表達(dá)MYB轉(zhuǎn)錄因子基因AtPAP1可導(dǎo)致其植株變?yōu)樽仙˙orevitz et al.,2000;Zuluaga et al.,2008);擬南芥bHLH轉(zhuǎn)錄因子突變體tt8、eg3和egl3的種皮和植株花色素苷積累量均明顯減少(Nesi et al.,2000;Zhang et al.,2003);甜櫻桃MYB轉(zhuǎn)錄因子PacMYBA可與bHLH轉(zhuǎn)錄因子相互作用調(diào)控花色素苷的合成(Shen et al.,2014);擬南芥WD40蛋白突變體ttg1種子中的花色素苷生物合成受到明顯抑制(Walker et al.,1999;van Nocker and Ludwig,2003;Couture et al.,2006)。此外,本研究發(fā)現(xiàn)GLL-1中大量MYB、bHLH和WD40轉(zhuǎn)錄因子發(fā)生突變,突變的位置發(fā)生在啟動(dòng)子區(qū)域和外顯子區(qū)域。啟動(dòng)子區(qū)域發(fā)生突變可能會(huì)嚴(yán)重影響基因的表達(dá)水平,而外顯子區(qū)域發(fā)生突變可能會(huì)嚴(yán)重影響到基因的生物學(xué)功能,故推測(cè)這些基因的突變是造成GLL-1果實(shí)晚熟的主要原因,還有待進(jìn)一步的研究。

與禾荔相比,其芽變新種質(zhì)GLL-1的重要突變性狀是種子變?yōu)榻购耍购耸窃u(píng)估荔枝果實(shí)品質(zhì)優(yōu)良的一個(gè)關(guān)鍵因素。ABA參與調(diào)節(jié)細(xì)胞多種生理過(guò)程,包括氣孔關(guān)閉、種子發(fā)育和萌發(fā)等,其在荔枝種子敗育發(fā)生過(guò)程中起著重要作用(周碧燕等,1998;Finkelstein et al.,2002;張以順等,2003)。此外,研究表明,WRKY18、WRKY40和WRKY60參與ABAR介導(dǎo)的ABA信號(hào)轉(zhuǎn)導(dǎo)途徑,作為轉(zhuǎn)錄抑制因子互相協(xié)作,抑制下游ABA信號(hào)調(diào)節(jié)基因的表達(dá),包括ABI4、ABI5、ABF4和MYB2,進(jìn)而負(fù)調(diào)控ABA信號(hào)通路(Shang et al.,2010)。PPR蛋白也參與ABA信號(hào)轉(zhuǎn)導(dǎo)過(guò)程,包括PPR40(Zsigmond et al.,2008)、ABO5(Liu et al.,2010)、PGN(Laluk et al.,2011)、SLG1(Yuan and Liu,2012)、AHG11(Murayama et al.,2012)、SLO2(Zhu et al.,2014)及SOAR1(Jiang et al.,2015)等。ABA還可誘導(dǎo)ABI5和ABFs等bZIP轉(zhuǎn)錄因子的表達(dá),其中ABI5是ABA信號(hào)轉(zhuǎn)導(dǎo)的重要正調(diào)節(jié)子,主要在種子中表達(dá)(Finkelstein and Lynch,2000;Lopez-Molina and Chua,2000;Lopez-Molina et al.,2001,2002)。同時(shí),植物MAPK級(jí)聯(lián)途徑中的相關(guān)蛋白通過(guò)協(xié)同作用參與ABA信號(hào)轉(zhuǎn)導(dǎo),共同調(diào)控植物的生長(zhǎng)發(fā)育過(guò)程(Xing et al.,2008;Jammes et al.,2009)。此外,很多關(guān)鍵轉(zhuǎn)錄因子家族,包括MYC和MYB(Martin and Paz-Ares,1997;Dubos et al.,2010)、bZIP(Jakoby et al.,2002)、WRKY(?lker and Somssich,2004;Rushton et al.,2010)等均需要依賴(lài)ABA的逆境信號(hào)轉(zhuǎn)導(dǎo)。因此,本研究主要針對(duì)ABA信號(hào)轉(zhuǎn)導(dǎo)通路篩選關(guān)鍵突變基因,以期探究GLL-1果實(shí)種子焦核突變的分子調(diào)控機(jī)制。在本研究中,針對(duì)ABA信號(hào)轉(zhuǎn)導(dǎo)通路篩選到2個(gè)bZIP基因、5個(gè)WRKY基因、5個(gè)MAPK基因、3個(gè)PPR基因、15個(gè)MYB基因及11個(gè)MYC(bHLH)基因發(fā)生了突變,推測(cè)MYB、MYC、bZIP、WRKY及PPR等家族基因的突變可能是導(dǎo)致GLL-1種子焦核發(fā)生的一個(gè)主要原因?;诒狙芯拷Y(jié)果,今后應(yīng)深入探究荔枝焦核發(fā)生的分子調(diào)控機(jī)制及焦核分子育種技術(shù)。

4 結(jié)論

MYB、bHLH、WD40、bZIP、WRKY、MAPK及PPR等家族基因的突變可能是導(dǎo)致GLL-1果實(shí)特晚熟及種子敗育成焦核的主要原因,推測(cè)其在調(diào)控荔枝果實(shí)發(fā)育和焦核發(fā)生中發(fā)揮關(guān)鍵作用。

參考文獻(xiàn):

鄧泱泱,荔建琦,吳松鋒,朱云平,陳耀文,賀福初. 2006. NR數(shù)據(jù)庫(kù)分析及其本地化[J].計(jì)算機(jī)工程,32(5):71-73. [Deng Y Y,Li J Q,Wu S F,Zhu Y P,Chen Y W,He F C. 2006. Integrated NR database in protein annotation system and its localization[J]. Computer Engineering,32(5):71-73.]

張以順,向旭,黃上志,傅家瑞. 2003. 荔枝胚敗育過(guò)程中內(nèi)源激素與蛋白質(zhì)含量的變化[J]. 植物生理與分子生物學(xué)學(xué)報(bào),29(3):233-238. [Zhang Y S,Xiang X,Huang S Z,F(xiàn)u J R. 2003. Changes in endogenous hormone and protein content during embryo abortion in litchi[J]. Journal of Plant Physiology and Molecular Biology,29(3):233-238.]

周碧燕,季作梁,葉永昌,招曉東,葉耀雄. 1998. 荔枝果實(shí)發(fā)育期間內(nèi)源激素含量的變化[J]. 園藝學(xué)報(bào),25(3):236-240. [Zhou B Y,Ji Z L,Ye Y C,Zhao X D,Ye Y X. 1998. Changes of endogenous hormones in litchi fruits during fruit development[J]. Acta Horticulturae Sinica,25(3):236-240.]

Altschul S F,Madden T L,Sch?ffer A A,Zhang J H,Zhang Z,Miller W,Lipman D J. 1997. Gapped BLAST and PS-BLAST:A new generation of protein database search programs[J]. Nucleic Acids Research,25(17):3389-3402. doi:10.1093/nar/25.17.3389.

Ashburner M,Ball C A,Blake J A,Botstein D,Michael-Cherry J. 2000. Gene Ontology:Tool for the unification of biology[J]. Nature Genetics,25(1):25-29. doi:10.1038/75556.

Baudry A,Heim M A,Dubreucq B,Caboche M,Lepiniec L. 2004. TT2,TT8,and TTG specify the synergistically expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana[J]. The Plant Journal,39(3):366-380. doi:10.1111/j.1365-313X.2004.02138.x.

Ben-Simhon Z,Judeinstein S,Nadler-Hassar T,Trainin T,Bar-Yaakov I,Borochov-Neori H,Holland D. 2011. A pomegranate(Punica granatum L.) WD40-repeat gene is a functional homologue of Arabidopsis TTG1 and is involved in the regulation of anthocyanin biosynthesis during pomegranate fruit development[J]. Planta,234(5):865-881. doi:10.1007/s00425-011-1438-4.

Borevitz J O,Xia Y,Blount J,Dixon R A,Lamb C. 2000. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis[J]. The Plant Cell,12(12):2383-2394. doi:10.2307/3871236.

Brueggemann J,Weisshaar B,Sagasser M A. 2010. WD40-repeat gene from Malus×domestica is a functional homologue of Arabidopsis thaliana TRANSPARENT TESTA GLABRA1[J]. Plant Cell Reports,29(3):285-294. doi:10.1007/s00299-010-0821-0.

Couture J F,Collazo E,Trievel R C. 2006. Molecular recognition of histone H3 by the WD40 protein WDR5[J]. Nature Structural & Molecular Biology,13(8):698-703. doi:10.2210/pdb2h14/pdb.

de Vetten N,Quattrocchio F,Mol J,Koes R. 1997. The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast,plants,and animals[J]. Genes & Development,11(11):1422-1434. doi:10.1101/gad.11.11.1422.

Dubos C,Stracke R,Grotewold E,Weisshaar B,Martin C,Lepiniec L. 2010. MYB transcription factors in Arabidopsis[J]. Trends Plant Science,15:573-581. doi:10.1016/j.tplants.2010.06.005.

Espley R V,Hellens R P,Putterill J,Stevenson D E,Kutty-Amma S,Allan A C. 2007. Red colouration in apple fruit is due to the activity of the MYB transcription factor,MdMYB10[J]. The Plant Journal,49(3):414-427. doi:10.1111/j.1365-313X.2006.02964.x.

Finkelstein R R,Gampala S S,Rock C D. 2002. Abscisic acid signaling in seeds and seedlings[J]. The Plant Cell,14(Sl):S15-S45. doi:10.1105/tpc.010441.

Finkelstein R R,Lynch T J. 2000. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor[J]. The Plant Cell,12:599-609. doi:10.2307/3871072.

Hiroki T,Akira A,Kentaro Y,Shunichi K,Satoshi N,Chikako M,Aiko U,Hiroe U,Muluneh T,Shohei T,Hideki I,Liliana M C,Sophien K,Ryohei T. 2013. QTL-Seq:Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations[J]. The Plant Journal,74(1):174-183. doi:10.1111/tpj. 12105.

Jakoby M,Weisshaar B,Dr?ge-Laser W,Vicente-Carbajosa J,Tiedemann J,Kroj T,Parcy F,bZIP Research Group. 2002. bZIP transcription factors in Arabidopsis[J]. Trends in Plant Science,7:106-111. doi:10.1016/S1360-1385(01)02223-3.

Jammes F,Song C,Shin D,Munemasa S,Takeda K,Gu D,Cho D,Lee S,Giordo R,Sritubtim S,Leonhardt N,Ellis B E,MurataY,Kwak J M. 2009. MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling[J]. Proceedings of the National Academy of Sciences of the United States of America,106(48):20520-20525. doi:10. 1073/pnas.0907205106.

Jeremy S,Mcclean P E,Sujan M,Mamidi S,Wu G A ,Cannon S B,Grimwood J,Enkins J,Shu S Q,Song Q J,Chavarro C,Torres-Torres M,Geffroy V,Moghaddam S M,Gao D Y,Abernathy B,Barry K,Blair M,Brick M A,Chovatia M,Gepts P,Goodstein D M,Gonzales M,Hellsten U,Hyten D L,Jia G F,Kelly J D,Kudrna D,Lee R,Richard M M S,Miklas P N,Osorno J M,Rodrigues J,Thareau V,Urrea C A ,Wang M,Yu Y,Zhang M,Wing R A,Cregan P B,Rokhsar D S,Jackson S A. 2014. A re-ference genome for common bean and genome-wide ana-lysis of dual domestications[J]. Nature Genetics,46:707-713. doi:10.1038/ng.3008.

Jiang S C,Mei C,Liang S,Yu Y T,Lu K,Wu Z,Wang X F,Zhang D P. 2015. Crucial roles of the pentatricopeptide repeat protein SOAR1 in Arabidopsis response to drought,salt and cold stresses[J]. Plant Molecular Biology,88:369-385. doi:10.1007/s11103-015-0327-9.

Lai B,Du L,Liu R,Hu B,Su W B,Qin Y H,Zhao J T,Wang H C,Hu G B. 2016. Two LcbHLH transcription factors interacting with LcMYB1 in regulating late structural genes of anthocyanin biosynthesis in Nicotiana and Litchi chinensis during anthocyanin accumulation[J]. Frontiers in Plant Science,7:166. doi:10.3389/fpls.2016.00166.

Lai B,Hu B,Qin Y,Zhao J T,Wang H C,Hu G B. 2015. Transcriptomic analysis of Litchi chinensis pericarp du-ring maturation with a focus on chlorophyll degradation and flavonoid biosynthesis[J]. BMC Genomics,16:255. doi:10.1186/s12864-015-1433-4.

Lai B,Li XJ,Hu B,Qin Y H,Huang X M,Wang H C,Hu G B. 2014. LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes,tissues,develop-mental phases and ABA and light stimuli in Litchi chinensis[J]. PLoS One,9(1): e86293. doi:10.1371/journal.pone.0086293.

Laluk K,Abuqamar S,Mengiste T. 2011. The Arabidopsis mitochondria-localized pentatricopeptide repeat protein PGN functions in defense against necrotrophic fungi and abio-tic stress tolerance[J]. Plant Physiology,156:2053-2068. doi:10.1104/pp.111.177501.

Lim S,Song J,Kim D,Kim J K,Lee J Y,Kim Y M,Ha S H. 2016. Activation of anthocyanin biosynthesis by expression of the radish R2R3-MYB transcription factor gene RsMYB1[J]. Plant Cell Reports,35(3):641-653. doi:10. 1007/s00299-015-1909-3.

Lin T,Zhu G,Zhang J,Xu X,Yu Q,Zheng Z,Zhang Z H,Lun Y Y,Li S,Wang X X,Huang Z J,Li J M,Zhang C Z,Wang T T,Zhang Y Y,Wang A X,Zhang Y C,Lin K,Li C Y,Xiong G S,Xue Y B,Mazzucato A,Causse M,F(xiàn)ei Z J,Giovannoni J J,Chetelat R T,Zamir D,Stadler T,Li J F,Ye Z B,Du Y C,Huang S W. 2014. Genomic analyses provide insights into the history of tomato bree-ding[J]. Nature Genetics,46(11):1220-1226. doi:10.1038/ ng.3117.

Liu Y,He J,Chen Z,Ren,X,Hong,X. 2010. ABA overly-sensitive 5(ABO5),encoding a pentatricopeptide repeat protein required for cis-splicing of mitochondrial nad2 intron 3,is involved in the abscisic acid response in Arabidopsis[J]. The Plant Journal,63:749-765. doi:10.1111/j. 1365-313X.2010.04280.x.

Lopez-Molina L,Chua N H. 2000. A null mutation in a bZIP factor confers ABA-insensitivity in Arabidopsis thaliana[J]. Plant and Cell Physiology,41(5):541-547. doi:10. 1093/pcp/41.5.541.

Lopez-Molina L,Mongrand S,Chua N H. 2001. A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,98:4782-4787. doi:10.1073/pnas.081594298.

Lopez-Molina L,Mongrand S,McLachlin,Chait B T,Chua N H. 2002. ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination[J]. The Plant Journal,32(3):317-328. doi:10.1046/j.1365-313x. 2002.01430.x.

Martin C,Paz-Ares J. 1997. MYB transcription factors in plants[J]. Trends in Genetic,13:67-73. doi:10.1016/s0168-9525(96)10049-4.

Matus J T,Poupin M J,Canon P,Bordeu E,Alcalde J A,Arce-Johnson P. 2010. Isolation of WDR and bHLH genes related to flavonoid synthesis in grapevine(Vitis vinifera L.)[J]. Plant Molecular Biology,72(6):607-620. doi:10.1007/s11103-010-9597-4.

McKenna A,Hanna M,Banks E,Sivachenko A,Cibulskis K,Kernytsky A,Garimella K,Altshuler D,Gabriel S,Daly M,Depristo M A. 2014. The genome analysis toolkit:A mapreduce framework for analyzing next-generation DNA sequencing data[J]. Genome Research,20(9):1297-1303. doi:10.1101/gr.107524.110.

Minoru K,Susumu G,Shuichi K,Yasushi O,Masahiro H. 2004. The KEGG resource for deciphering the genome[J]. Nucleic Acids Research,32(22):277-280. doi:10. 1093/nar/gkh063.

Murayama M,Hayashi S,Nishimura N,Ishide M,Kobayashi K,Yagi Y,Asami T,Nakamura T,Shinozaki K,Hirayama T. 2012. Isolation of Arabidopsis ahg11,a weak ABA hypersensitive mutant defective in nad4 RNA editing[J]. Journal of Experimental Botany,63(14):5301-5310. doi:10.1093/jxb/ers188.

Nesi N,Debeaujon I,Jond C,Pelletier G,Caboche M,Lepi-niec L. 2000. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques[J]. The Plant Cell,12(10):1863-1878. doi:10.1105/tpc.12.10.1863.

Qi X,Li M W,Xie M,Liu X,Ni M,Shao G H,Song C,Yim A K Y,Tao Y,Wong F L,Isobe S,Wong C F,Wong K S,Xu C Y,Li C Q,Wang Y,Guan R,Sun F M,F(xiàn)an G Y,Xiao Z X,Zhou F,Phang T H,Liu X,Tong S W,Chan T F,Yiu S M,Tabata S,Wang J,Xu X,Lam H M. 2014. Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing[J]. Nature Communications,5(5):4340. doi:10.1038/ncomms5340.

Rushton P J,Somssich I E,Ringler P,Shen Q J. 2010. WRKY transcription factors[J]. Trends in Plant Science,15(5):247-258. doi:10.1016/j.tplants.2010.02.006.

Shang Y,Yan L,Liu Z Q,Cao Z,Mei C,Xin Q,Wu F Q,Wang X F,Du S Y,Jiang T,Zhang X F,Zhao R,Sun H L,Liu R,Yu Y T,Zhang D P. 2010. The Mg-chelatase H subunit antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition[J]. The Plant Cell,22:1909-1935. doi:10.1105/tpc.110. 073874.

Shen X,Zhao K,Liu L,Zhang K C,Yuan H Z,Liao X,Wang Q,Guo X W,Li F,Li T H .2014. A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in red-co-lored sweet cherry cv. Hong Deng(Prunus avium L.)[J]. Plant and Cell Physiology,55(5):862-880. doi: 10.1093/pcp/pcu013.

Tatusov R L,Galperin M Y,Natale D A,Koonin E V. 2000. The COG database:A tool for genome-scale analysis of protein functions and evolution[J]. Nucleic Acids Resea-rch,28(1):33-36. doi:10.1093/nar/28.1.33.

?lker B,Somssich I E. 2004. WRKY transcription factors: From DNA binding towards biological function[J]. Current Opinion in Plant Biology,7(5):491-498. doi: 10. 1016/j.pbi.2004.07.012.

van Nocker S,Ludwig P. 2003. The WD-repeat protein superfamily in Arabidopsis:Conservation and divergence in structure and function[J]. BMC Genomics,4(1):50. doi:10.1186/1471-2164-4-50.

Walker A R,Davison P A,Bolognesi-Winfield A C,James C M,Srinivasan N,Blundell T L,Esch J J,Marks M D,Gray J C. 1999. The TRANSPARENT TESTA GLABRA1 locus,which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis,encodes a WD40 repeat protein[J]. The Plant Cell,11(7):1337-1350. doi:10.1105/tpc.11.7.1337.

Xie X B,Li S,Zhang R F,Zhao J,Chen Y C,Zhao Q,Yao Y X,You C X,Zhang X S,Hao Y J. 2012. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low tempera-ture in apples[J]. Plant Cell and Environment,35(11):1884-1897. doi:10.1111/j.1365-3040.2012.02523.x.

Xing Y,Jia W,Zhang J. 2008. AtMKK1 mediates ABA induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis[J]. The Plant Journal,54(3):440-451. doi:10.1111/j.1365-313X.2008.034 33.x.

Xu W,Dubos C,Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes[J]. Trends in Plant Science,20(3):176-185. doi:10.1016/ j.tplants.2014.12.001.

Yuan H,Liu D. 2012. Functional disruption of the pentatricopeptide protein SLG1 affects mitochondrial RNA editing,plant development,and responses to abiotic stresses in Arabidopsis[J]. The Plant Journal,70:432-444. doi:10. 1111/j.1365-313X.2011.04883.x.

Zhang F,Gonzalez A,Zhao M,Payne C T,Lloyd A. 2003. A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis[J]. Development,130(20):4859-4869. doi:10.1242/dev.00681.

Zhu Q,Dugardeyn J,Zhang C,Muhlenbock P,Eastmond P J,Valcke R,De C B,Oden S,Karampelias M,Cammue B P A,Prinsen E,Van D S D. 2014. The Arabidopsis tha-liana RNA editing factor SLO2,which affects the mitochondrial electron transport chain,participates in multiple stress and hormone responses[J]. Molecular Plant,7:290-310. doi:10.1093/mp/sst102.

Zimmermann I M,Heim M A,Weisshaar B,Uhrig J F. 2004. Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins[J]. The Plant Journal,40(1):22-34. doi:10.1111/j.1365-313X.2004.02183.x.

Zsigmond L,Rigó G,Szarka A,Székely G,Otv?s K,Darula Z,Medzihradszky K F,Koncz C,Koncz Z,Szabados L. 2008. Arabidopsis PPR40 connects abiotic stress respon-ses to mitochondrial electron transport[J]. Plant Physio-logy,146:1721-1737. doi:10.1104/pp.107.111260.

Zuluaga D L,Gonzali S,Loreti E,Pucciariello C,Degl'Innocenti E,Guidi L,Alpi A,Perata P. 2008. Arabidopsis thaliana MYB75/PAP1 transcription factor induces anthocyanin production in transgenic tomato plants[J]. Functional Plant Biology,35(7):606-618. doi:10.1071/FP08021.

(責(zé)任編輯 陳 燕)

猜你喜歡
荔枝
吃荔枝
Fruit of the South
不只是美味
荔枝紅了到靈山
吃荔枝
2018年海南??诨鹕嚼笾κ斋@創(chuàng)紀(jì)錄
小心“荔枝病”
荔枝
泰國(guó)北部荔枝受自然災(zāi)害的影響
荔枝枝枝枝映水