劉志鑫 孫宇 葉子 羅睿雄 李忠 蒲金基 張賀
摘要:【目的】對(duì)芒果維管束鋅指蛋白(VOZ)基因家族成員進(jìn)行鑒定并對(duì)其生物信息學(xué)進(jìn)行分析,為深入探究芒果VOZ轉(zhuǎn)錄因子在免疫反應(yīng)中的生物學(xué)功能提供理論參考?!痉椒ā炕诿⒐蚪M數(shù)據(jù),利用生物信息學(xué)方法鑒定芒果VOZ轉(zhuǎn)錄因子基因家族成員,并分析其理化性質(zhì)、保守基序及系統(tǒng)發(fā)育進(jìn)化。通過(guò)實(shí)時(shí)熒光定量PCR檢測(cè)膠孢炭疽菌(Colletotrichum gloeosporioides)與細(xì)菌性黑斑病菌(Xanthomonas citri pv. mangiferaeindicae)侵染下的相對(duì)表達(dá)量?!窘Y(jié)果】從芒果全基因組中間鑒定出4個(gè)VOZ轉(zhuǎn)錄因子家族成員,分別為MiVOZ1、MiVOZ2、MiVOZ3和MiVOZ4基因,開(kāi)放閱讀框(ORF)長(zhǎng)度為1290~1482 bp,編碼氨基酸數(shù)量為429~493,蛋白分子量為47.26~54.96 kD,等電點(diǎn)(pI)為5.47~6.00,親/疏水性指數(shù)為-0.663~-0.552,不穩(wěn)定指數(shù)為37.66~50.86,二級(jí)結(jié)構(gòu)均以無(wú)規(guī)則卷曲和α-螺旋為主要元件。芒果和其他9個(gè)物種的49個(gè)VOZ蛋白聚為十個(gè)分支,在ClassⅠ中3個(gè)MiVOZs蛋白(MiVOZ2、MiVOZ3和MiVOZ4)與蘋(píng)果、木薯和毛果楊聚類(lèi)在一起,在Class Ⅴ中MiVOZ1與擬南芥、木薯和毛果楊聚類(lèi)在一起。在膠孢炭疽菌侵染下,僅MiVOZ1和MiVOZ2基因的相對(duì)表達(dá)量較對(duì)照顯著升高(P<0.05,下同);在細(xì)菌性黑斑病菌侵染下,僅MiVOZ2基因的相對(duì)表達(dá)量較對(duì)照顯著升高?!窘Y(jié)論】芒果VOZ轉(zhuǎn)錄因子在抵御不同病原菌侵染的生物學(xué)功能方面存在差異,其中MiVOZ2基因在抵御膠孢炭疽病和細(xì)菌性黑斑病侵染的免疫反應(yīng)中具有相似生物學(xué)功能,屬于正調(diào)節(jié)因子。
關(guān)鍵詞: 芒果;VOZ轉(zhuǎn)錄因子;生物信息學(xué);實(shí)時(shí)熒光定量PCR
中圖分類(lèi)號(hào): S667.703.6? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2021)07-1762-09
Identification and bioinformatics analysis of VOZ transcription factor gene family members in Mangifera indica
LIU Zhi-xin1,2, SUN Yu2, YE Zi2, LUO Rui-xiong3, LI Zhong1, PU Jin-ji2*, ZHANG He2*
(1College of Agricultural,Guizhou University,Guiyang? 550025, China; 2Environment and Plant Protection Institute,Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops,Ministry of Agriculture and Rural Affairs, Haikou? 571101, China; 3Tropical Crops Genetic Resources Institute,Chinese Academy of Tropical Agricultural Sciences, Haikou? 571101, China)
Abstract:【Objective】By identifying the members of the mango vascular plant one-zinc finger protein(VOZ)gene family members and conducting bioinformatics analysis on them,it laid a foundation for exploring the biological functions of mango VOZ transcription factors in immune response. 【Method】Based on mango genome-wide data, bioinformatics methods were used to identify members of the mango VOZ transcription factor gene family members, and to analyze their physical and chemical properties, conservative motifs, and phylogenetic evolution.Real-time fluorescent quantitative PCR was used to detect the relative expression levels of Colletotrichum gloeosporioides and Xanthomonas citri pv. mangi-feraeindicae infection. 【Result】Four VOZ transcription factor family members were identified from the whole mango genome, namely MiVOZ1, MiVOZ2, MiVOZ3 and MiVOZ4 genes. The open reading frame(ORF) length was 1290-1482 bp, the number of encoded amino acids was 429-493, and the protein molecular weight was 47.26-54.96 kD, isoelectric point(pI) was 5.47-6.00, affinity/hydrophobicity index was -0.663 to -0.552, instability index was 37.66-50.86, secon-dary structure was mainly random coil and α-helix element. Mango and 49 VOZ proteins of 9 other species were clustered into ten major groups. In Class Ⅰ, three MiVOZs proteins(MiVOZ2, MiVOZ3, MiVOZ4) were clustered with apple, cassava and Populus trichocarpa. In Class Ⅴ, MiVOZ1 was clustered with Arabidopsis thaliana, cassava and P.trichocarpa. Under the infection of C. gloeosporioides, only the relative expression of MiVOZ1 and MiVOZ2 genes were significantly higher than the control(P<0.05, the same below); under X. citri pv. mangiferaeindicae infection, only the relative expression of MiVOZ2 gene was significantly higher than that of the control. 【Conclusion】Mango VOZ transcription factors have different biological functions in resisting different pathogens. Among them, the MiVOZ2 gene has similar biological functions in the immune response to resist the infection of C. gloeosporioides and X. citri pv. mangiferaeindicae, and is a positive regulator.
Key words: mango; VOZ transcription factor; bioinformatics; real-time fluorescence quantitative PCR
Foundation item: National Key Research and Development Program of China(2019YFD1000504);Central Public-interest Scientific Institution Basal Research Fund for Chinese Academy of Tropical Agricultural Sciences(1630042021022, 1630042017019)
0 引言
【研究意義】芒果(Mangifera indica)為漆樹(shù)科芒果屬果樹(shù)。高質(zhì)量的芒果參考基因組測(cè)序數(shù)據(jù)可促進(jìn)芒果的分子育種和進(jìn)化研究,而芒果基因組的高度雜合給芒果基因組組裝帶來(lái)巨大的挑戰(zhàn)(Gao et al.,2018;Wang et al.,2020b)。近年來(lái),芒果的細(xì)胞遺傳學(xué)數(shù)據(jù)(Mukherjee,1950)、遺傳圖譜(Luo et al.,2016;Kuhn et al.,2017)和轉(zhuǎn)錄組數(shù)據(jù)(Sivan-kalyani et al.,2016;Tafolla-Arellano et al.,2017)的公開(kāi)有利于芒果基因組的研究。目前不同品種芒果全基因組工作已相繼完成(Li et al.,2020a;Wang et al.,2020a),為芒果全基因組的生物信息分析及功能基因挖掘打下基礎(chǔ)。研究發(fā)現(xiàn),芒果于3300萬(wàn)年前發(fā)生全基因組復(fù)制事件(Wang et al.,2020b),與其他陸地植物一樣均保留下來(lái)特異性轉(zhuǎn)錄因子。其中,維管束鋅指蛋白(Vascular plant one-zinc finger protein,VOZ)得以保留,參與植物生長(zhǎng)發(fā)育和免疫反應(yīng)(安禮渝等,2015;Koguchi et al.,2017;Wang et al.,2020a)。因此,對(duì)芒果VOZ轉(zhuǎn)錄因子家族進(jìn)行生物信息學(xué)分析及其在病原菌侵染過(guò)程中的表達(dá)分析,篩選參與免疫反應(yīng)的VOZ轉(zhuǎn)錄因子,對(duì)深入了解芒果VOZ在免疫反應(yīng)的作用機(jī)制具有重要意義?!厩叭搜芯窟M(jìn)展】VOZ作為植物中特有的轉(zhuǎn)錄因子家族,是在植物各生長(zhǎng)發(fā)育階段中發(fā)揮重要調(diào)節(jié)作用的轉(zhuǎn)錄因子之一。Mitsuda等(2004)通過(guò)構(gòu)建擬南芥的酵母單雜交cDNA文庫(kù),篩選鑒定出2種通過(guò)與擬南芥V-PPase基因(AVP1)順式作用區(qū)域相互作用從而調(diào)控花粉發(fā)育過(guò)程的新VOZ轉(zhuǎn)錄因子,并將其命名為AtVOZ1和AtVOZ2,均含有結(jié)構(gòu)域A(Domain-A)和結(jié)構(gòu)域B(Domain-B),其中結(jié)構(gòu)域B包含鋅配位基序和基本區(qū)域,為DNA結(jié)合區(qū)域。Nakai等(2013b)證明擬南芥雙突變體voz1voz2均表現(xiàn)出較高的干旱和冷凍耐受性,而對(duì)希金斯炭疽菌(Colletotrichum higginsianum)和丁香假單胞菌(Pseudomonas syringae)的抗性有所降低;Schwarzenbacher等(2020)證明擬南芥中VOZ1和VOZ2作為天冬氨酸t(yī)RNA合成酶IBI1的相互作用因子,在對(duì)抗活體營(yíng)養(yǎng)型卵菌(Hyaloperonospora arabidopsidis)時(shí)通過(guò)抑制脫落酸(ABA)而誘導(dǎo)基因表達(dá),證明擬南芥中VOZ基因參與植物免疫反應(yīng)和非生物脅迫;水稻突變體voz2對(duì)Xanthomonas oryzae pv. oryzae(Xoo)的抗性明顯增強(qiáng)(Cheong et al.,2013);隨后,Wang等(2020a)研究發(fā)現(xiàn)水稻OsVOZ1和OsVOZ2與E3泛素連接酶(AVRPIZ-T INTERACTING PROTEIN 10,APIP10)相互作用可增強(qiáng)植株對(duì)稻瘟病菌(Magnaporthe oryzae)的抗性。其他大量研究也證實(shí)VOZ在水稻(Zhou et al.,2009;Ganie et al.,2020)、擬南芥(Yasui et al.,2012;Yasui and Kohchi,2014;Celesnik et al.,2013;Luo et al.,2020)、苔蘚植物(高貝等,2014)、菠蘿(夏楊等,2018)等植物生長(zhǎng)發(fā)育和免疫反應(yīng)中發(fā)揮重要的作用?!颈狙芯壳腥朦c(diǎn)】雖然芒果全基因組數(shù)據(jù)已公開(kāi),但鮮見(jiàn)有關(guān)芒果VOZ轉(zhuǎn)錄因子基因家族成員的研究報(bào)道?!緮M解決的關(guān)鍵問(wèn)題】基于芒果全基因組數(shù)據(jù),利用生物信息學(xué)軟件鑒定分析芒果VOZ轉(zhuǎn)錄因子基因家族成員,并通過(guò)實(shí)時(shí)熒光定量PCR檢測(cè)病原菌侵染過(guò)程中的表達(dá)水平,篩選出響應(yīng)病原菌侵染的VOZ轉(zhuǎn)錄因子家族基因,為芒果VOZ轉(zhuǎn)錄因子免疫機(jī)制打下理論基礎(chǔ),也為芒果抗性育種提供基因資源。
1 材料與方法
1. 1 試驗(yàn)材料
供試材料為1年生貴妃芒果幼苗,種植于農(nóng)業(yè)農(nóng)村部儋州市芒果種植資源圃的溫室。主要試劑:RNAprep Pure多糖多酚植物總RNA提取試劑盒、FirstKing cDNA第一鏈合成試劑盒購(gòu)自天根生化科技有限公司; PrimeTaqTM(LA TaqTM Version 2.0)試劑盒購(gòu)自寶生物工程大連有限公司;UltraSYBR Mixture(Low ROX)試劑盒購(gòu)自北京康為世紀(jì)有限公司;其他生化試劑均購(gòu)自生工生物工程(上海)股份有限公司。主要設(shè)備儀器:Biometra PCR儀(德國(guó));Fusion Fx VILBER LOURMAT凝膠成像系統(tǒng)(法國(guó));ABI QuantStudio 6 Flex實(shí)時(shí)熒光定量PCR儀(美國(guó));TU-1810紫外可見(jiàn)分光光度計(jì)(普析通用,北京)
1. 2 VOZ轉(zhuǎn)錄因子基因家族成員鑒定
從NCBI獲取芒果全基因組數(shù)據(jù)及其轉(zhuǎn)錄組數(shù)據(jù)(PRJNA487154)。從PlantTFDB v5.0下載擬南芥、玉米、水稻、蘋(píng)果、毛果楊、番茄、木薯、菠蘿和煙草等9個(gè)物種的VOZ轉(zhuǎn)錄因子家族蛋白的氨基酸序列,并以擬南芥VOZ轉(zhuǎn)錄因子家族蛋白序列為參考序列,在芒果基因組數(shù)據(jù)庫(kù)中進(jìn)行BLASTp比對(duì)(E值為10-5),最后從在線網(wǎng)站Pfam和CDD搜索獲取芒果VOZ蛋白序列結(jié)構(gòu)域,篩選出具有特征性結(jié)構(gòu)域的序列。
1. 3 VOZ轉(zhuǎn)錄因子基因家族生物信息學(xué)分析
利用ExPASy-ProtParam Tool對(duì)芒果VOZ轉(zhuǎn)錄因子成員進(jìn)行理化性質(zhì)預(yù)測(cè)。使用生物信息學(xué)在線搜索程序MEME(http://meme-suite.org/index.html)鑒別芒果VOZ轉(zhuǎn)錄因子家族蛋白的保守基序(基序重復(fù)數(shù)量設(shè)為“any”,預(yù)測(cè)基序的數(shù)量設(shè)為5個(gè))。
1. 4 多序列比對(duì)及系統(tǒng)進(jìn)化樹(shù)構(gòu)建
利用ClustalX軟件對(duì)芒果與模式植物(擬南芥、水稻、煙草)、雙子葉植物(蘋(píng)果、毛果楊、木薯、番茄、)和單子葉植物(菠蘿、玉米)的VOZ轉(zhuǎn)錄因子結(jié)構(gòu)域序列進(jìn)行多序列比對(duì),利用MEGA 5.0中的鄰接法(Neighbor-joining,NJ)構(gòu)建系統(tǒng)發(fā)育進(jìn)化樹(shù)(Bootstrap設(shè)1000次重復(fù)),對(duì)芒果VOZ轉(zhuǎn)錄因子基因家族成員進(jìn)行分類(lèi),分析其進(jìn)化關(guān)系。
1. 5 基因克隆
以芒果全基因組序列中鑒定獲得的候選VOZ轉(zhuǎn)錄因子家族基因序列,利用Primer Primer 5.0設(shè)計(jì)基因開(kāi)放閱讀框(ORF)引物及實(shí)時(shí)熒光定量PCR引物(表1)。采用RNAprep Pure多糖多酚植物總RNA提取試劑盒提取芒果葉片的總RNA,測(cè)定其濃度,并采用FirstKing cDNA第一鏈合成試劑盒反轉(zhuǎn)錄生成第一鏈cDNA。利用高保真酶pfu酶進(jìn)行PCR擴(kuò)增。反應(yīng)體系(25.0 μL):2×rTaq 12.5 μL,10 μmol/L正、反引物各1.0 μL,cDNA模板1.0 μL,ddH2O補(bǔ)足至25.0 μL。擴(kuò)增程序:95 ℃預(yù)變性10 min,95 ℃ 15 s,52 ℃ 30 s,72 ℃ 90 s,進(jìn)行30個(gè)循環(huán);72 ℃延伸10 min,4 ℃保存。取10 μL PCR產(chǎn)物用于1%瓊脂凝膠電泳檢測(cè)。
1. 6 實(shí)時(shí)熒光定量PCR(qRT-PCR)
用濃度為2×106個(gè)/mL的膠孢炭疽菌(Colletotrichum gloeosporioides,Cg)分生孢子懸浮液對(duì)貴妃芒果苗嫩葉進(jìn)行均勻噴霧,在處理0(對(duì)照)、3、6、12、24、48和72 h時(shí)剪取嫩葉片,液氮速凍,-80 ℃保存?zhèn)溆?用濃度為2×107 CFU/mL的細(xì)菌性黑斑病菌(Xanthomonas citri pv. mangiferaeindicae,Xcm)懸浮液對(duì)貴妃芒果苗新抽的嫩葉進(jìn)行均勻噴霧,在處理0(對(duì)照)、3、6和12 h時(shí)剪取嫩葉片,液氮速凍,? -80 ℃保存?zhèn)溆?。采用RNAprep Pure多糖多酚植物總RNA提取試劑盒提取芒果嫩葉的總RNA,測(cè)定其濃度,并利用FirstKing cDNA第一鏈合成試劑盒反轉(zhuǎn)錄生成第一鏈cDNA。
以QuantStudio 6 Flex實(shí)時(shí)熒光定量PCR儀檢測(cè)不同病原菌侵染下芒果VOZ家族基因的相對(duì)表達(dá)量,反應(yīng)體系(20.0 μL)和擴(kuò)增程序參照UltraSYBR Mixture試劑盒進(jìn)行。試驗(yàn)設(shè)3次重復(fù),每次設(shè)3個(gè)復(fù)孔。以芒果Mi18S作為內(nèi)參基因,以侵染0 h的相對(duì)表達(dá)量為對(duì)照。
1. 7 統(tǒng)計(jì)分析
使用Excel 2019和SPSS 26.0進(jìn)行數(shù)據(jù)整理及分析。運(yùn)用2-△△Ct法計(jì)算基因的相對(duì)表達(dá)量,用Tukeys HSD法進(jìn)行顯著性分析(P<0.05)。基因相對(duì)表達(dá)量柱形圖使用Excel 2019進(jìn)行繪制。
2 結(jié)果與分析
2. 1 芒果VOZ轉(zhuǎn)錄因子基因家族鑒定及擴(kuò)增結(jié)果
從芒果全基因組中間鑒定出4個(gè)含有典型結(jié)構(gòu)域(Domain-A和Domain-B)的VOZ轉(zhuǎn)錄因子基因家族成員,分別為MiVOZ1、MiVOZ2、MiVOZ3和MiVOZ4基因。其中,MiVOZ1基因包含一個(gè)長(zhǎng)度為1407 bp的開(kāi)放閱讀框(ORF),編碼468個(gè)氨基酸殘基;MiVOZ2包含一個(gè)長(zhǎng)度為1482 bp的ORF,編碼493個(gè)氨基酸殘基;MiVOZ3包含一個(gè)長(zhǎng)度為1290 bp的ORF,編碼429個(gè)氨基酸殘基;MiVOZ4包含一個(gè)長(zhǎng)度為1461 bp的ORF,編碼486個(gè)氨基酸殘基。以芒果葉片cDNA為模板,用高保真酶pfu酶進(jìn)行PCR擴(kuò)增,結(jié)果發(fā)現(xiàn),擴(kuò)增產(chǎn)物單一且清晰,與預(yù)期大小相符,而未加cDNA的陰性對(duì)照則無(wú)清晰的單一條帶(圖1)。
2. 2 生物信息學(xué)分析結(jié)果
由表2可知,MiVOZ1、MiVOZ2和MiVOZ4基因外顯子數(shù)均為4個(gè),MiVOZ3基因外顯子數(shù)為5個(gè);MiVOZs蛋白氨基酸數(shù)量為429~493個(gè),分子量為47.26~54.96 kD,其中以MiVOZ2蛋白最大,MiVOZ3蛋白最小;等電點(diǎn)(pI)為5.47~6.00,其中以MiVOZ1蛋白最大,MiVOZ3蛋白最小; MiVOZ1~MiVOZ4蛋白的親/疏水性指數(shù)為-0.663~-0.552,均為親水性蛋白;不穩(wěn)定指數(shù)為37.66~50.86,其中MiVOZ1、MiVOZ2和MiVOZ4為不穩(wěn)定蛋白,MiVOZ3為穩(wěn)定蛋白。
2. 3 二級(jí)結(jié)構(gòu)預(yù)測(cè)預(yù)測(cè)結(jié)果
對(duì)MiVOZs蛋白進(jìn)行二級(jí)結(jié)構(gòu)預(yù)測(cè),結(jié)果如圖2所示。MiVOZ1蛋白二級(jí)結(jié)構(gòu)的主要元件是無(wú)規(guī)則卷曲(53.63%)和α-螺旋(31.84%),其次是延伸鏈(10.47%)和β-轉(zhuǎn)角(4.06%);MiVOZ2蛋白二級(jí)結(jié)構(gòu)的主要元件為無(wú)規(guī)則卷曲(52.14%)和α-螺旋(35.29%),其次是延伸鏈(9.53%)和β-轉(zhuǎn)角(3.04%);MiVOZ3蛋白二級(jí)結(jié)構(gòu)的主要元件是無(wú)規(guī)則卷曲(54.78%)和α-螺旋(31.70%),其次是延伸鏈(10.49%)和β-轉(zhuǎn)角(3.03%);MiVOZ4蛋白二級(jí)結(jié)構(gòu)的主要元件是無(wú)規(guī)則卷曲(55.56%)和α-螺旋(30.45%),其次是延伸鏈(10.49%)和β-轉(zhuǎn)角(3.50%)。
2. 4 系統(tǒng)發(fā)育進(jìn)化分析結(jié)果
基于芒果(4個(gè))、擬南芥(3個(gè))、水稻(2個(gè))、煙草(8個(gè))、蘋(píng)果(5個(gè))、毛果楊(8個(gè))、木薯(5個(gè))、番茄(2個(gè))、菠蘿(2個(gè))和玉米(10個(gè))的VOZ氨基酸序列構(gòu)建系統(tǒng)發(fā)育進(jìn)化樹(shù),結(jié)果如圖3所示。49個(gè)VOZ蛋白聚為十個(gè)分支(ClassⅠ~Class Ⅹ),MiVOZ1~MiVOZ4分別存在于Class Ⅰ和Class Ⅴ中,這兩個(gè)分支中含有毛果楊、木薯和蘋(píng)果VOZ蛋白,且Class Ⅴ還包含1個(gè)擬南芥VOZ蛋白。其中,MiVOZ1與擬南芥VOZ蛋白聚類(lèi)在Class Ⅴ的一個(gè)小分支中;MiVOZ2、MiVOZ3和MiVOZ4與蘋(píng)果VOZ蛋白聚類(lèi)在一個(gè)較小的分支,再與毛果楊和木薯聚類(lèi)在ClassⅠ。綜上所述,MiVOZs蛋白與毛果楊、木薯、蘋(píng)果和擬南芥的VOZ蛋白關(guān)系較近。
2. 5 保守基序分析結(jié)果
對(duì)MiVOZs蛋白進(jìn)行保守基序分析,結(jié)果如圖4所示。當(dāng)E-value<4.6e-032時(shí),4個(gè)MiVOZs蛋白共有5個(gè)相對(duì)保守且典型的基序(Motif1~Motif5)。Motif1含有50個(gè)氨基酸,以MiVOZ2、MiVOZ3和MiVOZ4蛋白的Motif1序列一致;Motif2含有29個(gè)氨基酸,MiVOZ1蛋白的Motif2與其他3個(gè)MiVOZs蛋白存在明顯序列差異,MiVOZ3和MiVOZ4的Motif2序列一致,與MiVOZ2的Motif2僅有1個(gè)氨基酸的差異;Motif3含有38個(gè)氨基酸,MiVOZ3與MiVOZ4的Motif3序列完全一致,與MiVOZ2的Motif3僅有2個(gè)氨基酸的差異,而MiVOZ1與MiVOZ2的Motif3存在9個(gè)氨基酸的差異;Motif4含有50個(gè)氨基酸,MiVOZ2、MiVOZ3和MiVOZ4蛋白的Motif1序列完全一致;Motif5含有50個(gè)氨基酸,MiVOZ3和MiVOZ4蛋白的Motif5序列完全一致。
2. 6 膠孢炭疽菌侵染下芒果VOZ家族基因的表達(dá)分析結(jié)果
利用實(shí)時(shí)熒光定量PCR檢測(cè)膠孢炭疽菌侵染下芒果葉片中MiVOZs基因的相對(duì)表達(dá)量,結(jié)果如圖5所示。與侵染后0 h(對(duì)照)相比,MiVOZ1和MiVOZ2基因在其他侵染時(shí)間點(diǎn)的相對(duì)表達(dá)量均顯著升高(P<0.05,下同),而MiVOZ3和MiVOZ4基因的相對(duì)表達(dá)量均上升,但未達(dá)顯著水平(P>0.05,下同)。表明MiVOZ1和MiVOZ2基因積極響應(yīng)膠孢炭疽菌的侵染。
2. 7 細(xì)菌性黑斑病菌侵染下芒果VOZ家族基因的表達(dá)分析結(jié)果
利用實(shí)時(shí)熒光定量PCR檢測(cè)細(xì)菌性黑斑病菌侵染下芒果葉片中MiVOZs基因的相對(duì)表達(dá)量,結(jié)果如圖6所示。侵染后0~12 h,MiVOZ2基因的相對(duì)表達(dá)量呈先升高后降低的變化趨勢(shì),其他時(shí)間點(diǎn)的相對(duì)表達(dá)量均與對(duì)照存在顯著差異,在侵染后6 h時(shí)達(dá)峰值;MiVOZ3和MiVOZ4基因整體呈略微上升的趨勢(shì),僅在侵染后12 h時(shí)與對(duì)照存在顯著差異;MiVOZ1基因的相對(duì)表達(dá)量相對(duì)穩(wěn)定,與對(duì)照無(wú)顯著差異,表明MiVOZ2基因積極響應(yīng)芒果細(xì)菌性黑斑病菌的侵染。
3 討論
本研究對(duì)4個(gè)芒果VOZ轉(zhuǎn)錄因子基因家族成員進(jìn)行生物信息學(xué)分析,結(jié)果發(fā)現(xiàn)MiVOZ1、MiVOZ2、MiVOZ3和MiVOZ4蛋白的等電點(diǎn)均小于6.00,平均親/疏水性指數(shù)均小于0,說(shuō)明MiVOZs為弱酸性的親水性蛋白,由此可知MiVOZs蛋白的基本理化性質(zhì)無(wú)明顯差異。此外,MiVOZs蛋白二級(jí)結(jié)構(gòu)的主要元件為無(wú)規(guī)則卷曲,與齒肋赤蘚ScVOZ1蛋白(高貝等,2014)和菠蘿AcoVOZ2蛋白(夏楊等,2018)相似。與擬南芥、水稻、番茄和菠蘿相比,芒果的VOZ轉(zhuǎn)錄因子基因家族成員數(shù)量相對(duì)較多,可能是由于芒果中的全基因組重復(fù)事件(WGD)所致(Gao et al.,2018;Wang et al.,2020a)。本研究構(gòu)建的系統(tǒng)發(fā)育進(jìn)化樹(shù)顯示,芒果和其他9個(gè)物種的49個(gè)VOZ蛋白聚為十個(gè)分支,在ClassⅠ中3個(gè)MiVOZs蛋白(MiVOZ2、MiVOZ3和MiVOZ4)與蘋(píng)果、木薯和毛果楊的VOZ蛋白聚類(lèi)在一起,在Class Ⅴ中MiVOZ1與擬南芥、木薯和毛果楊聚類(lèi)在一起,推測(cè)芒果與蘋(píng)果和木薯的親緣關(guān)系較近;MiVOZs蛋白可與雙子葉植物擬南芥、蘋(píng)果、木薯和毛果楊的VOZ蛋白聚類(lèi)在一起,不與單子葉植物玉米和水稻的VOZ蛋白聚類(lèi)在一起。該結(jié)論類(lèi)似于大豆GmVOZ1G可與雙子葉植物擬南芥VOZ蛋白聚類(lèi),而不能與單子葉植物水稻、玉米和粟等VOZ蛋白聚類(lèi)在一起(Li et al.,2020b)??梢?jiàn),單子葉植物類(lèi)群和雙子葉植物類(lèi)群的VOZ轉(zhuǎn)錄因子存在明顯的分化。不僅如此,不同VOZ家族成員含有高度保守的結(jié)構(gòu)域,與其具有相同和相似的調(diào)控功能密切相關(guān)(Koguchi et al.,2017)。本研究發(fā)現(xiàn),4個(gè)MiVOZs蛋白的保守基序中,以Motif1~Motif5較為典型,其中,MiVOZ2、MiVOZ3和MiVOZ4蛋白的這5個(gè)基序較保守,尤其是MiVOZ3和MiVOZ4高度保守;MiVOZ1蛋白與上述3個(gè)MiVOZs蛋白基序明顯不同,系統(tǒng)發(fā)育進(jìn)化樹(shù)分析結(jié)果也證明這一點(diǎn),說(shuō)明基序相似性也能反映序列間的親緣關(guān)系。
膠孢炭疽病和細(xì)菌性黑斑病是危害芒果較嚴(yán)重的病害之一。本研究利用qRT-PCR檢測(cè)MiVOZs基因在膠孢炭疽菌和細(xì)菌性黑斑病菌侵染下的表達(dá)情況,結(jié)果顯示,MiVOZ1和MiVOZ2基因在膠孢炭疽菌侵染下相對(duì)表達(dá)量較對(duì)照顯著升高,MiVOZ2基因在細(xì)菌性黑斑病菌侵染下表達(dá)量較對(duì)照也顯著升高,表明部分芒果VOZ轉(zhuǎn)錄因子家族成員參與抵御真菌和細(xì)菌病原體侵染。Nakai等(2013a)研究也發(fā)現(xiàn),在擬南芥VOZ轉(zhuǎn)錄因子家族基因高表達(dá)可提高對(duì)真菌和細(xì)菌病原體的抗性??梢?jiàn),不同物種的VOZ轉(zhuǎn)錄因子家族成員參與植株的免疫反應(yīng)。此外,內(nèi)源信號(hào)和外源信號(hào)刺激可使植物免疫系統(tǒng)對(duì)病原體的攻擊作出更快速的免疫反應(yīng),如Schwarzenbacher等(2020)研究發(fā)現(xiàn),AtVOZ1和AtVOZ2在BIB1-VOZ信號(hào)模塊通過(guò)病原體誘導(dǎo)的ABA信號(hào)傳導(dǎo)至細(xì)胞壁后作出防御反應(yīng),同時(shí)抑制非生物應(yīng)激反應(yīng)基因;Cheong等(2013)研究發(fā)現(xiàn),水稻OsVOZ2對(duì)Xanthomonas oryzae pv. oryzae(Xoo)具有明顯的抗性。由于MiVOZ2基因在膠孢炭疽菌和細(xì)菌性黑斑病菌侵染下的相對(duì)表達(dá)量均顯著升高,推測(cè)MiVOZ2基因在芒果對(duì)不同病原菌抗性中具有相似的調(diào)控功能,屬于正調(diào)節(jié)因子。此外,有研究發(fā)現(xiàn),植物VOZ轉(zhuǎn)錄因子是應(yīng)對(duì)生物脅迫、高溫脅迫及高鹽脅迫的正調(diào)節(jié)因子,也是寒冷脅迫和干旱脅迫的負(fù)調(diào)節(jié)因子(Nakai et al.,2013a,2013b;Kim et al.,2017;Prasad et al.,2016,2018)。Wang等(2020a)研究了水稻VOZ轉(zhuǎn)錄因子介導(dǎo)的水稻抗稻瘟病新機(jī)制,結(jié)果發(fā)現(xiàn)OsVOZ1和OsVOZ2協(xié)同負(fù)調(diào)控水稻細(xì)胞死亡和基礎(chǔ)抗性,且二者能與抗病蛋白Piz-t相互作用,若抑制OsVOZ1/OsVOZ2表達(dá)水平會(huì)降低Piz-t的轉(zhuǎn)錄水平、蛋白積累及對(duì)非親和小種的稻瘟病抗性,證實(shí)OsVOZ1和OsVOZ2可調(diào)控Piz-t介導(dǎo)的免疫反應(yīng),為水稻抗病育種提供分子理論基礎(chǔ),也為今后深入探究芒果VOZ轉(zhuǎn)錄因子的免疫機(jī)制提供理論參考。
4 結(jié)論
芒果VOZ轉(zhuǎn)錄因子在抵御不同病原菌侵害的生物學(xué)功能方面存在差異,其中MiVOZ2基因在抵御膠孢炭疽病和細(xì)菌性黑斑病侵染的免疫反應(yīng)中具有相似生物學(xué)功能,屬于正調(diào)節(jié)因子。
參考文獻(xiàn):
安禮渝,王志敏,湯青林,王永清,楊洋,田時(shí)炳,宋明. 2015. 轉(zhuǎn)錄因子在茄科植物中的研究進(jìn)展[J]. 生物技術(shù)通報(bào),31(6):13-19. doi:10.13560/j.cnki.biotech.bull.1985.2015. 06.002. [An L Y,Wang Z M,Tang Q L,Wang Y Q,Yang Y,Tian S B,Song M. 2015. Research progress of transcription factors in solanaceae plants[J]. Journal of Biotechnology Bulletin,31(6):13-19.]
高貝,李小雙,張道遠(yuǎn). 2014. 基于HMM的齒肋赤蘚VOZ轉(zhuǎn)錄因子的預(yù)測(cè)與分析[J]. 生物信息學(xué),12(2):77-83. doi:10.3969/j.issn.1672-5565.2014.02.01. [Gao B,Li X S,Zhang D Y. 2014. Identiffication and characterization of a VOZ transcription factor in Syntrichia caninervis using profile HMM method[J]. Journal of Bioinformatics,12(2):77-83.]
夏楊,蘇初連,晁駿,康浩,蒲金基,張賀. 2018. 菠蘿VOZ轉(zhuǎn)錄因子序列特征及其對(duì)非生物脅迫的響應(yīng)[J]. 西北植物學(xué)報(bào),38(7):1228-1234. doi:10.7606/j.issn.1000-4025. 2018.07.1228. [Xia Y,Su C L,Chao J,Kang H,Pu J J,Zhang H. 2018. Sequence characteristics and expression analysis of VOZ transcription factors in pineapple under abiotic stress[J]. Journal of Acta Botanica Boreali-Occidentalia Sinica,38(7):1228-1234.]
Celesnik K,Ali G S,Robison F M,Reddy A S N. 2013. Arabidopsis thaliana VOZ(Vascular plant one-zinc finger) transcription factors are required for proper regulation of flowering time[J]. Biology Open,2(4):424-431. doi:10. 1242/bio.20133764.
Cheong H,Kim C Y,Jeon J S,Lee B M,Sun Moon J S,Hwang I. 2013. Xanthomonas oryzae pv. oryzae type III effector XopN targets OsVOZ2 and a putative thiamine synthase as a virulence factor in rice[J]. PLoS One,8:e73346. doi:10.1371/journal.pone.0073346.
Ganie S A,Ahammed G J,Wani S H. 2020. Vascular plant one zinc-finger(VOZ) transcription factors:Novel regulators of abiotic stress tolerance in rice(Oryza sativa L.)[J]. Genetic Resources and Crop Evolution,67(4):799-807.
Gao B,Chen M X,Li X S,Liang Y Q,Zhu F Y,Liu T Y,Zhang D Y,Wood A J,Oliver M J,Zhang J H. 2018. Evolution by duplication:Paleopolyploidy events in plants reconstructed bydeciphering the evolutionary history of VOZ transcription factors[J]. BMC Plant Biology,2618(1):256. doi:10.1186/s12870-018-1437-8.
Kim Y S,An C F,Park S,Gilmour S J,Wang L,Renna L,Brandizzi F,Grumet R,Thomashow M F. 2017. CAMTA-mediated regulation of salicylic acid immunity pathway genes in Arabidopsis exposed to low temperature and pathogen infection[J]. The Plant Cell,29(10):2465-2477. doi:10.1105/tpc.16.00865.
Koguchi M,Yamasaki K,Hirano T,Sato M H. 2017. Vascular plant one-zinc-finger protein 2 is localized both to the nucleus and stress granules under heat stress in Arabidopsis[J]. Plant Signaling & Behavior,12(3):e1295907. doi:10.1080/15592324.2017.1295907.
Kuhn D N,Bally I S E,Dillon N L,Innes D,Groh A M,Rahaman J,Ophir R,Cohen Y,Sherman A. 2017. Genetic map of mango:A tool for mango breeding[J]. Frontiers in Plant Science,8:577. doi:10.3389/fpls.2017.00577.
Li B,Zheng J C,Wang T T,Min D H,Wei W L,Chen J,Zhou Y B,Chen M,Xu Z S,Ma Y Z. 2020a. Expression analyses of soybean VOZ transcription factors and the role of GmVOZ1G in drought and salt stress tolerance[J]. International Journal of Molecular Sciences,21:21(6):2177. doi:10.3390/ijms21062177.
Li W,Zhu X G,Zhang Q J,Li K,Zhang D,Shi C,Gao L Z. 2020b. SMRT sequencing generates the chromosome-scale reference enome of tropical fruit mango,Mangifera indica[J]. bioRxiv. doi:10.1101/2020.02.22.960880.
Luo C,Shu B,Yao Q S,Wu H X,Xu W T,Wang S B. 2016. Construction of a high-density genetic map based on large-scale marker development in mango using specific-locus amplified fragment sequencing(SLAF-Seq)[J]. Frontiers in Plant Science,7:1310. doi:10.3389/fpls.2016.01 310.
Luo D,Qu L N,Zhong M,Li X M,Wang H,Miao J H,Liu X M,Zhao X Y. 2020. Vascular plant one-zinc finger 1(VOZ1) and VOZ2 negatively regulate phytochrome B-mediated seed germination in Arabidopsis[J].Bioscience Biotechnology and Biochemistry,84(7):1384-1393. doi:10.1080/09168451.
Mitsuda N,Hisabori T,Takeyasu K,Sato M H. 2004. VOZ;isolation and characterization of novel vascular plant transcription factors with a one-zinc finger from Arabidopsis thaliana[J]. Plant & Cell Physiology,45(7):845-854. doi:10.1093/pcp/pch101.
Mukherjee S K. 1950. Mango:its allopolyploid nature[J]. Nature,166(4213):196-197. doi:10.1038/166196b0.
Nakai Y,F(xiàn)ujiwara S,Kubo Y,Sato M H. 2013a. Overexpression of VOZ2 confersbiotic stress tolerance but decreases abiotic stress resistance in Arabidopsis[J]. Plant Signa-ling & Behavior,8(3):e23358. doi:10.4161/psb.23358.
Nakai Y,Nakahira Y,Sumida H,Takebayashi K,Nagasawa Y,Yamasaki K,Akiyama M,Ohme-Takagi M,F(xiàn)ujiwara S,Shiina T,Mitsuda N,F(xiàn)ukusaki E,Kubo Y,Sato M H. 2013b. Vascular plant one-zinc-finger protein 1/2 transcription factorsregulate abiotic and biotic stress responses in Arabidopsis[J]. The Plant Journal,73(5):761-775. doi:10.1111/tpj.12069.
Prasad K V S K,Abdel-Hameed A A E,Xing D H,Reddy A S N. 2016. Global gene expression analysis using RNA-seq uncovered a new role for SR1/CAMTA3 transcription factor in salt stress[J]. Scientific Reports,6:27021. doi:10. 1038/srep27021.
Prasad K V S K,Xing D H,Reddy A. 2018. Vascular plant one-zinc-finger(VOZ) transcription factors are positive regulators ofsalt tolerance in Arabidopsis[J]. International Journal of Molecular Sciences,23:19(12):3731. doi:10.3390/ijms19123731.
Schwarzenbacher R E,Wardell G,Stassen J,Guest E,Zhang P J,Luna E,Ton J. 2020. The IBI1 receptor of β-aminobutyric acid interacts with VOZ transcription factors to regulate abscisic acid signaling and callose-associated defense[J]. Molecular Plant,13(10):1455-1469. doi:10. 1016/j.molp.2020.07.010.
Sivankalyani V,Sela N,F(xiàn)eygenberg O,Zemach H,Maurer D,Alkan N.2016. Transcriptome dynamics in mango fruit peel reveals mechanisms of chilling stress[J]. Frontiers in Plant Science,7:1579. doi:10.3389/fpls.2016.01579.
Tafolla-Arellano J C,Zheng Y,Sun H G,Jiao C,Ruiz-May E,Hernández-O?ate M A,González-León A,Báez-Sa?udo R,F(xiàn)ei Z J,Domozych D,Rose J K C,Tiznado-Hernández M E. 2017. Transcriptome analysis of mango(Mangifera indica L.) fruit epidermal peel to identify putative cuticle-associated genes[J]. Scientific Reports,7:46163. doi:10.1038/srep46163.
Wang J Y,Wang R Y,F(xiàn)ang H,Zhang C Y,Zhang F,Hao Z Y,You X M,Shi X T,Park C H,Hua K Y,He F,Bellizzi M,Vo K T X,Jeon J S,Ning Y S,Wang J L. 2020a. Two VOZ transcription factors link an E3 ligase and an NLR immune receptor to modulate immunity in rice[J]. Molecular Plant,14(2):253-266. doi:10.1016/j.molp.2020.11.005.
Wang P,Luo Y F,Huang J F,Gao S H,Zhu G P,Dang Z G,Gai J T,Yang M,Zhu M,Zhang H K,Ye X X,Gao A P,Tan X Y,Wang S,Wu S Y,Cahoon E B,Bai B B,Zhao Z C,Li Q,Wei J Y,Chen H R,Luo R X,Gong D Y,Tang K X,Zhang B,Ni Z G,Huang G D,Hu S N,Chen Y Y. 2020b. The genome evolution and domestication of tropical fruit mango[J]. Genome Biology,21(1):60. doi:10.1186/s13059-020-01959-8.
Yasui Y,Kohchi T. 2014. VASCULAR PLANT ONE - ZINC FINGER1 and VOZ2 repress the FLOWERING LOCUS C clade members to control flowering time in Arabidopsis[J]. Bioscience Biotechnology and Biochemistry,78(11):1850-1855. doi:10.1080/09168451.2014.932670.
Yasui Y,Mukougawa K,Uemoto M,Yokofuji A,Suzuri R,Nishitani A,Kohchi T. 2012. The phytochrome interac-ting vascular plant one-zinc finger1 and VOZ2 redundantly regulate flowering in Arabidopsis[J]. The Plant Cell,24(8):3248-3263. doi:10.1105/tpc.112.101915.
Zhou J,Li F,Wang J L,Ma Y,Chong K,Xu Y Y. 2009. Basic helix-loop-helix transcription factor from wild rice(OrbHLH2) improves tolerance to salt- and osmotic stress in Arabidopsis[J]. Plant Physiology,166(12):1296-1306. doi:10.1016/j.jplph.2009.02.007.
(責(zé)任編輯 陳 燕)