汪子夏,姚 謙,田 英,2
1.上海交通大學(xué)公共衛(wèi)生學(xué)院環(huán)境與健康系,上海200025;2.上海交通大學(xué)醫(yī)學(xué)院附屬新華醫(yī)院環(huán)境與兒童健康重點(diǎn)實(shí)驗(yàn)室,上海200092
全氟化合物(perfluorinated compounds,PFCs)是一類主要由人工合成的氟代有機(jī)化合物,包括全氟烷基羧酸類、全氟烷烴磺酸類、全氟烷烴磺酰胺類等。由于其具有較好的表面活性及疏水疏油性、化學(xué)穩(wěn)定性、熱穩(wěn)定性等,全球已經(jīng)有600余種PFCs廣泛應(yīng)用于工業(yè)、商業(yè)及家用產(chǎn)品中[1]。PFCs中穩(wěn)定的碳-氟鍵使其難以自然降解,持久地分布于各類環(huán)境介質(zhì)及生物體內(nèi)[2]。2009年5月,《關(guān)于持久性有機(jī)污染物的斯德哥爾摩公約》(簡(jiǎn)稱“公約”)將全氟辛烷磺酸(perfluorooctanesulfonate,PFOS)及其鹽類和全氟辛基磺酰氟納入管控清單附件B中[3];2019年5月,公約又將全氟辛酸(perfluorooctanoic acid,PFOA)及其鹽類和相關(guān)化合物列入附件A中[4]。我國(guó)環(huán)境保護(hù)部于2013年8月發(fā)布公告,自2014年3月26日起,禁止PFOS及其鹽類和全氟辛基磺酰氟除特定豁免和可接受用途外的生產(chǎn)、流通、使用和進(jìn)出口。近年來(lái),世界各國(guó)人群PFCs暴露水平呈現(xiàn)下降趨勢(shì)[5-6]。一項(xiàng)美國(guó)國(guó)家健康與營(yíng)養(yǎng)調(diào)查的研究(n=1 745)[5]發(fā)現(xiàn)2013—2014年美國(guó)成年人血清中PFOS、PFOA的水平分別為5.27和2 ng/mL;歐洲食品安全局2018年公布的數(shù)據(jù)[6]顯示歐洲成人血清PFOS、PFOA的水平分別為7.7和1.9 ng/mL;而我國(guó)2015—2017年一項(xiàng)覆蓋13個(gè)城市的調(diào)查(n=847)[7]發(fā)現(xiàn),成人全血PFOS、PFOA的平均濃度分別為2.6和2.1 ng/mL(換算為血清濃度分別約為5.2和4.2 ng/mL[6])。可以看出,我國(guó)人群中PFOA水平顯著高于歐美國(guó)家,這可能提示我國(guó)PFCs暴露有不同的來(lái)源。PFCs憑借其高穩(wěn)定性和在生物體內(nèi)的高蓄積性,廣泛存在于環(huán)境和生物體中,仍是嚴(yán)重威脅生態(tài)環(huán)境和人群健康的安全隱患。
人們可通過(guò)室外空氣、室內(nèi)灰塵、食物、飲用水等多種途徑接觸PFCs[8-9],飲食攝入被認(rèn)為是人類暴露最主要的途徑[10]。PFCs 在人體中有較長(zhǎng)的半衰期(如PFOA為3.5 年,PFOS 為5.0 年)[11],可對(duì)多個(gè)系統(tǒng)有毒性作用,表現(xiàn)為肝臟毒性[12]、免疫毒性[13]、神經(jīng)毒性[14]、生殖毒性[15]、發(fā)育毒性[16]、內(nèi)分泌毒性[17]和潛在致癌性[18]等。本研究檢索了國(guó)內(nèi)外PFCs 對(duì)人體健康影響的相關(guān)文獻(xiàn),發(fā)現(xiàn)多數(shù)研究認(rèn)為PFCs 具有內(nèi)分泌干擾物的特性,但少有其對(duì)內(nèi)分泌激素水平影響的概述,特別是性激素水平。PFCs 可干擾雌激素(雌二醇、雌酮、雌三醇)、雄激素(總睪酮、游離睪酮、脫氫表雄酮)、孕激素(孕酮)、性激素結(jié)合球蛋白、促性腺激素[促黃體生成素(luteinizing hormone,LH)和卵泡刺激素(follicle stimulating hormone,F(xiàn)SH)]、促性腺激素釋放激素(gonadotropin-releasing hormone, GnRH)等合成分泌。目前,研究大多關(guān)注于PFCs 對(duì)睪酮、雌二醇以及性激素結(jié)合球蛋白的影響。性激素具有調(diào)節(jié)代謝平衡,促進(jìn)細(xì)胞生長(zhǎng)、生殖器官發(fā)育成熟等功能,是維持機(jī)體正常功能的重要因素。故本文就PFCs 對(duì)性激素水平的影響的研究進(jìn)展進(jìn)行綜述,包括不同年齡段人群流行病學(xué)調(diào)查、不同種類生物性激素水平的毒性效應(yīng)以及可能的作用機(jī)制,為進(jìn)一步研究PFCs 暴露對(duì)性激素功能的影響提供建議。
與成年人不同,兒童處于器官發(fā)育的敏感階段[19]。同時(shí),兒童通??赏ㄟ^(guò)吮吸母乳[20]、爬行等方式更多地暴露于PFCs[21]。因此,兒童血清PFCs 濃度略高于成人[22]。性激素水平是反映青春期發(fā)育和生殖功能成熟的重要指標(biāo),而研究發(fā)現(xiàn)PFCs 暴露可能會(huì)影響兒童及青少年性激素水平及其性成熟。
Lopez-Espinosa等[23]調(diào)查了美國(guó)俄亥俄州暴露于PFCs的6~9歲的兒童(n=2 292),發(fā)現(xiàn)PFOS(男22.4 ng/mL,女20.9 ng/mL)與睪酮水平(男13 ng/dL,女15 ng/dL)之間存在負(fù)相關(guān),而PFOA(34.8 ng/mL)僅與男童血清睪酮水平呈負(fù)相關(guān)。同時(shí),他們調(diào)查了8~18歲的人群,發(fā)現(xiàn)女童的青春期延遲(以血清雌二醇>2×104pg/L或自我報(bào)告的月經(jīng)初潮)與血清PFOA(20 ng/mL)、PFOS(18 ng/mL)水平相關(guān),男童的青春期延遲(睪酮>5×103pg/L)與血清PFOA(26 ng/mL)水平相關(guān)[24]。另外,2項(xiàng)來(lái)自中國(guó)臺(tái)灣地區(qū)的研究[25-26]發(fā)現(xiàn)PFCs與血清性激素結(jié)合蛋白、FSH和睪酮水平呈負(fù)相關(guān),但關(guān)系的強(qiáng)弱在性別上出現(xiàn)差異?,F(xiàn)有的流行病學(xué)調(diào)查結(jié)果顯示,兒童血清PFCs與性激素水平呈負(fù)相關(guān),且導(dǎo)致兒童青春期一定程度的延遲;青春期延遲可能會(huì)影響成年后的健康,如發(fā)生子宮內(nèi)膜異位癥[27]、骨質(zhì)疏松癥[28-29]或產(chǎn)生社會(huì)心理問(wèn)題[30]等。
近年來(lái),母親孕期暴露于PFCs 對(duì)兒童性激素的影響是另一個(gè)關(guān)注的熱點(diǎn)。孕期暴露于PFCs 可能會(huì)導(dǎo)致胎兒臍帶血中性激素水平的升高。日本的研究[31-32]發(fā)現(xiàn),母親孕中期(n=189)PFCs(PFOA、PFOS)暴露使臍帶血脫氫表雄酮升高,男童雌二醇水平升高(PFOS)。2019年中國(guó)山東省包含351 對(duì)母嬰的隊(duì)列研究[33]也證實(shí)了PFCs與睪酮、雌二醇的正相關(guān)關(guān)系;Wang等[34]的研究納入中國(guó)河北省424 對(duì)母嬰,發(fā)現(xiàn)臍血中PFOA(2.64 ng/mL)、PFOS(1.10 ng/mL)與雌酮(16.44 ng/mL)呈正相關(guān),且PFOS 與雌三醇(187.38 ng/mL)也呈正相關(guān);但此研究也觀察到PFOS 與雌二醇存在負(fù)相關(guān)的關(guān)系。此外,Maisonet 等[35]調(diào)查了英國(guó)孕期暴露于PFCs 的15 歲女性后代(n=72),發(fā)現(xiàn)產(chǎn)前暴露于PFOA (3.6 ng/mL)、PFOS(19.2 ng/mL) 和全氟己基磺酸(perfluorohexane sulfonate,PFHxS;1.6 ng/mL)與女性后代較高的血清睪酮濃度(0.8 nmol/L)有關(guān),可誘導(dǎo)女童青春期發(fā)育提前;這與Ernst 等[36]的研究結(jié)果相似,但不同PFCs 對(duì)青春期發(fā)育時(shí)間的影響在性別間存在差異。這些研究提示產(chǎn)前PFCs 暴露可能影響胎兒性腺發(fā)育,進(jìn)而影響后代性激素水平及青春期發(fā)育。但值得注意的是,也有研究[37-38]未發(fā)現(xiàn)孕期暴露于PFCs 與青春期提前之間的關(guān)系。故孕期暴露于PFCs 對(duì)后代性激素水平的影響有待更多調(diào)查證實(shí)。
PFCs在一定程度上影響成人的性激素水平,包括雌激素、雄激素、LH、FSH 和性激素結(jié)合球蛋白等[39-44]。Barrett等[39]調(diào)查了挪威178名25~35歲健康育齡女性,發(fā)現(xiàn)PFOS(16.44 ng/mL)和全氟辛烷磺酰胺(0.25 ng/mL)與其血清雌二醇(20.1 pmol/mL)和LH(164.3 pmol/mL)的減少有關(guān)。Knox 等[40]調(diào)查美國(guó)圍絕經(jīng)期(5 782 名)及絕經(jīng)期(6 717 名)女性,同樣發(fā)現(xiàn)血清中PFOS 水平與雌二醇呈負(fù)相關(guān)。 Heffernan 等[41]調(diào)查了英國(guó)29 名20~45 歲健康女性,發(fā)現(xiàn)血清PFOA (2.4 ng/mL)、PFHxS (0.9 ng/mL)、 全 氟 壬 酸(perfluoronnonanoic acid,PFNA;0.5 ng/mL)與睪酮(0.85 nmol/L)呈正相關(guān)。Lewis等[42]分析了美國(guó)680名20歲以上的成年女性,并未發(fā)現(xiàn)PFOA、PFOS、PFHxS、PFNA 與睪酮間存在顯著相關(guān)性?,F(xiàn)有研究發(fā)現(xiàn)PFCs 暴露可能導(dǎo)致女性雌激素水平降低,但與雄激素的關(guān)系仍待更多的研究證實(shí)。此外,還有研究提示,PFCs 可通過(guò)改變雌激素水平影響女性生殖疾病的發(fā)生。Zhang 等[43]發(fā)現(xiàn)PFHxS、PFOA、PFOS 可能導(dǎo)致早發(fā)性卵巢功能不全(閉經(jīng)或月經(jīng)稀發(fā),并伴有FSH 升高和雌二醇降低) 的發(fā)生。Bonefeld-Jorgensen 等[44]發(fā)現(xiàn)PFCs 有類雌激素的特性,可以升高雌激素的水平,從而可能增加因紐特婦女患乳腺癌的風(fēng)險(xiǎn)。
對(duì)于男性,目前研究發(fā)現(xiàn)PFOA、PFOS 可以影響男性性激素水平。Costa 等[45]調(diào)查意大利42 名PFOA 工廠的生產(chǎn)工人,發(fā)現(xiàn)血清PFOA 濃度(5.71 ng/mL)越高,血清睪酮(5.88 ng/mL)濃度越低。2 項(xiàng)來(lái)自丹麥的研究[46-47]也觀察到了PFOA、PFOS 與雄激素和游離性雄激素有負(fù)相關(guān)的趨勢(shì)。但也有研究[13,48-49]表明PFOA 與雄激素、游離雄激素有正相關(guān)的趨勢(shì)。目前研究[47,50]尚未發(fā)現(xiàn)其他PFCs 如PFHxS、 PFNA、 全氟庚烷磺酸(perfluoroheptane sulfonate,PFHpS)等與男性血清睪酮有顯著相關(guān)性。有研究[13,47]觀察到PFCs 對(duì)雌激素的干擾作用。此外,多項(xiàng)研究[48,51-52]表明PFOA、PFOS 與LH、FSH 有正相關(guān)的趨勢(shì),提示PFCs暴露可能導(dǎo)致成年男性血液中睪酮水平降低,繼而導(dǎo)致FSH、LH 負(fù)反饋性升高。
除流行病學(xué)研究外,動(dòng)物實(shí)驗(yàn)結(jié)果表明PFCs 暴露在動(dòng)物中可產(chǎn)生雌激素樣效應(yīng),且表現(xiàn)出一定的劑量效應(yīng)[53];但目前大多數(shù)研究集中于PFOA、PFOS和PFNA。
PFCs 暴露可升高雌性動(dòng)物雌激素水平,從而影響卵巢功能、陰道開(kāi)口時(shí)間及后代發(fā)育等[54-55]。Du 等[54]發(fā)現(xiàn)新生大鼠暴露于PFOA、PFOS 后,低劑量下(0.1 和1 mg/kg),新生大鼠和青春前期大鼠雌二醇和LH 水平升高,同時(shí)頻繁發(fā)生不規(guī)則動(dòng)情周期;而在高劑量下(10 mg/kg),則觀察到陰道開(kāi)口和第一次發(fā)情期時(shí)間顯著提前。此外,Zhang 等[55]發(fā)現(xiàn)暴露于0.1、1.0 mg/L PFNA 的斑馬魚,雌二醇水平顯著增加,同時(shí)還觀察到雌性產(chǎn)卵量顯著降低,72 h 孵化率的降低也表現(xiàn)出明顯的劑量效應(yīng),表明母體暴露于PFNA 可能會(huì)影響后代的發(fā)育。
PFCs 暴露可誘導(dǎo)雄性動(dòng)物雄激素水平下降,雌激素水平上升,睪丸間質(zhì)細(xì)胞、支持細(xì)胞的生長(zhǎng)受阻及睪丸重量減輕等[56-58]。Wan 等[56]將8 周大的CD-1 雄性小鼠每日分別以0、1、5 和10 mg/kg 的PFOS 處理,發(fā)現(xiàn)在1 mg/kg 劑量暴露時(shí),僅類固醇生成酶Hsd17b 顯著降低,5和10 mg/kg 劑量組中所有類固醇生成酶的表達(dá)均顯著下調(diào),且在最高劑量組發(fā)現(xiàn)小鼠血清睪丸激素水平和附睪精子計(jì)數(shù)顯著下降。Zhang 等[57]將BalbC 雄性小鼠分別暴露于濃度為0.31、1.25、5 和20 mg/kg 的PFOA,發(fā)現(xiàn)低劑量組(1.25 mg/kg)小鼠的睪丸激素和孕酮水平出現(xiàn)顯著降低;隨著劑量的增加,小鼠相繼出現(xiàn)生精小管組織學(xué)紊亂、精子數(shù)量減少、精子活力減弱等不良生殖效應(yīng)。此外,有研究[58]將青春期雄性Parkes 小鼠暴露于PFNA 中,發(fā)現(xiàn)小鼠睪丸內(nèi)和血清睪酮水平降低,生精小管中顯示出不均勻的多樣退行性變化。
在類固醇激素受體方面,PFCs 可通過(guò)影響激素與受體的結(jié)合,干擾相關(guān)信號(hào)的轉(zhuǎn)導(dǎo),從而影響性激素的分泌[49,59-63]。
PFCs 可通過(guò)激活雌激素受體(estrogen receptor,ER)和誘導(dǎo)ER 介導(dǎo)的轉(zhuǎn)錄而導(dǎo)致內(nèi)分泌干擾[59-62]。有研究[59]發(fā)現(xiàn)PFHxS、PFOS 和PFOA 顯著誘導(dǎo)ER 活性,轉(zhuǎn)錄活化基因,發(fā)揮雌激素作用。除了PFCs直接增強(qiáng)ER活性,也有實(shí)驗(yàn)發(fā)現(xiàn)PFCs 可增加雌激素對(duì)ER 的反應(yīng)性。Sonthithai 等[60]發(fā)現(xiàn)PFOS 和PFOA 不能激活T47D 激素依賴性乳腺癌細(xì)胞中ER 細(xì)胞,但與雌激素共同暴露時(shí),增強(qiáng)了雌激素對(duì)ER 的反應(yīng)性。相似地,Lou 等[61]發(fā)現(xiàn)PFOS 和全氟丁烷磺酸(perfluorobutanesulfonate,PFBS)可以與雌激素共同促進(jìn)非洲爪蛙ER 的表達(dá)以增加雌激素的反應(yīng)性。有研究[62]跨物種間比較了PFCs與ER 的親和力,發(fā)現(xiàn)PFCs 對(duì)人類ERα 的敏感性較大鼠和虹鱒魚更高,即人類更易受到不利影響。
多項(xiàng)實(shí)驗(yàn)提供了PFCs 抑制睪酮與雄激素受體(androgen recepto,AR)結(jié)合的直接證據(jù)[49,59,62-63]。Di Nisio 等[49]發(fā)現(xiàn)PFOA 顯著拮抗海拉細(xì)胞中的AR,導(dǎo)致血清中游離雄激素的增加。Kjeldsen 等[59]發(fā)現(xiàn)PFHxS、PFOS、PFOA、PFNA 和PFDA 以濃度依賴性方式顯著拮抗AR活性,且多種PFCs共同作用對(duì)AR的影響效果更明顯。但Behr 等[63]的實(shí)驗(yàn)結(jié)果未發(fā)現(xiàn)PFOA、PFOS 對(duì)AR的活化作用,可能是因?yàn)樗褂玫募?xì)胞系及共培養(yǎng)條件不同。此外,Lou 等[61]發(fā)現(xiàn)在非洲爪蛙中,PFOS 和PFBS 暴露可促進(jìn)AR 的表達(dá),但其性腺組織學(xué)中未表現(xiàn)出異常,可能因?yàn)榉枷慊傅谋磉_(dá)未受影響。PFCs對(duì)AR上睪酮的結(jié)合和活化的干擾,影響了雄激素活性,可以繼發(fā)改變男性精液的參數(shù)、減少睪丸體積和陰莖長(zhǎng)度以及使肛門生殖器距離變短。
類固醇生成酶是PFCs 通過(guò)非激素受體介導(dǎo)途徑影響性激素合成的重要靶點(diǎn)。性激素合成的反應(yīng)底物是膽固醇,在類固醇激素合成急性調(diào)節(jié)蛋白(StAR)、膽固醇側(cè)鏈裂解酶(CYP11A1/P450SCC)的作用下,轉(zhuǎn)化為孕烯醇酮,然后經(jīng)3β-羥類固醇脫氫酶(3β-HSD)催化轉(zhuǎn)化為孕酮,最后17α 羥化酶(CYP17/P450c17/P45017α)催化孕烯醇酮和孕酮轉(zhuǎn)化為雄激素。雌激素的合成途徑有2 條:一是芳香化酶(CYP19/P450arom)催化雄烯二酮轉(zhuǎn)化為雌酮,然后雌酮經(jīng)17β-羥類固醇脫氫酶Ⅰ(17β-HSD1)催化轉(zhuǎn)化為雌二醇;二是17β-羥類固醇脫氫酶Ⅲ(17β-HSD3)催化雄烯二酮轉(zhuǎn)化為睪酮,睪酮再經(jīng)芳香化酶催化轉(zhuǎn)變?yōu)榇萍に兀?4]。
Wan 等[56]發(fā)現(xiàn)PFOS 可 誘 導(dǎo) 多 種 類 固醇 生成 酶(StAR、CYP11A1、CYP17A1、3β-HSD 和17β-HSD) 的mRNA 表達(dá)水平顯著降低,引起血清睪酮水平顯著降低。同樣地,PFOA 可抑制CYP11A1 的mRNA 和蛋白水平,使睪酮水平下降[57]。還有研究[65]發(fā)現(xiàn),PFOA 和PFOS誘導(dǎo)轉(zhuǎn)錄2 種基因cyp19 和3β-hsd 來(lái)升高雌激素水平,降低睪酮 水 平。Jo 等[66]發(fā)現(xiàn)CYP11A1 和CYP17A 基 因的mRNA表達(dá)在暴露于50 mg/L全氟十三烷酸的H295R細(xì)胞中顯著下調(diào)而導(dǎo)致睪酮水平的下降。Shi 等[67]發(fā)現(xiàn)在較高劑量下,全氟十二烷酸抑制卵巢StAR 和P450SCC 的表達(dá),影響青春期大鼠卵巢中的雌激素信號(hào)轉(zhuǎn)導(dǎo),從而導(dǎo)致雌二醇的減少。由此可見(jiàn),PFCs 可通過(guò)調(diào)節(jié)類固醇生成中關(guān)鍵基因的表達(dá)來(lái)影響性激素的合成,導(dǎo)致性激素水平紊亂,進(jìn)而干擾生物體的生殖和發(fā)育過(guò)程。
PFCs 可以通過(guò)干擾性激素相關(guān)信號(hào)的轉(zhuǎn)導(dǎo)來(lái)影響下丘腦-垂體-性腺軸(hypothalamic-pituitary-gonadal axis,HPGA),改變性激素分泌狀態(tài)。研究[68]發(fā)現(xiàn)給成年雄性大鼠喂服0.5、1.0、3.0、6.0 mg/kg劑量的PFOS 后,大鼠GnRH 基因表達(dá)減少,除了最高劑量組外,其余組大鼠LH mRNA 水平升高,同時(shí)還觀察到暴露于0.5 和1.0 mg/kg PFOS 組中大鼠的FSH 基因表達(dá)的升高;故可能提示PFOS 暴露可降低GnRH 水平,抑制LH 和睪酮的釋放,刺激FSH 的分泌。Wan 等[56]發(fā)現(xiàn)PFOS 還能通過(guò)破壞性腺激素受體的表達(dá)而抑制激素的釋放。將小鼠暴露于低劑量(1 mg·kg?1·d?1)PFOS 時(shí),發(fā)現(xiàn)其睪丸內(nèi)抑制素和激活素(Inha、Inhba、Inhbb)亞基的轉(zhuǎn)錄水平顯著降低;當(dāng)暴露于5、10 mg·kg?1·d?1PFOS 時(shí),F(xiàn)SH、生長(zhǎng)激素和胰島素樣生長(zhǎng)因子1的睪丸受體的表達(dá)水平出現(xiàn)顯著降低;暴露于高劑量組21 d 后,小鼠的血清睪丸激素濃度和附睪精子計(jì)數(shù)顯著降低。另外,有研究[69]還指出,5-羥色胺和神經(jīng)肽Y 可能參與PFOS 對(duì)成年雄性大鼠生殖軸活性的抑制作用。
PFCs 可通過(guò)破壞生殖細(xì)胞、血睪屏障的完整性和功能,產(chǎn)生性激素干擾作用。Qiu 等[70]發(fā)現(xiàn)支持細(xì)胞似乎是PFOS 的潛在細(xì)胞靶標(biāo)。體內(nèi)實(shí)驗(yàn)發(fā)現(xiàn)PFOS 顯著增加生精小管中支持細(xì)胞的空泡化和血睪屏障超微結(jié)構(gòu)的分解,繼而增強(qiáng)血睪屏障的通透性及升高睪丸PFOS 水平;體外實(shí)驗(yàn)結(jié)果證實(shí)PFOS 降低了支持細(xì)胞之間的跨上皮電阻,即PFOS 降低了支持細(xì)胞中連接蛋白的表達(dá)。Zhao等[71]發(fā)現(xiàn)PFCs 對(duì)孕激素產(chǎn)生的抑制作用可能部分與活性氧損傷和Leydig 腫瘤細(xì)胞(mLTC-1)中線粒體膜電位的降低有關(guān)。
目前,較多研究關(guān)注于PFOA、PFOS 等傳統(tǒng)PFCs 對(duì)性激素水平的影響;但近年來(lái),短鏈及新型PFCs 大量生產(chǎn)[72-73],故應(yīng)深入研究PFCs 代替產(chǎn)品的結(jié)構(gòu)、性質(zhì)及影響性激素水平的毒理學(xué)特征。在人群流行病方面,多項(xiàng)研究已證明暴露于PFCs 對(duì)性激素具有干擾作用,但結(jié)果缺乏一致性??紤]到性激素受晝夜節(jié)律性影響,且青少年青春期自身激素及女性的月經(jīng)、受孕狀態(tài)等也可能影響其血清PFCs與性激素水平,故解釋PFCs與性激素間關(guān)系具有一定的挑戰(zhàn)性;同時(shí),目前大多數(shù)研究為橫斷面研究,不能進(jìn)行病因推斷,故有待更多的隊(duì)列研究來(lái)證實(shí)PFCs暴露對(duì)性激素的干擾作用。關(guān)于PFCs對(duì)生殖系統(tǒng)的毒性及毒理效應(yīng)的研究,盡管有令人信服的生物學(xué)效應(yīng)(雌激素樣效應(yīng)),但考慮到PFCs 對(duì)性激素水平的影響并不是僅通過(guò)某一種途徑實(shí)現(xiàn)的,而是多種分子通路交互影響,故仍需要進(jìn)行更多的基礎(chǔ)研究以闡明。由于人群對(duì)環(huán)境的暴露方式為長(zhǎng)期低劑量復(fù)合暴露,應(yīng)深入研究多種PFCs 聯(lián)合暴露對(duì)人體的影響及相關(guān)毒性作用機(jī)制,為提出預(yù)防及干預(yù)措施提供科學(xué)依據(jù)。
參·考·文·獻(xiàn)
[1] Environmental Protection Agency. EPA's per- and polyfluoroalkyl substances(PFAS)action plan[EB/OL]. (2019-02-14)[2020-03-03]. https://www.epa.gov/pfas/epas-pfas-action-plan.
[2] 宋彥敏, 周連寧, 郝文龍, 等. 全氟化合物的污染現(xiàn)狀及國(guó)內(nèi)外研究進(jìn)展[J]. 環(huán)境工程,2017,35(10):82-86.
[3] United Nations Environment Programme. Governments unite to step-up reduction on global DDT reliance and add nine new chemicals underinternational treaty[EB/OL]. (2009-06-30) [2020-03-03] . https://chm. pops. int/Convention/ Pressrelease/COP4Geneva9May2009/tabid/542/language/en-US/Default.aspx.
[4] United Nations Environment Programme. The new POPs under the Stockholm Convention. [EB/OL]. (2019-07-30) [2020-03-03]. https://www. pops. int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx.
[5] Jain RB. Time trends over 2003-2014 in the concentrations of selected perfluoroalkyl substances among US adults aged ≥20 years: Interpretational issues[J]. Sci Total Environ,2018,645:946-957.
[6] EFSA Panel On Contaminants in the Food Chain (CONTAM), Knutsen HK,Alexander J, et al. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food[J]. EFSA J,2018,16(12). DOI:10.2903/j.efsa.2018.5194.
[7] Zhang SY, Kang QY, Peng H, et al. Relationship between perfluorooctanoate and perfluorooctane sulfonate blood concentrations in the general population and routine drinking water exposure[J]. Environ Int,2019,126:54-60.
[8] Liu BL, Xie LW, Zhang H, et al. Spatial distribution of perfluorinated compounds in atmosphere of the Pearl River Delta, China[J]. Arch Environ Contam Toxicol,2019,77(2):180-187.
[9] dela Torre A, Navarro I, Sanz P, et al. Occurrence and human exposure assessment of perfluorinated substances in house dust from three European countries[J]. Sci Total Environ,2019,685:308-314.
[10] Schecter A, Colacino J, Haffner D, et al. Perfluorinated compounds,polychlorinated biphenyls, and organochlorine pesticide contamination in composite food samples from Dallas, Texas, USA[J]. Environ Health Perspect,2010,118(6):796-802.
[11] Olsen GW, Burris JM, Ehresman DJ, et al. Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers[J]. Environ Health Perspect,2007,115(9):1298-1305.
[12] Sakr CJ, Kreckmann KH, Green JW, et al. Cross-sectional study of lipids and liver enzymes related to a serum biomarker of exposure (ammonium perfluorooctanoate or APFO)as part of a general health survey in a cohort of occupationally exposed workers[J]. J Occup Environ Med, 2007, 49(10):1086-1096.
[13] Grandjean P,AndersenEW,Budtz-J?rgensen E,et al. Serum vaccine antibody concentrations in children exposed to perfluorinated compounds[J]. JAMA,2012,307(4):391-397.
[14] Gallo V, Leonardi G, Brayne C, et al. Serum perfluoroalkyl acids concentrations and memory impairment in a large cross-sectional study[J].BMJ Open,2013,3(6):e002414.
[15] Leter G,Consales C,Eleuteri P,et al. Exposure to perfluoroalkyl substances and sperm DNA global methylation in Arctic and European populations[J].Environ Mol Mutagen,2014,55(7):591-600.
[16] Halldorsson TI, Rytter D, Haug LS, et al. Prenatal exposure to perfluorooctanoate and risk of overweight at 20 years of age: a prospective cohort study[J]. Environ Health Perspect,2012,120(5):668-673.
[17] Lin CY, Wen LL, Lin LY, et al. The associations between serum perfluorinated chemicals and thyroid function in adolescents and young adults[J]. J Hazard Mater,2013,244-245:637-644.
[18] Barry V, Winquist A, Steenland K. Perfluorooctanoic acid (PFOA)exposures and incident cancers among adults living near a chemical plant[J]. Environ Health Perspect,2013,121(11-12):1313-1318.
[19] Webster G. Potential human health effects of perfluorinated chemicals(PFCs)[J]. Blood,2010,4(6):1-10.
[20] Mondal D, WeldonRH, ArmstrongBG, et al. Breastfeeding: a potential excretion route for mothers and implications for infant exposure to perfluoroalkyl acids[J]. Environ Health Perspect,2014,122(2):187-192.
[22] Kim DH, Lee MY, Oh JE. Perfluorinated compounds in serum and urine samples from children aged 5-13 years in South Korea[J]. Environ Pollut,2014,192:171-178.
[23] Lopez-Espinosa MJ, Mondal D, Armstrong BG, et al. Perfluoroalkyl substances, sex hormones, and insulin-like growth factor-1 at 6-9 years of age: across-sectional analysis within the C8 health project[J]. Environ Health Perspect,2016,124(8):1269-1275.
[24] Lopez-Espinosa MJ, Fletcher T, Armstrong B, et al. Association of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) with age of puberty among children living near a chemical plant[J]. Environ Sci Technol,2011,45(19):8160-8166.
[25] Tsai MS, Lin CY, Lin CC, et al. Association between perfluoroalkyl substances and reproductive hormones in adolescents and young adults[J].Int J Hyg Environ Health,2015,218(5):437-443.
[26] Zhou Y, Hu LW, Qian ZM, et al. Association of perfluoroalkyl substances exposure with reproductive hormone levels in adolescents: by sex status[J].Environ Int,2016,94:189-195.
[27] Bérubé S, Marcoux S, Maheux R. Characteristics related to the prevalence of minimal or mild endometriosis in infertile women. Canadian Collaborative Group on Endometriosis[J]. Epidemiology, 1998, 9(5): 504-510.
[28] Finkelstein JS,Neer RM,Biller BM,et al. Osteopenia in men with a history of delayed puberty[J]. N Engl J Med,1992,326(9):600-604.
[29] Chevalley T, Bonjour JP, Ferrari S, et al. Influence of age at menarche on forearm bone microstructure in healthy young women[J]. J Clin Endocrinol Metab,2008,93(7):2594-2601.
甄小美臉上露出無(wú)奈的神情。我接著說(shuō):“那咱們想想,你還能做什么,讓自己覺(jué)得不無(wú)聊,覺(jué)得有意思?然后把它做到選擇輪里。你看我這個(gè)建議怎么樣?你要愿意試試,咱們就做;要不愿意試,也無(wú)所謂。咱們?cè)傧雱e的……”甄小美習(xí)慣了被提問(wèn),沒(méi)等我說(shuō)完,立刻蹦出:“畫畫。”
[30] Patton GC, Viner R. Pubertal transitions in health[J]. Lancet, 2007, 369(9567):1130-1139.
[31] Itoh S, Araki A, Mitsui T, et al. Association of perfluoroalkyl substances exposure in utero with reproductive hormone levels in cord blood in the Hokkaido Study on Environment and Children's Health[J]. Environ Int,2016,94:51-59.
[32] Goudarzi H,Araki A, Itoh S, et al. The association of prenatal exposure to perfluorinated chemicals with glucocorticoid and androgenic hormones in cord blood samples: the Hokkaido study[J]. Environ Health Perspect, 2017,125(1):111-118.
[33] Yao Q, Shi R, Wang CF, et al. Cord blood per- and polyfluoroalkyl substances, placental steroidogenic enzyme, and cord blood reproductive hormone[J]. Environ Int,2019,129:573-582.
[34] Wang HX, Du HY,Yang JQ, et al. PFOS, PFOA, estrogen homeostasis, and birth size in Chinese infants[J]. Chemosphere,2019,221:349-355.
[35] Maisonet M, Calafat AM, Marcus M, et al. Prenatal exposure to perfluoroalkyl acids and serum testosterone concentrations at 15 years of age in female ALSPAC study participants[J]. Environ Health Perspect, 2015,123(12):1325-1330.
[36] Ernst A, Brix N, Lauridsen LLB, et al. Exposure to perfluoroalkyl substances during fetal life and pubertal development in boys and girls from the Danish national birth cohort[J]. Environ Health Perspect, 2019, 127(1):17004.
[37] Christensen KY, Maisonet M, Rubin C, et al. Exposure to polyfluoroalkyl chemicals during pregnancy is not associated with offspring age at menarche in a contemporary British cohort[J]. Environ Int,2011,37(1):129-135.
[38] Kristensen SL, Ramlau-Hansen CH, Ernst E, et al. Long-term effects of prenatal exposure to perfluoroalkyl substances on female reproduction[J].Hum Reprod,2013,28(12):3337-3348.
[39] Barrett ES, Chen CS, Thurston SW, et al. Perfluoroalkyl substances and ovarian hormone concentrations in naturally cycling women[J]. Fertil Steril,2015,103(5):1261-1270.e3.
[40] Knox SS, Jackson T, Javins B, et al. Implications of early menopause in women exposed to perfluorocarbons[J]. J Clin Endocrinol Metab, 2011, 96(6):1747-1753.
[41] Heffernan AL,Cunningham TK,Drage DS,et al. Perfluorinated alkyl acids in the serum and follicular fluid of UK women with and without polycystic ovarian syndrome undergoing fertility treatment and associations with hormonal and metabolic parameters[J]. Int J Hyg Environ Health,2018,221(7):1068-1075.
[42] Lewis RC, Johns LE, Meeker JD. Serum biomarkers of exposure to perfluoroalkyl substances in relation to serum testosterone and measures of thyroid function among adults and adolescents from NHANES 2011-2012[J].Int J Environ Res Public Health,2015,12(6):6098-6114.
[43] Zhang SY, Tan RR, Pan R, et al. Association of perfluoroalkyl and polyfluoroalkyl substances with premature ovarian insufficiency in Chinese women[J]. J Clin Endocrinol Metab,2018,103(7):2543-2551.
[44] Bonefeld-Jorgensen EC, Long MH, Bossi R, et al. Perfluorinated compounds are related to breast cancer risk in Greenlandic Inuit:a case control study[J]. Environ Health,2011,10:88.
[45] Costa G, Sartori S, Consonni D. Thirty years of medical surveillance in perfluooctanoic acid production workers[J]. J Occup Environ Med,2009,51(3):364-372.
[46] Joensen UN,Bossi R,Leffers H,et al. Do perfluoroalkyl compounds impair human semen quality?[J]. Environ Health Perspect,2009,117(6):923-927.
[47] Joensen UN,Veyrand B,Antignac JP,et al. PFOS(perfluorooctanesulfonate)in serum is negatively associated with testosterone levels, but not with semen quality,in healthy men[J]. Hum Reprod,2013,28(3):599-608.
[48] Raymer JH, Michael LC, StudabakerWB, et al. Concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) and their associations with human semen quality measurements[J]. Reprod Toxicol,2012,33(4):419-427.
[49] Di Nisio A, Sabovic I, Valente U, et al. Endocrine disruption of androgenic activity by perfluoroalkyl substances: clinical and experimental evidence[J].J Clin Endocrinol Metab,2019,104(4):1259-1271.
[50] Specht IO,Hougaard KS,Spanò M,et al. Sperm DNA integrity in relation to exposure to environmental perfluoroalkyl substances: a study of spouses of pregnant women in three geographical regions[J]. Reprod Toxicol,2012,33(4):577-583.
[51] Petersen MS, Halling J, J?rgensen N, et al. Reproductive function in a population of young faroese men with elevated exposure to polychlorinated biphenyls (PCBs) and perfluorinated alkylate substances (PFAS)[J]. Int J Environ Res Public Health,2018,15(9):E1880.
[52] Vested A,Ramlau-Hansen CH,Olsen SF,et al. Associations of in utero exposure to perfluorinated alkyl acids with human semen quality and reproductive hormones in adult men[J]. Environ Health Perspect,2013,121(4):453-458.
[53] Lau C, Anitole K, Hodes C, et al. Perfluoroalkyl acids: a review of monitoring and toxicological findings[J]. Toxicol Sci,2007,99(2):366-394.
[54] Du GZ, Hu JL, Huang ZY, et al. Neonatal and juvenile exposure to perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS): advance puberty onset and kisspeptin system disturbance in female rats[J].Ecotoxicol Environ Saf,2019,167:412-421.
[55] Zhang W, Sheng N, Wang MH, et al. Zebrafish reproductive toxicity induced by chronic perfluorononanoate exposure[J]. Aquat Toxicol, 2016,175:269-276.
[56] Wan HT, Zhao YG, Wong MH, et al. Testicular signaling is the potential target of perfluorooctanesulfonate-mediated subfertility in male mice[J].Biol Reprod,2011,84(5):1016-1023.
[57] Zhang HX, Lu Y, Luo B, et al. Proteomic analysis of mouse testis reveals perfluorooctanoic acid-induced reproductive dysfunction via direct disturbance of testicular steroidogenic machinery[J]. J Proteome Res, 2014,13(7):3370-3385.
[58] Singh S, Singh SK. Prepubertal exposure to perfluorononanoic acid interferes with spermatogenesis and steroidogenesis in male mice[J].Ecotoxicol Environ Saf,2019,170:590-599.
[59] Kjeldsen LS, Bonefeld-J?rgensen EC. Perfluorinated compounds affect the function of sex hormone receptors[J]. Environ Sci Pollut Res, 2013, 20(11):8031-8044.
[60] Sonthithai P, Suriyo T, Thiantanawat A, et al. Perfluorinated chemicals,PFOS and PFOA, enhance the estrogenic effects of 17β-estradiol in T47D human breast cancer cells[J]. J Appl Toxicol,2016,36(6):790-801.
[61] Lou QQ, Zhang YF, Zhou Z, et al. Effects of perfluorooctanesulfonate and perfluorobutanesulfonate on the growth and sexual development of Xenopus laevis[J]. Ecotoxicology,2013,22(7):1133-1144.
[62] Qiu ZQ, Qu KL, Luan F, et al. Binding specificities of estrogen receptor with perfluorinated compounds: a cross species comparison[J]. Environ Int,2020,134:105284.
[63] Behr AC, Lichtenstein D, Braeuning A, et al. Perfluoroalkylated substances(PFAS) affect neither estrogen and androgen receptor activity nor steroidogenesis in human cells in vitro[J]. Toxicol Lett,2018,291:51-60.
[64] 王慧,田華,汝少國(guó). EEDs對(duì)魚類性激素合成途徑干擾作用研究進(jìn)展[J].生態(tài)毒理學(xué)報(bào),2013,8(3):306-314.
[65] Kang JS, Choi JS, Park JW. Transcriptional changes in steroidogenesis by perfluoroalkyl acids (PFOA and PFOS) regulate the synthesis of sex hormones in H295R cells[J]. Chemosphere,2016,155:436-443.
[66] Jo A, Ji K, Choi K. Endocrine disruption effects of long-term exposure to perfluorodecanoic acid (PFDA) and perfluorotridecanoic acid (PFTrDA) in zebrafish (Danio rerio) and related mechanisms[J]. Chemosphere, 2014,108:360-366.
[67] Shi ZM, Zhang HX, Ding LN, et al. The effect of perfluorododecanonic acid on endocrine status, sex hormones and expression of steroidogenic genes in pubertal female rats[J]. Reprod Toxicol,2009,27(3-4):352-359.
[68] Lopez-Doval R, Salgado R, Pereiro N, et al. Perfluorooctane sulfonate effects on the reproductive axis in adult male rats[J]. Environ Res,2014,134:158-168.
[69] López-Doval S,Salgado R,Fernández-Pérez B,et al. Possible role of serotonin and neuropeptide Y on the disruption of the reproductive axis activity by perfluorooctane sulfonate[J]. Toxicol Lett,2015,233(2):138-147.
[70] Qiu LL, Zhang XH, Zhang XM, et al. Sertoli cell is a potential target for perfluorooctane sulfonate-induced reproductive dysfunction in male mice[J].Toxicol Sci,2013,135(1):229-240.
[71] Zhao W, Cui RN, Wang JS, et al. Inhibition effects of perfluoroalkyl acids on progesterone production in mLTC-1[J]. J Environ Sci (China), 2017, 56:272-280.
[72] Renner R. The long and the short of perfluorinated replacements[J].Environ Sci Technol,2006,40(1):12-13.
[73] Wang Y,Shi YL,CaiYQ. Spatial distribution,seasonal variation and risks of legacy and emerging per- and polyfluoroalkyl substances in urban surface water in Beijing,China[J]. Sci Total Environ,2019,673:177-183.