周震宇, 韋源源, 尹 航, 龔俊杰*, 陸永樂(lè), 王 衛(wèi)
(1. 揚(yáng)州大學(xué)機(jī)械工程學(xué)院, 江蘇 揚(yáng)州 225127; 2. 揚(yáng)州保來(lái)得科技實(shí)業(yè)有限公司, 江蘇 揚(yáng)州 225127)
發(fā)動(dòng)機(jī)振動(dòng)是汽車振動(dòng)和噪聲的主要來(lái)源之一, 影響汽車運(yùn)行時(shí)的平穩(wěn)性和舒適性[1].針對(duì)發(fā)動(dòng)機(jī)的振動(dòng)特性及減振措施, 國(guó)內(nèi)外學(xué)者進(jìn)行了深入的研究.Cellek等[2]分析1.4 L四缸奧拓發(fā)動(dòng)機(jī)在不同節(jié)氣門開(kāi)度和不同轉(zhuǎn)速下垂直軸的振動(dòng)特性, 發(fā)現(xiàn)不同節(jié)氣門速率下發(fā)動(dòng)機(jī)轉(zhuǎn)速的增加均會(huì)引起垂直軸振幅的增加; 胡鴻飛[3]通過(guò)在發(fā)動(dòng)機(jī)前端安裝橡膠扭振減振器以降低發(fā)動(dòng)機(jī)的扭轉(zhuǎn)振動(dòng), 得出雙級(jí)并聯(lián)扭振減振器對(duì)軸系的減振效果較單級(jí)扭振減振器更加明顯; Huang[4]對(duì)渦噴發(fā)動(dòng)機(jī)進(jìn)行振動(dòng)測(cè)試,將采集到的發(fā)動(dòng)機(jī)壓氣機(jī)殼體和渦輪殼體振動(dòng)信號(hào)進(jìn)行功率譜分析,發(fā)現(xiàn)渦噴發(fā)動(dòng)機(jī)主轉(zhuǎn)子質(zhì)量不平衡會(huì)引起振動(dòng); Jin等[5]運(yùn)用智能傳感器檢測(cè)農(nóng)業(yè)機(jī)械中的發(fā)動(dòng)機(jī)振動(dòng),指出雙層隔振系統(tǒng)能夠有效減少發(fā)動(dòng)機(jī)振動(dòng).四缸發(fā)動(dòng)機(jī)平衡系統(tǒng)多選用齒輪傳動(dòng)來(lái)傳遞運(yùn)動(dòng)和動(dòng)力,但在齒輪嚙合過(guò)程中, 內(nèi)部激勵(lì)會(huì)產(chǎn)生振動(dòng)和噪聲[6-7].為了盡量減少振動(dòng),使發(fā)動(dòng)機(jī)滿足高速、低噪聲、低振動(dòng)的要求,本文擬將彈性齒輪運(yùn)用到汽車四缸發(fā)動(dòng)機(jī)平衡系統(tǒng)中,采用彈性齒輪替代金屬齒輪作為從動(dòng)齒輪,分析彈性齒輪平衡系統(tǒng)的固有頻率,評(píng)價(jià)平衡系統(tǒng)運(yùn)轉(zhuǎn)過(guò)程中的減振效果,以期為汽車四缸發(fā)動(dòng)機(jī)平衡系統(tǒng)減振技術(shù)的發(fā)展提供科學(xué)依據(jù).
為滿足汽車發(fā)動(dòng)機(jī)平衡系統(tǒng)高速轉(zhuǎn)動(dòng)要求, 須通過(guò)柔性環(huán)節(jié)吸收齒輪的高頻振動(dòng).彈性齒輪采用橡膠圈作為阻尼環(huán)[8], 輪轂與外齒圈分開(kāi),橡膠圈粘接在輪轂和外齒圈之間, 具體結(jié)構(gòu)如圖1所示.彈性齒輪平衡系統(tǒng)主要由1個(gè)驅(qū)動(dòng)齒輪、2個(gè)從動(dòng)齒輪和2個(gè)平衡軸組成, 其中驅(qū)動(dòng)齒輪、平衡軸、從動(dòng)齒輪的外齒圈和輪轂材料選用20CrMnTi, 密度為7 850 kg·m-3, 彈性模量為2.06×105MPa, 泊松比為0.30; 中間減振材料采用氟橡膠, 密度為1 800 kg·m-3, 彈性模量為4.44 MPa, 泊松比為0.48.2個(gè)從動(dòng)齒輪設(shè)計(jì)為彈性齒輪, 與驅(qū)動(dòng)齒輪接觸的彈性齒輪為從動(dòng)齒輪1, 另一個(gè)為從動(dòng)齒輪2.驅(qū)動(dòng)齒輪和從動(dòng)齒輪設(shè)計(jì)參數(shù)如表1所示.
表1 齒輪基本參數(shù)
圖1 彈性齒輪結(jié)構(gòu)示意圖Fig.1 Schematic diagram of elastic gear structure
圖2為發(fā)動(dòng)機(jī)彈性齒輪平衡系統(tǒng)有限元模型.平衡系統(tǒng)模型劃分為257 990個(gè)實(shí)體單元, 共442 959個(gè)節(jié)點(diǎn).齒輪間的運(yùn)動(dòng)副接觸區(qū)域建立Frictional接觸, 摩擦系數(shù)設(shè)置為0.05, 2個(gè)彈性齒輪的外齒圈和輪轂與橡膠減振元件采用綁定接觸.
圖2 彈性齒輪平衡系統(tǒng)有限元模型Fig.2 Finite element model of elastic gear balancing system
在結(jié)構(gòu)振動(dòng)中, 低階模態(tài)對(duì)結(jié)構(gòu)的影響較大, 因此主要考慮低階模態(tài)的固有頻率與齒輪副工作頻率是否會(huì)產(chǎn)生共振[9].本文對(duì)彈性齒輪平衡系統(tǒng)和金屬齒輪平衡系統(tǒng)的前六階模態(tài)進(jìn)行對(duì)比分析, 圖3為彈性齒輪平衡系統(tǒng)的不同模態(tài)振型.由圖3可知, 平衡系統(tǒng)振型從一階模態(tài)到四階模態(tài)變形量逐漸增大, 隨后又逐漸降低, 其中四階模態(tài)平衡系統(tǒng)變形量最大, 為3.738 mm.
圖3 彈性齒輪平衡系統(tǒng)的不同模態(tài)振型Fig.3 Different modes of vibration of elastic gear balancing system
表2為彈性齒輪平衡系統(tǒng)和金屬齒輪平衡系統(tǒng)的不同模態(tài)固有頻率和振型.由表2可知,除一階固有頻率相近外, 金屬齒輪平衡系統(tǒng)的固有頻率均遠(yuǎn)大于彈性齒輪平衡系統(tǒng).齒輪嚙合頻率f=nz/60, 其中n為齒輪轉(zhuǎn)速, r·min-1;z為齒輪齒數(shù).汽車正常行駛過(guò)程中, 發(fā)動(dòng)機(jī)轉(zhuǎn)速約為1 000~3 500 r·min-1, 齒輪嚙合頻率約為1 900~6 650 Hz.通過(guò)對(duì)比發(fā)現(xiàn),彈性齒輪平衡系統(tǒng)前六階固有頻率遠(yuǎn)小于齒輪嚙合頻率, 因此, 采用彈性齒輪能夠使平衡系統(tǒng)較好地避免運(yùn)轉(zhuǎn)時(shí)齒輪嚙合引起的共振.
表2 兩種平衡系統(tǒng)不同模態(tài)固有頻率和振型
為了進(jìn)一步驗(yàn)證彈性齒輪在發(fā)動(dòng)機(jī)平衡系統(tǒng)的減振性能, 對(duì)平衡系統(tǒng)進(jìn)行瞬態(tài)動(dòng)力學(xué)分析.橡膠是一種超彈性材料[10], 受力過(guò)程中具有材料非線性和幾何非線性,以及各向同性、不可壓縮的超彈性特征,因此在平衡系統(tǒng)動(dòng)態(tài)分析中, 橡膠減振材料采用Mooney-Rivlin[11]五參數(shù)模型的自建Rubber材料.氟橡膠Mooney-Rivlin模型的材料系數(shù)[12]為C10=-2.11 MPa,C01=3.19 MPa,C20=0.43 MPa,C11=-0.28 MPa,C02=1.43 MPa,D1=0.
汽車四缸發(fā)動(dòng)機(jī)轉(zhuǎn)速可在5 s左右從0 r·min-1加速到3 000 r·min-1.根據(jù)發(fā)動(dòng)機(jī)運(yùn)轉(zhuǎn)情況, 從0 s到0.4 s驅(qū)動(dòng)齒輪轉(zhuǎn)速由0 r·min-1到240 r·min-1, 分析發(fā)動(dòng)機(jī)平衡系統(tǒng)勻加速工況, 對(duì)比彈性齒輪平衡系統(tǒng)和金屬齒輪平衡系統(tǒng)的計(jì)算結(jié)果.圖4為彈性齒輪平衡系統(tǒng)和金屬齒輪平衡系統(tǒng)的最大應(yīng)力和最大應(yīng)變對(duì)比結(jié)果.由圖4可知, 兩種平衡系統(tǒng)最大應(yīng)力隨轉(zhuǎn)速增加趨勢(shì)相同,彈性齒輪平衡系統(tǒng)的變形遠(yuǎn)大于金屬齒輪平衡系統(tǒng).
圖4 平衡系統(tǒng)最大應(yīng)力和最大應(yīng)變對(duì)比圖Fig.4 Comparison diagram of maximum stress and maximum strain of balance system
平衡系統(tǒng)通過(guò)齒輪嚙合最終將運(yùn)動(dòng)和動(dòng)力傳遞給平衡軸, 平衡軸的振動(dòng)情況能夠反映系統(tǒng)的振動(dòng)效果.提取平衡軸軸心A點(diǎn)加速度變化值, 結(jié)果如圖5所示.由圖5可知, 在轉(zhuǎn)速為0~240 r·min-1的低速運(yùn)行過(guò)程中,彈性齒輪平衡系統(tǒng)A點(diǎn)的加速度遠(yuǎn)大于金屬齒輪平衡系統(tǒng), 此時(shí)彈性齒輪平衡系統(tǒng)運(yùn)轉(zhuǎn)產(chǎn)生的振動(dòng)遠(yuǎn)大于金屬齒輪平衡系統(tǒng).
圖5 A點(diǎn)處加速度對(duì)比圖Fig.5 Acceleration contrast map at point A
發(fā)動(dòng)機(jī)轉(zhuǎn)速為3 000 r·min-1左右時(shí), 輸出扭矩最大, 之后扭矩和轉(zhuǎn)速呈反比, 所以車輛在正常行駛時(shí)發(fā)動(dòng)機(jī)轉(zhuǎn)速在3 000 r·min-1左右較為合適.為了便于求解平衡系統(tǒng)勻速運(yùn)動(dòng)工況, 將動(dòng)力學(xué)分析分為兩個(gè)階段.首先是勻加速階段, 時(shí)長(zhǎng)為0.02 s, 使驅(qū)動(dòng)齒輪轉(zhuǎn)速由0 r·min-1加速到3 000 r·min-1; 其次是勻速階段, 從0.02 s到0.04 s, 驅(qū)動(dòng)齒輪轉(zhuǎn)速保持在3 000 r·min-1.
圖6為0.02 s到0.04 s勻速運(yùn)動(dòng)狀態(tài)下彈性齒輪平衡系統(tǒng)的應(yīng)力和應(yīng)變?cè)茍D.由圖6可知, 彈性齒輪平衡系統(tǒng)最大應(yīng)力出現(xiàn)在2個(gè)彈性齒輪接觸面及其附近區(qū)域, 最大應(yīng)力為740.7 MPa, 小于20CrMnTi屈服極限850 MP; 彈性齒輪平衡系統(tǒng)的最大應(yīng)變出現(xiàn)在彈性齒輪橡膠圈處, 最大應(yīng)變?yōu)?.286 3, 而輪轂和外齒圈部分應(yīng)變小于0.031 8, 可忽略.圖7為橡膠圈應(yīng)力和應(yīng)變?cè)茍D.由圖7可知, 橡膠圈作為減振元件, 最大應(yīng)變出現(xiàn)在主從動(dòng)齒輪1橡膠圈的外圈上,最大應(yīng)變?yōu)?.286 3, 最大應(yīng)力為2.719 MPa, 小于橡膠的許用應(yīng)力18 MPa.
圖6 平衡系統(tǒng)應(yīng)力和應(yīng)變圖Fig.6 Stress and strain diagram of balance system
圖7 橡膠圈應(yīng)力和應(yīng)變圖Fig.7 Stress and strain diagram of rubber ring
對(duì)相同工況下金屬齒輪平衡系統(tǒng)進(jìn)行動(dòng)態(tài)分析, 提取0.02 s到0.04 s齒輪勻速嚙合狀態(tài)下平衡軸軸心A點(diǎn)的加速度,結(jié)果如圖8所示.由于彈性齒輪具有吸收高頻振動(dòng)的效果,在驅(qū)動(dòng)齒輪轉(zhuǎn)速為3 000 r·min-1的工況下, 彈性齒輪平衡系統(tǒng)中平衡軸A點(diǎn)的振動(dòng)加速度遠(yuǎn)小于金屬齒輪平衡系統(tǒng)中平衡軸的振動(dòng)加速度, 彈性齒輪在高速轉(zhuǎn)動(dòng)時(shí)具有良好的減振效果.
圖8 A點(diǎn)處加速度對(duì)比圖Fig.8 Acceleration contrast map at point A
本文將彈性齒輪運(yùn)用到四缸發(fā)動(dòng)機(jī)平衡系統(tǒng)中,建立了彈性齒輪四缸發(fā)動(dòng)機(jī)平衡系統(tǒng)模型, 分析了平衡系統(tǒng)的動(dòng)態(tài)特性.結(jié)果表明, 系統(tǒng)高速運(yùn)轉(zhuǎn)時(shí)彈性齒輪能夠有效降低傳動(dòng)過(guò)程中的振動(dòng), 為彈性齒輪在四缸發(fā)動(dòng)機(jī)平衡系統(tǒng)中的應(yīng)用提供了理論依據(jù).