嚴(yán)玉鵬,王小明,胡 震,王 慧,殷 輝,劉 凡,馮雄漢*
磷酸根在礦物表面的吸附–解吸特性研究進(jìn)展①
嚴(yán)玉鵬1,2,王小明1,胡 震1,王 慧3,殷 輝1,劉 凡1,馮雄漢1*
(1 華中農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,農(nóng)業(yè)農(nóng)村部長(zhǎng)江中下游耕地保育重點(diǎn)實(shí)驗(yàn)室,武漢 430070;2 江西農(nóng)業(yè)大學(xué)國(guó)土資源與環(huán)境學(xué)院,南昌 330045;3 安徽省農(nóng)業(yè)科學(xué)院土壤肥料研究所,合肥 230001)
綜述了磷酸根在一些常見(jiàn)土壤礦物表面吸附–解吸特性的研究進(jìn)展。磷酸根在礦物表面的吸附特性受環(huán)境pH、離子強(qiáng)度、溫度、反應(yīng)時(shí)間、礦物類型等多種因素的共同影響。一般說(shuō)來(lái),礦物表面的磷吸附量隨pH降低而增加,受離子強(qiáng)度的影響較小。磷酸根在礦物表面的吸附動(dòng)力學(xué)過(guò)程可分為快速吸附過(guò)程和慢速吸附過(guò)程,且在弱結(jié)晶礦物中存在微孔擴(kuò)散過(guò)程。磷酸根在礦物表面的解吸過(guò)程通常存在兩個(gè)階段(初始快速解吸和隨后的緩慢解吸),在解吸反應(yīng)后期甚至還會(huì)發(fā)生再吸附。此外,磷酸根的吸附特性也受共存陰離子配體或金屬陽(yáng)離子的影響。其中,共存陰離子通過(guò)位點(diǎn)競(jìng)爭(zhēng)、靜電作用和空間位阻效應(yīng)等機(jī)制影響磷酸根的吸附。天然有機(jī)質(zhì)(包括胡敏酸和富里酸)降低了磷酸根在礦物表面的吸附,特別是在低pH條件下。通常,富里酸比胡敏酸更能有效降低磷酸根在礦物表面的吸附。金屬陽(yáng)離子可通過(guò)表面靜電效應(yīng)、形成三元絡(luò)合物以及形成表面沉淀等機(jī)制促進(jìn)磷酸根和金屬在礦物表面的共吸附。最后,展望了與磷酸根在礦物表面吸附特性有關(guān)的研究熱點(diǎn)和方向。
礦物;磷酸根;吸附–解吸;特性;鐵氧化物;鋁氧化物;黏土礦物
磷是植物生長(zhǎng)必需的營(yíng)養(yǎng)元素之一,土壤中磷的豐缺及供給狀況直接影響著植物的生產(chǎn)水平[1-3]。從1980年到2007年,我國(guó)土壤中磷平均累積量為242 kg/hm2,導(dǎo)致土壤有效磷從平均7.4 mg/kg增加到24.7 mg/kg[4]。世界上大約1/3的磷肥沒(méi)有被有效利用,我國(guó)主要糧食作物平均磷肥利用率僅為11.6%,不同地區(qū)變化幅度為7.3% ~ 20.1%,遠(yuǎn)低于國(guó)際水平[5-6]。磷肥利用率低且造成磷在土壤中的固定及積累,使土壤有效磷缺乏[2,7-8],同時(shí)也帶來(lái)磷的流失和污染風(fēng)險(xiǎn)[9-11]。此外,磷是非再生資源,以當(dāng)前磷的利用速率,全球商業(yè)磷庫(kù)將在50 ~ 100年內(nèi)消耗殆盡,因此磷素被認(rèn)為是“正在消失的營(yíng)養(yǎng)”[12-13]。為了避免未來(lái)糧食危機(jī),應(yīng)該把磷資源安全放在與全球氣候變化、食品安全、水和能源安全同等重要的地位來(lái)討論[12]。
磷酸根的界面反應(yīng)在一定程度上影響磷的地球化學(xué)行為和生態(tài)系統(tǒng)的生產(chǎn)率[14-17]。磷酸根在土壤礦物表面的吸附、解吸和沉淀等界面反應(yīng)影響和決定其在陸地和水環(huán)境中的形態(tài)、遷移和循環(huán)過(guò)程,受到土壤學(xué)家、環(huán)境學(xué)家的廣泛關(guān)注[18-20]。鐵、鋁(氫)氧化物等是土壤中的重要活性礦物,其表面羥基位點(diǎn)密度高、可變正電荷多、比表面積大,比其他土壤組分更能影響和控制磷在環(huán)境中的動(dòng)態(tài)過(guò)程(如吸附–解吸、沉淀、遷移轉(zhuǎn)化)和生物有效性[21-22]。
對(duì)于磷酸根在礦物表面的吸附機(jī)制,本研究團(tuán)隊(duì)已經(jīng)做了系統(tǒng)的歸納與總結(jié)[23],而本文著重綜述磷酸根在鐵、鋁氧化物等礦物表面的吸附、解吸和沉淀等界面反應(yīng)特性以及各種土壤環(huán)境因素的影響,以系統(tǒng)認(rèn)識(shí)磷酸根的界面反應(yīng)特性和影響因素,這對(duì)深入理解磷酸根的地球化學(xué)循環(huán),調(diào)控土壤中磷的生物有效性,提高磷肥利用率,緩解磷資源危機(jī)與改善生態(tài)環(huán)境具有重要意義。
磷酸根在礦物表面的吸附過(guò)程分為快反應(yīng)過(guò)程與慢反應(yīng)過(guò)程??旆磻?yīng)可以在數(shù)分鐘或數(shù)秒內(nèi)完成,大約有50% 以上磷酸根被吸附固定,該過(guò)程中磷酸根的吸附反應(yīng)主要發(fā)生在礦物表面位點(diǎn)[18, 24-29];而慢反應(yīng)通??梢猿掷m(xù)數(shù)小時(shí)到數(shù)月[18, 24-27],該過(guò)程中磷酸根的吸附反應(yīng)主要發(fā)生在礦物顆粒聚集體內(nèi)部位點(diǎn),并且通常由磷酸根向微孔或顆粒聚集體的擴(kuò)散過(guò)程控制[30-31]。礦物的結(jié)晶度、形貌等特性影響快反應(yīng)與慢反應(yīng)過(guò)程[32-33]。
根據(jù)表觀活化能可以初步判定決定慢速吸附過(guò)程的限制因素。表觀活化能(Ea)<21 kJ/mol時(shí),慢速吸附過(guò)程一般受水相中的擴(kuò)散控制;Ea范圍在20 ~ 40 kJ/mol時(shí),多受孔隙擴(kuò)散控制;Ea范圍在42 ~ 84 kJ/mol時(shí),由化學(xué)反應(yīng)和礦物表面性質(zhì)控制[18, 25, 34]。例如,磷酸根在針鐵礦表面吸附反應(yīng)的表觀活化能為33 kJ/mol,可知其慢速吸附過(guò)程受孔隙擴(kuò)散控制[24-25]。
磷酸根在礦物表面的吸附動(dòng)力學(xué)可用準(zhǔn)一級(jí)動(dòng)力學(xué)方程[27]或三參數(shù)方程定量描述[25]。三參數(shù)方程,即=1+2(1?e?kt),其中是磷酸根的總吸附密度(μmol/m2),1是快速吸附過(guò)程的吸附密度(μmol/m2),2(1?e?kt) 是慢速吸附過(guò)程的吸附密度(μmol/m2)并代表一級(jí)動(dòng)力學(xué)過(guò)程,2代表慢速吸附過(guò)程完成后的吸附密度(μmol/m2),是慢速吸附過(guò)程的速率常數(shù)(min?1)[25]。
磷酸根在礦物表面的吸附熱力學(xué)特性可用Langmuir或Freundlich等方程擬合[27,35-37]。Langmuir等溫線,=m·L·/(1+L·),常常被用于模擬磷酸根在礦物表面的最大吸附密度,其中,是磷酸根的吸附密度(μmol/m2),L是結(jié)合強(qiáng)度參數(shù)(L/μmol),m是磷酸根的最大吸附密度(μmol/m2),是磷酸根平衡濃度(μmol/L)[37-39]。此外,雙位點(diǎn)Langmuir等溫線可以很好擬合磷酸根在高嶺石–針鐵礦復(fù)合物表面的吸附[40]。Freundlich方程,即=F·C,其中,為吸附量(μmol/m2),F(xiàn)為平均親合力常數(shù)(μmol1-b·Lb/m2),是磷酸根平衡濃度(μmol/L),為吸附強(qiáng)度指數(shù),代表表面位點(diǎn)的異質(zhì)性(不均一性),反映了礦物表面位點(diǎn)的親合力[27, 35]。由于表面不均一性,磷酸根在鐵氧化物等礦物表面的吸附等溫線常常更符合Freundlich方程[27,35,41-44]。通過(guò)Freundlich方程擬合磷酸根在鐵氧化物上的吸附等溫線,F(xiàn)和依次分別為:2.6(針鐵礦)>2.35(水鐵礦)>2.05(赤鐵礦)和0.174(水鐵礦)>0.122(赤鐵礦)>0.073(針鐵礦)[27],值與Guzman等[45]報(bào)道的0.21(水鐵礦)>0.13(赤鐵礦)> 0.09(針鐵礦)接近。針鐵礦的F最大和最小,表明其主要為高親合力位點(diǎn)。針鐵礦的高親合力也可解釋其慢速反應(yīng)過(guò)程不顯著,反應(yīng)時(shí)間最短[27]。
1.2.1 pH 磷酸鹽在金屬(氧)氫氧化物和層狀硅酸鹽礦物表面以及土壤中的吸附通常隨pH降低而增加。磷酸根在土壤組分上的吸附受土壤礦物凈表面電荷密度和磷酸根的化學(xué)形態(tài)的影響,而磷酸根的化學(xué)形態(tài)又取決于本體溶液的pH(pHb)。一般說(shuō)來(lái),無(wú)機(jī)礦物對(duì)磷酸根的吸附隨pHb的降低而增加[18]。在大多數(shù)環(huán)境pH(pH 4 ~ 8)下,磷酸根主要以陰離子存在,并且氧化鐵和氧化鋁礦物的電荷零點(diǎn)(PZC)分別在6.5 ~ 8.5和8.2 ~ 9.1,金屬氧化物帶正電荷。因此,當(dāng)pHb小于PZC時(shí),磷酸根通過(guò)靜電相互作用強(qiáng)烈地吸附在金屬氧化物表面;當(dāng)pHb大于PZC時(shí),磷酸根則主要通過(guò)配體交換被吸附[18]。諸多研究表明,磷酸根在赤鐵礦[46]、針鐵礦[28, 33, 43, 47-48]、水鐵礦[39, 49]、四方纖鐵礦[43]、勃姆石[37-38, 50]、剛玉[51]、γ-Al2O3[36]、CeO2[52]、TiO2[53]礦物表面的吸附密度均隨著pH的降低而逐漸增大。在低pH條件下,吸附態(tài)磷酸根也更易轉(zhuǎn)化為沉淀態(tài)磷酸鹽。
此外,Huang等[54]研究了pH 3 ~ 8條件下相同晶型的鐵和鋁氧化物(α-Fe2O3和α-Al2O3)對(duì)磷酸根吸附特性的差異,結(jié)果表明鋁氧化物在pH 4附近達(dá)到最大吸附量,而對(duì)于鐵氧化物,在pH 3時(shí)吸附量最大。對(duì)于鋁氧化物,pH低于4時(shí),磷酸根的吸附反而減少,這可能是由于鋁氧化物表面不存在叔羥基(三配位表面羥基),在較低pH下表面質(zhì)子化反應(yīng)不再隨pH降低而改變,因此pH進(jìn)一步降低時(shí),磷酸根的吸附量也隨之降低。
1.2.2 溫度 體系溫度影響磷酸根在礦物表面的吸附量和吸附速率。例如,pH 5時(shí),三水鋁石對(duì)磷的吸附隨溫度(2、12、22和45℃)升高而增加,活化能為63 kJ/mol ± 4 kJ/mol,表明反應(yīng)受化學(xué)過(guò)程控制,而非物理過(guò)程[55]。在pH 8時(shí),水羥錳礦(δ-MnO2)對(duì)磷的吸附動(dòng)力學(xué)受溫度影響,當(dāng)溫度從5℃升高到35℃,磷的吸附速率和吸附量增加[56]。在針鐵礦表面磷酸根的吸附隨著溫度的增加而增大[25, 57]。
此外,在pH 3 ~ 7,軟錳礦(β-MnO2)對(duì)磷酸根的吸附隨著溫度(293 ~ 313 K)的升高而降低,磷酸根在所研究的溫度下形成外圈絡(luò)合物;且Δ°、Δ°和Δ°等吸附熱力學(xué)參數(shù)表明在低溫和低pH條件有利于礦物吸附磷酸根[58]。
1.2.3 離子強(qiáng)度 離子強(qiáng)度影響磷酸根在礦物表面的吸附密度。研究發(fā)現(xiàn),不同離子強(qiáng)度下磷酸根在針鐵礦表面的吸附密度隨pH的變化曲線相交于某一特征pH點(diǎn),當(dāng)介質(zhì)pH大于該點(diǎn)時(shí),磷酸根吸附密度隨離子強(qiáng)度增加而增大;當(dāng)介質(zhì)pH小于該點(diǎn)時(shí),磷酸根吸附密度隨離子強(qiáng)度呈相反的變化趨勢(shì)[59-60]。不同離子強(qiáng)度下磷酸根吸附密度隨pH變化曲線的交點(diǎn)靠近礦物的等電點(diǎn)(IEP)。當(dāng)介質(zhì)pH高于礦物的IEP時(shí),礦物表面帶凈負(fù)電荷,擴(kuò)散層中的反號(hào)離子為陽(yáng)離子,此時(shí)吸附面上的靜電電位與表面凈電荷一致,也為負(fù)值。隨著離子強(qiáng)度增加,擴(kuò)散層中的反號(hào)離子濃度增加,吸附面上的反號(hào)離子濃度也隨之增加,導(dǎo)致吸附面上靜電電位的絕對(duì)值減小,對(duì)陰離子的排斥力減小,陰離子(磷酸根)在較高離子強(qiáng)度時(shí)更易通過(guò)吸附面,因而其吸附密度增大[59-60]。當(dāng)介質(zhì)pH小于礦物的IEP時(shí),情況正好相反,此時(shí)礦物表面帶凈正電荷,反號(hào)離子為陰離子,吸附面上的靜電電位為正值。隨著離子強(qiáng)度增加,擴(kuò)散層中和吸附面上反號(hào)離子(陰離子)濃度增加,吸附面上的靜電電位減小,對(duì)磷酸根的靜電引力減小,因此磷酸根吸附密度隨離子強(qiáng)度增加而下降[59-60]。例如,離子強(qiáng)度越大,磷酸根在水鐵礦、針鐵礦表面的吸附密度越大,在高pH范圍更明顯[48-49, 61-62]。此外,在低pH時(shí),離子強(qiáng)度越大,磷酸根在赤鐵礦和鋁氧化物表面的吸附密度越低;在高pH時(shí),離子強(qiáng)度越大,吸附量越高[38, 46]。
離子強(qiáng)度的影響也可以通過(guò)其影響礦物表面的電勢(shì)來(lái)解釋。在pH較低時(shí),磷酸根通過(guò)配體交換形成內(nèi)圈絡(luò)合物,直接與表面基團(tuán)配位,其吸附受離子強(qiáng)度變化的影響較小[49]。在較高的pH條件下,電解質(zhì)濃度增加改變礦物–水界面電勢(shì),減弱了帶電表面和離子之間的靜電斥力,有利于磷酸根的吸附[49]。
此外,離子強(qiáng)度對(duì)碳酸鈣體系的影響機(jī)制不同于鐵鋁氧化物。離子強(qiáng)度主要通過(guò)影響不同磷酸鹽形態(tài)活度而影響磷酸鹽在方解石上的吸附,離子強(qiáng)度增加,吸附量降低[63]。
1.2.4 礦物特性 不同礦物或不同方法合成的相同礦物具有不同的礦物性質(zhì)。磷酸根在礦物表面的吸附特性受礦物結(jié)晶度、類型、結(jié)晶尺寸和形貌等因素的影響。
礦物類型和形貌影響磷酸根的吸附行為。Torrent等[30]研究了31種合成針鐵礦對(duì)磷酸根的吸附特性,這些針鐵礦的比表面積、晶體形貌及摻雜的AlOOH摩爾分?jǐn)?shù)差異很大,在pH 6條件下,這些針鐵礦單位表面積對(duì)磷酸根的吸附量相似,表明不同晶面具有相似吸附能力。在一定pH范圍內(nèi),8種表面積為18 ~ 132 m2/g的針鐵礦與磷酸鹽反應(yīng)達(dá)到平衡的時(shí)間和程度取決于礦物的結(jié)晶度[28]。不同于針鐵礦,43種具有不同形貌、結(jié)晶度、比表面積和摻雜Al2O3摩爾分?jǐn)?shù)的合成赤鐵礦對(duì)磷酸根吸附密度在0.19 ~ 3.33 μmol/m2,平均值為0.97 μmol/m2[64]。此外,當(dāng)赤鐵礦沿c晶軸方向上相對(duì)于a晶軸方向變得扁平時(shí),對(duì)磷的吸附量降低,采用Freundlich方程擬合吸附等溫線得到的指數(shù)增大,平均親合力常數(shù)F值減小,即晶體越扁平,對(duì)磷的平均親合力越低,高親和性位點(diǎn)的比例越低,這進(jìn)一步證實(shí)了赤鐵礦吸附磷酸根的主要晶面并非基面的假設(shè)[35]。與針鐵礦相比,赤鐵礦在磷酸根吸附容量方面具有更大的變化性,單位表面積上吸附的磷更少,對(duì)磷酸根的親和力更小,并且慢吸附過(guò)程更顯著[35]。類似地,土壤中晶質(zhì)鐵氧化物的類型、含量和形態(tài)顯著影響土壤對(duì)磷的吸附特性[65]。
同晶替代導(dǎo)致礦物活性吸附表面的比例、結(jié)晶度、比表面積發(fā)生變化,進(jìn)而影響礦物對(duì)磷酸根的吸附特性。例如,赤鐵礦的基面不能吸附磷酸鹽,當(dāng)顆粒的直徑/厚度比增加時(shí),吸附容量顯著降低。鋁取代的赤鐵礦基面(001)比例增大,吸附磷酸根密度隨鋁取代量增加而下降[64]。與純針鐵礦相比,隨著鋁摻雜針鐵礦中的鋁含量的增加,其結(jié)晶度降低,礦物表面羥基含量增加,形貌由針狀變?yōu)轭w粒狀,具有較大的比表面積,其磷同位素交換速率比純針鐵礦更快,交換速率隨著表面積的增加而增加[66-69],單位質(zhì)量的鋁摻雜針鐵礦對(duì)磷酸根的吸附量增加[68-69]。隨著鋁摻雜針鐵礦中的鋁含量的增加,由于鋁摻入造成針鐵礦總表面積中(110)晶面的相對(duì)比率降低,從而導(dǎo)致單位面積磷酸根的吸附密度降低[68]。此外,隨著鋁替代纖鐵礦中鋁替代量的增加,單位比表面積上具有雙配位氧的(020)晶面的相對(duì)比例降低,從而導(dǎo)致表面上的活性羥基以及對(duì)磷酸根的吸附密度均增加[70]。
同時(shí),磷酸根在礦物表面的吸附也受礦物的結(jié)晶尺寸、老化狀態(tài)和形成方式等因素的影響。隨著結(jié)晶尺寸的增加(1.6 ~ 4.4 nm),干燥水鐵礦在pH 4.5時(shí)磷酸根的吸附容量從1 690 μmol/g減小到980 μmol/g,而歸一化到單位比表面積的吸附密度相似[71]。類似地,磷酸根在氧化鋁表面的吸附也受其顆粒尺寸的影響[36]。與老化2.8、7.4、10.8和22.8 d的水鐵礦相比,新鮮水鐵礦具有更高的吸附能力[42],這可能是由于新鮮水鐵礦比老化水鐵礦的結(jié)晶度更弱,比表面積和反應(yīng)活性更大。此外,天然形成的鐵氧化物比合成的鐵氧化物吸附更多的磷酸根[72]。
對(duì)礦物表面吸附態(tài)磷解吸特性的了解有助于評(píng)估其移動(dòng)性和生物有效性。類似于磷酸根的吸附,磷酸根在土壤和土壤礦物表面的解吸過(guò)程通常存在兩個(gè)階段(初始快速解吸和隨后的緩慢解吸)[18],在解吸反應(yīng)后期甚至還會(huì)發(fā)生再吸附。緩慢的解吸現(xiàn)象受化學(xué)因素(如配體交換和化學(xué)吸附)和物理因素(如孔隙擴(kuò)散)的影響。被固定在團(tuán)聚體之間介孔(顆粒間)和單顆粒物微孔(顆粒內(nèi))中的離子難以被解吸劑提取[18]。礦物表面磷酸根的解吸受礦物和解吸劑類型、pH等多種因素的影響。
礦物和解吸劑類型影響磷酸根的解吸。例如,水鐵礦對(duì)磷酸根的吸附無(wú)論在容量還是強(qiáng)度方面均比結(jié)晶態(tài)鐵氧化物(針鐵礦和赤鐵礦)大得多,水鐵礦吸附的磷比針鐵礦和赤鐵礦所吸附的磷更難解吸[73]。KCl介質(zhì)中,礦物表面最大吸附量時(shí)磷酸根的解吸率依次為:水鐵礦(8.5%)<針鐵礦(10%)<赤鐵礦(12.5%)。水鐵礦更低的解吸率表明其專性吸附比例更高[27]。流動(dòng)法研究表明,以5 mmol/L的CaCl2和0.2 mmol/L的KCl電解質(zhì)溶液為解吸劑,磷酸根的解吸率為水鐵礦(10%)<針鐵礦(20%)<赤鐵礦(65%)[74]。相對(duì)于晶質(zhì)氧化物和鋁豐富的鐵/鋁氫氧化物,無(wú)機(jī)解吸劑對(duì)水鐵礦和鐵豐富的鐵/鋁氫氧化物吸附態(tài)磷的解吸更弱。檸檬酸對(duì)水鐵礦和富鐵非晶態(tài)鐵/鋁氫氧化物表面吸附態(tài)磷的解吸是受擴(kuò)散控制的[75]。鹽酸對(duì)結(jié)晶度良好針鐵礦表面磷酸根的解吸率高于弱晶質(zhì)針鐵礦;NaOH可解吸結(jié)晶度良好針鐵礦表面的大部分磷酸根,但僅可解吸弱晶質(zhì)針鐵礦表面50% 的磷酸根[28]??梢?jiàn),礦物的結(jié)晶度、組成影響磷酸根的解吸,一般礦物的結(jié)晶度越弱,磷酸根的解吸率越低。
對(duì)于吸附在低親和性位點(diǎn)的磷酸鹽,其解吸程度更高??杀魂庪x子交換樹(shù)脂或電滲濾解吸的吸附態(tài)磷的比例受赤鐵礦特性的影響??山馕?即可解吸的或可同位素交換的吸附態(tài)磷的比例)與參數(shù)(Freundlich方程中的吸附強(qiáng)度指數(shù))正相關(guān),可解吸性與緩慢吸附/總吸附量之間的比率也呈正相關(guān),這也反映了緩慢的吸附和解吸優(yōu)先發(fā)生在低親和力位點(diǎn)[35]。
除礦物類型外,磷酸根在礦物表面的吸附密度和解吸劑的類型也是影響磷酸根解吸的重要因素。有機(jī)酸解吸磷的機(jī)制包括配體誘導(dǎo)鐵氧化物溶解和配體交換作用[27, 76]。在較小的磷酸根吸附密度(最大吸附量的1/4)下,有機(jī)酸解吸磷酸根的主要機(jī)制是配體誘導(dǎo)鐵氧化物溶解而不是配體交換。pH 4時(shí),配體促進(jìn)鐵的溶出,大小順序?yàn)椴菟猁}(溶解量占總氧化物的18%)≈檸檬酸鹽(17%)>丙二酸鹽(13%)>蘋果酸鹽(8%%)>酒石酸鹽(5%)>>琥珀酸鹽(0.02%)[76]。相比于針鐵礦和赤鐵礦,檸檬酸通過(guò)誘導(dǎo)礦物溶解機(jī)理促進(jìn)了更多的磷從水鐵礦表面解吸[27]。在最大吸附量的3/4時(shí),配體交換作用對(duì)磷釋放的貢獻(xiàn)更大。pH 4時(shí),有機(jī)配體解吸水鐵礦表面磷酸根的能力為檸檬酸鹽(占最初吸附總磷的19%)>蘋果酸鹽(14%)>酒石酸鹽(5%)>>草酸鹽=丙二酸鹽=琥珀酸鹽(0.3%~ 1.2%)[76]。此外,幾種解吸劑對(duì)鐵鋁氧化物表面吸附態(tài)磷的解吸能力大小順序?yàn)镃aCl2 pH影響磷酸根的解吸。解吸試驗(yàn)表明,盡管在pH 4.3和6.3時(shí),高嶺石表面磷的解吸量相同,但pH 4.3時(shí)磷酸根的解吸速率比pH 6.3時(shí)更高,這是由于pH 4.3和pH 6條件下的吸附機(jī)制不同,pH 4.3時(shí)存在配位交換和表面沉淀反應(yīng),而pH 6時(shí)配位交換是磷酸根的主要吸附機(jī)制。去離子水對(duì)沉淀態(tài)磷酸根的解吸速率較配位交換吸附態(tài)磷酸根的解吸速率大[77]。另外,相對(duì)于pH 5.5或7.0,pH 4條件下,低分子量有機(jī)酸對(duì)針鐵礦和水鐵礦表面吸附態(tài)磷的解吸量更大[76]。在實(shí)際土壤環(huán)境中,磷的賦存形態(tài)和有效性也受pH的影響,合理調(diào)控土壤pH將有助于提高土壤磷的生物有效性。例如,在堿性土中,根際酸化會(huì)促進(jìn)磷酸鹽的釋放[78]。 老化時(shí)間影響磷酸根的解吸。老化(反應(yīng))時(shí)間影響磷在礦物表面的吸附狀態(tài),進(jìn)而影響其解吸。在pH 4時(shí),隨著老化時(shí)間從2 d增加到10個(gè)月,水鐵礦表面總磷解吸率從4.81%下降到0.92%;在pH 7.5時(shí),隨著老化時(shí)間從2 d增加到19個(gè)月,水鐵礦表面總解吸磷率從10.07%下降到3.83%[18]。這可能是由于經(jīng)過(guò)較長(zhǎng)反應(yīng)時(shí)間后,部分吸附態(tài)磷酸根擴(kuò)散到微孔內(nèi)或轉(zhuǎn)化為沉淀態(tài)磷酸鹽,從而導(dǎo)致磷酸根的解吸率降低。 土壤環(huán)境中,各種配體,如胡敏酸(HA)、富里酸(FA)、砷酸根和檸檬酸等,與磷酸鹽同時(shí)存在。各種配體可通過(guò)位點(diǎn)競(jìng)爭(zhēng)、靜電作用和空間位阻效應(yīng)抑制磷酸根在礦物表面的吸附[27, 79-82]。 3.1.1 無(wú)機(jī)陰離子配體 無(wú)機(jī)陰離子(如砷酸根、硫酸根和氟離子等)影響磷酸根在礦物表面的吸附,且受礦物類型、添加順序等因素的影響。例如,砷酸根/磷酸根摩爾比為1的混合體系中,在水鈉錳礦、軟錳礦、針鐵礦、綠脫石和鐵質(zhì)蒙脫石上吸附的砷酸根通常比磷酸根多,但在非晶型鋁沉淀物、三水鋁石、勃姆石、水鋁英石和高嶺石上吸附的磷酸根比砷酸根多。在pH 5.0時(shí),吸附的砷酸根/磷酸根摩爾比對(duì)于水鈉錳礦為1.81,對(duì)于綠脫石為1.05,但對(duì)于高嶺石僅為0.45,對(duì)于水鋁英石為0.14。對(duì)于蒙脫石、伊利石和蛭石,摩爾比值略<1。砷酸根在針鐵礦上比在三水鋁石上更能抑制磷酸根的吸附[83]。砷酸根抑制磷酸根在鐵/錳氫氧化物表面的吸附,砷酸根濃度越大,抑制效應(yīng)越明顯[84]。在磷酸根和硫酸根共存體系中,磷酸根對(duì)硫酸根在針鐵礦表面吸附的影響比硫酸根對(duì)磷酸根的影響更強(qiáng),表明針鐵礦表面對(duì)磷酸根有更高的吸附親和力。在體系pH較低以及硫酸根濃度較大時(shí),硫酸根競(jìng)爭(zhēng)能力相對(duì)較大[85]。陰離子的添加順序影響層狀雙氫氧化物上氟離子和磷酸根的吸附,當(dāng)磷酸鹽先添加時(shí),其吸附量更大[86]。 3.1.2 低分子量有機(jī)配體 低分子量有機(jī)酸的種類、體系pH、有機(jī)酸與磷酸根的添加順序影響多元體系中磷酸根的吸附特性。與不添加低分子量有機(jī)酸的對(duì)照相比,低分子量有機(jī)酸可使土壤中有效磷含量增加213%[87],可見(jiàn),低分子量有機(jī)酸可促進(jìn)土壤中磷酸鹽的活化,提高其生物有效性。磷酸根存在時(shí),顯著降低天冬氨酸在針鐵礦表面的吸附,而磷酸根的吸附較少受到天冬氨酸的影響[88]。酸性pH條件下檸檬酸的存在使磷酸根在針鐵礦表面的吸附量減少,而pH≥6.5時(shí),抑制作用逐漸減弱[89],在pH 5附近磷酸根與檸檬酸相互作用程度最大[82]。競(jìng)爭(zhēng)結(jié)合位點(diǎn)是磷酸根和檸檬酸競(jìng)爭(zhēng)吸附的重要機(jī)制[82];其次,檸檬酸存在情況下,造成微孔堵塞并誘導(dǎo)針鐵礦溶解,磷酸根向針鐵礦微孔擴(kuò)散受到抑制[90]。此外,當(dāng)草酸在磷酸根之前加入到反應(yīng)體系中時(shí),草酸抑制磷酸根在非晶質(zhì)氫氧化鋁表面吸附的作用大于草酸與磷同時(shí)加入或磷酸根在草酸之前加入的情況[91]。 有機(jī)酸中羧酸基團(tuán)的數(shù)量和這些基團(tuán)的相對(duì)位置影響其對(duì)磷酸根的競(jìng)爭(zhēng)效率。有機(jī)酸(檸檬酸、草酸和乙酸)影響磷酸根在針鐵礦表面的吸附,其中檸檬酸對(duì)磷酸根吸附的抑制作用最強(qiáng)[89]。單羧酸鹽和二羧酸鹽(苯甲酸鹽和鄰苯二甲酸鹽)對(duì)磷酸根的吸附?jīng)]有影響,而含有3個(gè)或更多個(gè)羧酸基團(tuán)的配體(1,2,3-苯三甲酸、1,2,4-苯三甲酸、1,3,5-苯三甲酸、1,2,4,5-苯四甲酸和苯六甲酸)能夠與磷酸鹽競(jìng)爭(zhēng)吸附位點(diǎn),競(jìng)爭(zhēng)效應(yīng)的程度強(qiáng)烈依賴于苯羧酸的結(jié)構(gòu)和組成,羧酸基團(tuán)越多對(duì)磷酸的競(jìng)爭(zhēng)能力越強(qiáng)[92-93]。 3.1.3 天然有機(jī)物質(zhì) 天然有機(jī)質(zhì)(NOM),如胡敏酸(HA)和富里酸(FA)等,在土壤、沉積物等環(huán)境中大量存在,影響磷酸根在土壤礦物表面的吸附。有研究報(bào)道,NOM從0.5 mg/L增加到50 mg/L可導(dǎo)致鐵氧化物對(duì)磷酸根的吸附量減少50% 以上[94]。添加HA可顯著降低針鐵礦對(duì)磷酸根的吸附量(達(dá)27.8%),產(chǎn)生的靜電效應(yīng)和競(jìng)爭(zhēng)吸附位點(diǎn)都是造成HA抑制針鐵礦吸附磷酸根的原因[95-96]。HA對(duì)磷酸根在氫氧化鋁表面吸附的抑制程度大于鄰苯二甲酸、2,3-二羥基苯甲酸[97]。此外,磷酸根和HA的加入順序可以影響磷酸根的吸附,吸附量大小是:先加入磷酸根>同時(shí)加入>先加入HA[96]。HA的存在降低了磷酸根在水鐵礦–HA復(fù)合體表面的初始和平均吸附速率,減緩磷酸根在復(fù)合體表面的吸附[39]。 原子力顯微鏡(AFM)可揭示NOM影響磷酸根有效性的內(nèi)在原因。利用AFM發(fā)現(xiàn)吸附在鐵氧化物表面的芳香族溶解性有機(jī)質(zhì)(相對(duì)分子質(zhì)量大于600 Da)可顯著減弱磷與鐵(氧)氫氧化物之間的結(jié)合力,減弱程度與其分子量呈正相關(guān),這表明芳香族溶解性有機(jī)質(zhì)的分子量在調(diào)節(jié)溶解性有機(jī)質(zhì)–磷與礦物表面相互作用方面起關(guān)鍵作用[98]。最近有學(xué)者通過(guò)AFM研究磷酸鈣在云母上的成核動(dòng)力學(xué),發(fā)現(xiàn)HA可穩(wěn)定在早期Ca-P成核過(guò)程中形成的作為前驅(qū)物的不定型磷酸鈣,從而延遲了其隨后向熱力學(xué)更穩(wěn)定相的轉(zhuǎn)變。當(dāng)HA濃度較高時(shí),Ca-P沉淀的形成較慢[99]。 不同類型NOM對(duì)磷酸根在礦物表面吸附的影響存在明顯差異。HA雖然與針鐵礦結(jié)合能力強(qiáng),但對(duì)磷在針鐵礦表面吸附的影響較小,F(xiàn)A則相反[81]。由于空間位阻效應(yīng),F(xiàn)A與針鐵礦表面更近,對(duì)磷酸鹽吸附的影響更強(qiáng);吸附態(tài)FA和磷酸根之間的靜電相互作用比HA和磷酸根之間的更大[81,100]。類似地,HA與FA抑制磷酸根在三水鋁石表面的吸附,且FA的抑制能力強(qiáng)于HA[79]。NOM的主要性質(zhì),包括羧基的位點(diǎn)密度、羧基的質(zhì)子化常數(shù)和NOM的顆粒尺寸,影響磷酸根的吸附。NOM可以顯著降低磷酸根的吸附,特別是當(dāng)NOM富含酸性和芳族基團(tuán)時(shí)[100]。 此外,腐殖酸還會(huì)影響磷酸根在礦物表面的配位方式[81, 101-102]。配體–電荷分布(LCD)模型和衰減全反射–傅里葉變換紅外光譜(ATR-FTIR)研究表明,當(dāng)HA或FA存在時(shí)由于吸附HA或FA形成的內(nèi)圈絡(luò)合物帶來(lái)較多的負(fù)電荷,使針鐵礦表面的靜電勢(shì)為負(fù),在靜電面(1-plane)上的電勢(shì)變化導(dǎo)致磷酸根在針鐵礦表面由雙齒配位向單齒配位轉(zhuǎn)變(尤其在低pH條件下)。雖然當(dāng)HA或FA存在時(shí)都導(dǎo)致了磷酸根由雙齒配位向單齒配位的相對(duì)轉(zhuǎn)移,但這種轉(zhuǎn)移在FA存在時(shí)比HA存在時(shí)更強(qiáng),因?yàn)镕A離表面更近,吸附的FA量更多,這導(dǎo)致了靜電面電勢(shì)降低更大[81]。 金屬陽(yáng)離子與磷酸根共存體系中,磷酸根在礦物表面的吸附機(jī)制受體系pH、金屬離子的種類、礦物類型等多因素的影響。表面靜電效應(yīng)、形成三元絡(luò)合物以及形成表面沉淀等是促進(jìn)磷酸根和金屬在礦物上共吸附的主要機(jī)制,大多數(shù)情況下多種機(jī)制共同起作用[103-109]。例如,磷酸根和Ca2+單獨(dú)或共存吸附試驗(yàn)表明,Ca2+和磷酸根之間在針鐵礦表面存在強(qiáng)烈的靜電作用,在高pH下Ca2+對(duì)磷酸根吸附的影響更為顯著[103]。Ca2+不僅增加了磷酸根在鐵氧化物表面的吸附量,而且改變了pH對(duì)磷吸附影響[94]。pH > 4時(shí),Ca2+和Mg2+共存條件下,可能由于礦物表面電荷的變化或磷酸根溶液形態(tài)的變化,加強(qiáng)了磷酸根在δ-MnO2表面的吸附[56]。此外,Ca2+增強(qiáng)了磷酸根在水鐵礦上的吸附,模型計(jì)算表明在較低的Ca2+濃度下,可能形成了磷酸–鈣三元表面絡(luò)合物;在較高的Ca2+濃度下,還可能形成了表面沉淀物[104]。吸附邊試驗(yàn)表明,F(xiàn)e2+增加鐵氧化物對(duì)磷酸根的吸附,磷酸根也增加鐵氧化物對(duì)Fe2+的吸附;ATR-FTIR分析表明,磷酸根和Fe2+的協(xié)同吸附行為可能是由于形成三元絡(luò)合物和靜電相互作用所致;表面絡(luò)合模型計(jì)算進(jìn)一步表明磷酸根和Fe2+在鐵氧化物表面上形成三元絡(luò)合物[105]。 多種因素均可影響磷酸根在礦物表面的吸附–解吸特性,如pH、離子強(qiáng)度、溫度、反應(yīng)時(shí)間、礦物類型、共存陰離子或金屬陽(yáng)離子等。磷酸根在礦物表面的吸附(解吸)通常經(jīng)歷初始的快速吸附(解吸)和隨后的慢速吸附(解吸)過(guò)程。磷酸根–礦物相互作用已經(jīng)得到國(guó)內(nèi)外眾多研究者的關(guān)注,但在一些方面仍需要進(jìn)一步深入的探討。針對(duì)已有的工作,未來(lái)關(guān)于磷酸根–礦物相互作用研究可著眼于以下兩個(gè)方面: 1)揭示不同因素影響磷酸根在礦物表面吸附特性的作用機(jī)制。在認(rèn)識(shí)磷酸根在礦物表面吸附機(jī)制的基礎(chǔ)上,定量描述不同因素對(duì)磷酸根吸附特性的影響,并解釋相關(guān)機(jī)制。結(jié)合模型工具進(jìn)一步定量分析多因素對(duì)磷酸根表面吸附–解吸特性的共同作用和影響,進(jìn)而為定量描述、模型預(yù)測(cè)及深入認(rèn)識(shí)磷酸根的吸附–解吸機(jī)制提供依據(jù)。 2)研究體系需從礦物(復(fù)合)體系向環(huán)境實(shí)際體系過(guò)渡。礦物(復(fù)合)體系中影響因素較單一,而實(shí)際環(huán)境中磷酸根的吸附更為復(fù)雜,在純礦物體系的基礎(chǔ)上,研究實(shí)際體系(如土壤膠體)中磷酸根的吸附特性及相關(guān)影響因素(如共存生物質(zhì)炭、氧化還原反應(yīng)等),才能對(duì)真實(shí)體系達(dá)到更精確的理解、更深入的認(rèn)識(shí),從而為描述和預(yù)測(cè)環(huán)境實(shí)際體系中磷酸根的吸附–解吸特性提供支撐。 [1] 張林, 吳寧, 吳彥, 等. 土壤磷素形態(tài)及其分級(jí)方法研究進(jìn)展[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2009, 20(7): 1775–1782. [2] MacDonald G K, Bennett E M, Potter P A, et al. Agronomic phosphorus imbalances across the world’s croplands[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(7): 3086–3091. [3] Kochian L V. Rooting for more phosphorus[J]. Nature, 2012, 488(7412): 466–467. [4] Li H, Huang G, Meng Q, et al. Integrated soil and plant phosphorus management for crop and environment in China. A review[J]. Plant and Soil, 2011, 349(1/2): 157–167. [5] 張福鎖, 王激清, 張衛(wèi)峰, 等. 中國(guó)主要糧食作物肥料利用率現(xiàn)狀與提高途徑[J]. 土壤學(xué)報(bào), 2008, 45(5): 915–924. [6] Zhang W F, Ma W Q, Ji Y X, et al. Efficiency, economics, and environmental implications of phosphorus resource use and the fertilizer industry in China[J]. Nutrient Cycling in Agroecosystems, 2008, 80(2): 131–144. [7] Townsend A R, Porder S. Agricultural legacies, food production and its environmental consequences[J]. PNAS, 2012, 109(16): 5917–5918. [8] Sattari S Z, Bouwman A F, Giller K E, et al. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle[J]. PNAS, 2012, 109(16): 6348–6353. [9] Conley D J, Paerl H W, Howarth R W, et al. Ecology. Controlling eutrophication: nitrogen and phosphorus[J]. Science, 2009, 323(5917): 1014–1015. [10] Némery J, Garnier J. The fate of phosphorus[J]. Nature Geoscience, 2016, 9(5): 343–344. [11] Powers S M, Bruulsema T W, Burt T P, et al. Long-term accumulation and transport of anthropogenic phosphorus in three river basins[J]. Nature Geoscience, 2016, 9(5): 353–356. [12] Cordell D, Drangert J O, White S. The story of phosphorus: Global food security and food for thought[J]. Global Environmental Change, 2009, 19(2): 292–305. [13] Gilbert N. Environment: The disappearing nutrient[J]. Nature, 2009, 461(7265): 716–718. [14] Van Cappellen P, Ingall E D. Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity[J]. Science, 1996, 271: 493–496. [15] Bjerrum C J, Canfield D E. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides[J]. Nature, 2002, 417(6885): 159–162. [16] Sundareshwar P V, Morris J T, Koepfler E K, et al. Phosphorus limitation of coastal ecosystem processes[J]. Science, 2003, 299(5606): 563–565. [17] Turner B L, Frossard E, Baldwin D S. Organic phosphorus in the environment[M]. Wallingford: CABI, 2005. [18] Arai Y, Sparks D L. Phosphate reaction dynamics in soils and soil components: a multiscale approach[J]. Advances in Agronomy, 2007, 94: 135–179. [19] Shen J B, Yuan L X, Zhang J L, et al. Phosphorus dynamics: From soil to plant[J]. Plant Physiology, 2011, 156(3): 997–1005. [20] Li M X, Liu J Y, Xu Y F, et al. Phosphate adsorption on metal oxides and metal hydroxides: a comparative review[J]. Environmental Reviews, 2016, 24(3): 319–332. [21] Russell J D, Parfitt R L, Fraser A R, et al. Surface structures of gibbsite goethite and phosphated goethite[J]. Nature, 1974, 248(5445): 220–221. [22] Goldberg S, Sposito G. On the mechanism of specific phosphate adsorption by hydroxylated mineral surfaces: a review[J]. Communications in Soil Science and Plant Analysis, 1985, 16(8): 801–821. [23] 嚴(yán)玉鵬, 王小明, 熊娟, 等. 基于不同分析方法研究磷酸根在礦物表面吸附機(jī)制的進(jìn)展[J]. 土壤學(xué)報(bào), 2020, 57(1): 22–35. [24] Luengo C, Brigante M, Antelo J, et al. Kinetics of phosphate adsorption on goethite: Comparing batch adsorption and ATR-IR measurements[J]. Journal of Colloid and Interface Science, 2006, 300(2): 511–518. [25] Luengo C, Brigante M, Avena M. Adsorption kinetics of phosphate and arsenate on goethite. A comparative study[J]. Journal of Colloid and Interface Science, 2007, 311(2): 354–360. [26] Li H, Jaisi D P. An isotope labeling technique to investigate atom exchange during phosphate sorption and desorption[J]. Soil Science Society of America Journal, 2015, 79(5): 1340–1351. [27] Wang, Liu, Tan, et al. Characteristics of phosphate adsorption-desorption onto ferrihydrite[J]. Soil Science, 2013, 178(1): 1–11. [28] Strauss R, Brümmer G W, Barrow N J. Effects of crystallinity of goethite: II. Rates of sorption and desorption of phosphate[J]. European Journal of Soil Science, 1997, 48(1): 101–114. [29] Mikami N, Sasaki M, Hachiya K, et al. Kinetics of the adsorption-desorption of phosphate on the.gamma.-alumina surface using the pressure-jump technique[J]. The Journal of Physical Chemistry, 1983, 87(8): 1454–1458. [30] Torrent J, Schwertmann U, Barrón V. Fast and slow phosphate sorption by goethite-rich natural materials[J]. Clays and Clay Minerals, 1992, 40(1): 14–21. [31] Willett I R, Chartres C J, Nguyen T T. Migration of phosphate into aggregated particles of ferrihydrite[J]. Journal of Soil Science, 1988, 39(2): 275–282. [32] Torrent J, Barrón V, Schwertmann U. Phosphate adsorption and desorption by goethites differing in crystal morphology[J]. Soil Science Society of America Journal, 1990, 54(4): 1007–1012. [33] Nilsson N, L?vgren L, Sj?berg S. Phosphate complexation at the surface of goethite[J]. Chemical Speciation & Bioavailability, 1992, 4(4): 121–130. [34] Sparks D L. Environmental soil chemistry: an overview[M]//Environmental Soil Chemistry. Amsterdam: Elsevier, 2003: 1–42. [35] Colombo C, Barrón V, Torrent J. Phosphate adsorption and desorption in relation to morphology and crystal properties of synthetic hematites[J]. Geochimica et Cosmochimica Acta, 1994, 58(4): 1261–1269. [36] Yan Y P, Koopal L K, Li W, et al. Size-dependent sorption of myo-inositol hexakisphosphate and orthophosphate on nano-γ-Al2O3[J]. Journal of Colloid and Interface Science, 2015, 451: 85–92. [37] Li W, Feng J, Kwon K D, et al. Surface speciation of phosphate on boehmite (gamma-AlOOH) determined from NMR spectroscopy[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2010, 26(7): 4753–4761. [38] Li W, Feng X H, Yan Y P, et al. Solid-state NMR spectroscopic study of phosphate sorption mechanisms on aluminum (Hydr)oxides[J]. Environmental Science & Technology, 2013, 47(15): 8308–8315. [39] Wang H, Zhu J, Fu Q L, et al. Adsorption of phosphate onto ferrihydrite and ferrihydrite-humic acid complexes[J]. Pedosphere, 2015, 25(3): 405–414. [40] Wei S Y, Tan W F, Liu F, et al. Surface properties and phosphate adsorption of binary systems containing goethite and kaolinite[J]. Geoderma, 2014, 213: 478–484. [41] Wang H, Zhu J, Fu Q L, et al. Adsorption of phosphate on pure and humic acid-coated ferrihydrite[J]. Journal of Soils and Sediments, 2015, 15(7): 1500–1509. [42] Conidi D, Parker W J. The effect of solids residence time on phosphorus adsorption to Hydrous ferric oxide floc[J]. Water Research, 2015, 84: 323–332. [43] Chitrakar R, Tezuka S, Sonoda A, et al. Phosphate adsorption on synthetic goethite and akaganeite[J]. Journal of Colloid and Interface Science, 2006, 298(2): 602–608. [44] Suzuki T, Inomata S, Sawada K. Adsorption of phosphate on calcite[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1986, 82(6): 1733. [45] Guzman G, Alcantara E, Barron V, et al. Phytoavailability of phosphate adsorbed on ferrihydrite, hematite, and goethite[J]. Plant and Soil, 1994, 159(2): 219–225. [46] Yan Y P, Wan B, Liu F, et al. Adsorption-desorption of myo-inositol hexakisphosphate on hematite[J]. Soil Science, 2014, 179(10/11): 476–485. [47] Hingston F J, Atkinson R J, Posner A M, et al. Specific adsorption of anions[J]. Nature, 1967, 215(5109): 1459–1461. [48] Antelo J, Avena M, Fiol S, et al. Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite-water interface[J]. Journal of Colloid and Interface Science, 2005, 285(2): 476–486. [49] Antelo J, Fiol S, Pérez C, et al. Analysis of phosphate adsorption onto ferrihydrite using the CD-MUSIC model[J]. Journal of Colloid and Interface Science, 2010, 347(1): 112–119. [50] Bleam W F, Pfeffer P E, Goldberg S, et al. A phosphorus-31 solid-state nuclear magnetic resonance study of phosphate adsorption at the boehmite/aqueous solution interface[J]. Langmuir, 1991, 7(8): 1702–1712. [51] Li W, Pierre-Louis A M, Kwon K D, et al. Molecular level investigations of phosphate sorption on corundum (α-Al2O3) by 31P solid state NMR, ATR-FTIR and quantum chemical calculation[J]. Geochimica et Cosmochimica Acta, 2013, 107: 252–266. [52] Wan B, Yan Y P, Liu F, et al. Effects of myo-inositol hexakisphosphate and orthophosphate adsorption on aggregation of CeO2nanoparticles: roles of pH and surface coverage[J]. Environmental Chemistry, 2016, 13(1): 34. [53] Wan B, Yan Y P, Liu F, et al. Surface speciation of myo-inositol hexakisphosphate adsorbed on TiO2nanoparticles and its impact on their colloidal stability in aqueous suspension: A comparative study with orthophosphate[J]. Science of the Total Environment, 2016, 544: 134–142. [54] Huang X, Foster G D, Honeychuck R V, et al. The maximum of phosphate adsorption at pH 4.0: why it appears on aluminum oxides but not on iron oxides[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2009, 25(8): 4450–4461. [55] van Riemsdijk W H, Lyklema J. Reaction of phosphate with gibbsite (AI(OH)3) beyond the adsorption maximum[J]. Journal of Colloid and Interface Science, 1980, 76(1): 55–66. [56] Yao W S, Millero F J. Adsorption of phosphate on manganese dioxide in seawater[J]. Environmental Science & Technology, 1996, 30(2): 536–541. [57] Madrid L, Posner A M. Desorption of phosphate from goethite[J]. Journal of Soil Science, 1979, 30(4): 697–707. [58] Mustafa S, Zaman M I, Khan S. Temperature effect on the mechanism of phosphate anions sorption by β-MnO2[J]. Chemical Engineering Journal, 2008, 141(1/2/3): 51–57. [59] Barrow N J, Bowden J W, Posner A M, et al. Describing the effects of electrolyte on adsorption of phosphate by a variable charge surface[J]. Soil Research, 1980, 18(4): 395. [60] 徐仁扣, 李九玉, 姜軍. 可變電荷土壤中特殊化學(xué)現(xiàn)象及其微觀機(jī)制的研究進(jìn)展[J]. 土壤學(xué)報(bào), 2014, 51(2): 207–215. [61] Mallet M, Barthélémy K, Ruby C, et al. Investigation of phosphate adsorption onto ferrihydrite by X-ray Photoelectron Spectroscopy[J]. Journal of Colloid and Interface Science, 2013, 407: 95–101. [62] Arai Y, Sparks D L. ATR-FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite-water interface[J]. Journal of Colloid and Interface Science, 2001, 241(2): 317–326. [63] S? H U, Postma D, Jakobsen R, et al. Sorption of phosphate onto calcite; results from batch experiments and surface complexation modeling[J]. Geochimica et Cosmochimica Acta, 2011, 75(10): 2911–2923. [64] Barron V, Herruzo M, Torrent J. Phosphate adsorption by aluminous hematites of different shapes[J]. Soil Science Society of America Journal, 1988, 52(3): 647–651. [65] Liu F, Xu F L, Li X Y. The types of crystalline iron oxides and phosphate adsorption in soils with variable charge[J]. Pedosphere, 1994, 4: 36–45. [66] Ainsworth C C, Sumner M E, Hurst V J. Effect of aluminum substitution in goethite on phosphorus adsorption: I. adsorption and isotopic exchange[J]. Soil Science Society of America Journal, 1985, 49(5): 1142–1149. [67] Ainsworth C C, Sumner M E. Effect of aluminum substitution in goethite on phosphorus adsorption: II. Rate of adsorption[J]. Soil Science Society of America Journal, 1985, 49(5): 1149–1153. [68] Li W, Wang L J, Liu F, et al. Effects of Al3+doping on the structure and properties of goethite and its adsorption behavior towards phosphate[J]. Journal of Environmental Sciences, 2016, 45: 18–27. [69] Li M X, Liu H B, Chen T H, et al. The transformation of α-(Al, Fe)OOH in natural fire: Effect of Al substitution amount on fixation of phosphate[J]. Chemical Geology, 2019, 524: 368–382. [70] Liao S, Wang X M, Yin H, et al. Effects of Al substitution on local structure and morphology of lepidocrocite and its phosphate adsorption kinetics[J]. Geochimica et Cosmochimica Acta, 2020, 276: 109–121. [71] Wang X M, Li W, Harrington R, et al. Effect of ferrihydrite crystallite size on phosphate adsorption reactivity[J]. Environmental Science & Technology, 2013, 47(18): 10322–10331. [72] Dorau K, Pohl L, Just C, et al. Soil organic matter and phosphate sorption on natural and synthetic Fe oxides underconditions[J]. Environmental Science & Technology, 2019, 53(22): 13081–13087. [73] 邵興華, 章永松, 林咸永, 等. 三種鐵氧化物的磷吸附解吸特性以及與磷吸附飽和度的關(guān)系[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2006, 12(2): 2208–2212. [74] Freese D, Weidler P G, Grolimund D, et al. A flow-through reactor with an infinite sink for monitoring desorption processes[J]. Journal of Environmental Quality, 1999, 28(2): 537–543. [75] Gypser S, Schütze E, Freese D. Crystallization of single and binary iron- and aluminum hydroxides affect phosphorus desorption[J]. Journal of Plant Nutrition and Soil Science, 2019, 182(5): 741–750. [76] Johnson S E, Loeppert R H. Role of organic acids in phosphate mobilization from iron oxide[J]. Soil Science Society of America Journal, 2006, 70(1): 222–234. [77] Penn C J, Warren J G. Investigating phosphorus sorption onto kaolinite using isothermal titration calorimetry[J]. Soil Science Society of America Journal, 2009, 73(2): 560–568. [78] Andersson K O, Tighe M K, Guppy C N, et al. Incremental acidification reveals phosphorus release dynamics in alkaline vertic soils[J]. Geoderma, 2015, 259/260: 35–44. [79] Sibanda H M, Young S D. Competitive adsorption of humus acids and phosphate on goethite, gibbsite and two tropical soils[J]. Journal of Soil Science, 1986, 37(2): 197–204. [80] Borggaard O K, Raben-Lange B, Gimsing A L, et al. Influence of humic substances on phosphate adsorption by aluminium and iron oxides[J]. Geoderma, 2005, 127(3/4): 270–279. [81] Weng L P, van Riemsdijk W H, Hiemstra T. Humic nanoparticles at the oxide-water interface: interactions with phosphate ion adsorption[J]. Environmental Science & Technology, 2008, 42(23): 8747–8752. [82] Geelhoed J S, Hiemstra T, van Riemsdijk W H. Competitive interaction between phosphate and citrate on goethite[J]. Environmental Science & Technology, 1998, 32(14): 2119–2123. [83] Violante A, Pigna M. Competitive sorption of arsenate and phosphate on different clay minerals and soils[J]. Soil Science Society of America Journal, 2002, 66(6): 1788–1796. [84] Zeng H, Fisher B, Giammar D E. Individual and competitive adsorption of arsenate and phosphate to a high-surface-area iron oxide-based sorbent[J]. Environmental Science & Technology, 2008, 42(1): 147–152. [85] Geelhoed J S, Hiemstra T, van Riemsdijk W H. Phosphate and sulfate adsorption on goethite: Single anion and competitive adsorption[J]. Geochimica et Cosmochimica Acta, 1997, 61(12): 2389–2396. [86] Cai P, Zheng H, Wang C, et al. Competitive adsorption characteristics of fluoride and phosphate on calcined Mg-Al-CO3layered double hydroxides[J]. Journal of Hazardous Materials, 2012, 213/214: 100–108. [87] 張乃于, 閆雙堆, 李娟, 等. 低分子量有機(jī)酸對(duì)土壤磷組分影響的Meta分析[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2019, 25(12): 2076–2083. [88] Yang Y L, Wang S R, Xu Y S, et al. Molecular-scale study of aspartate adsorption on goethite and competition with phosphate[J]. Environmental Science & Technology, 2016, 50(6): 2938–2945. [89] Shi Z L, Li F, Yao S H. Effect of small organic acid anions on the adsorption of phosphate anions onto synthetic goethite from aqueous solution[J]. Adsorption Science & Technology, 2010, 28(10): 885–893. [90] Mikutta C, Lang F, Kaupenjohann M. Citrate impairs the micropore diffusion of phosphate into pure and C-coated goethite[J]. Geochimica et Cosmochimica Acta, 2006, 70(3): 595–607. [91] Hu H Q, He J Z, Li X Y. Effects of organic ligands on adsorption of phosphate on a noncrystalline al hydroxide[J]. Developments in Soil Science, 2002, 28: 311–317. [92] Lindegren M, Persson P. Competitive adsorption between phosphate and carboxylic acids: quantitative effects and molecular mechanisms[J]. European Journal of Soil Science, 2009, 60(6): 982–993. [93] Lindegren M, Persson P. Competitive adsorption involving phosphate and benzenecarboxylic acids on goethite— Effects of molecular structures[J]. Journal of Colloid and Interface Science, 2010, 343(1): 263–270. [94] Weng L P, van Riemsdijk W H, Hiemstra T. Factors controlling phosphate interaction with iron oxides[J]. Journal of Environmental Quality, 2012, 41(3): 628–635. [95] Antelo J, Arce F, Avena M, et al. Adsorption of a soil humic acid at the surface of goethite and its competitive interaction with phosphate[J]. Geoderma, 2007, 138(1/2): 12–19. [96] Fu Z Y, Wu F C, Song K, et al. Competitive interaction between soil-derived humic acid and phosphate on goethite[J]. Applied Geochemistry, 2013, 36: 125–131. [97] Guan X H, Shang C, Chen G H. Competitive adsorption of organic matter with phosphate on aluminum hydroxide[J]. Journal of Colloid and Interface Science, 2006, 296(1): 51–58. [98] Chassé A W, Ohno T. Higher molecular mass organic matter molecules compete with orthophosphate for adsorption to iron (oxy)hydroxide[J]. Environmental Science & Technology, 2016, 50(14): 7461–7469. [99] Ge X F, Wang L J, Zhang W J, et al. Molecular understanding of humic acid-limited phosphate precipitation and transformation[J]. Environmental Science & Technology, 2019: acs.est.9b05145. [100] Deng Y X, Weng L P, Li Y T, et al. Understanding major NOM properties controlling its interactions with phosphorus and arsenic at goethite-water interface[J]. Water Research, 2019, 157: 372–380. [101] 蔡鵬. 磷酸鹽和富里酸、腐殖酸在針鐵礦/水界面的競(jìng)爭(zhēng)吸附研究[D]. 北京: 中國(guó)地質(zhì)大學(xué)(北京), 2013. [102] Wang H, Zhu J, Fu Q L, et al. Phosphate adsorption on uncoated and humic acid-coated iron oxides[J]. Journal of Soils and Sediments, 2016, 16(7): 1911–1920. [103] Rietra R P, Hiemstra T, van Riemsdijk W H. Interaction between calcium and phosphate adsorption on goethite[J]. Environmental Science & Technology, 2001, 35(16): 3369–3374. [104] Antelo J, Arce F, Fiol S. Arsenate and phosphate adsorption on ferrihydrite nanoparticles. Synergetic interaction with calcium ions[J]. Chemical Geology, 2015, 410: 53–62. [105] Hinkle M A G, Wang Z M, Giammar D E, et al. Interaction of Fe(II) with phosphate and sulfate on iron oxide surfaces[J]. Geochimica et Cosmochimica Acta, 2015, 158: 130–146. [106] Ren X M, Yang S T, Tan X L, et al. Mutual effects of copper and phosphate on their interaction with γ-Al2O3: Combined batch macroscopic experiments with DFT calculations[J]. Journal of Hazardous Materials, 2012, 237/238: 199–208. [107] Ren X M, Tan X L, Hayat T, et al. Co-sequestration of Zn(II) and phosphate by γ-Al2O3: From macroscopic to microscopic investigation[J]. Journal of Hazardous Materials, 2015, 297: 134–145. [108] Liu J, Zhu R L, Xu T Y, et al. Co-adsorption of phosphate and zinc(II) on the surface of ferrihydrite[J]. Chemosphere, 2016, 144: 1148–1155. [109] Liu J, Zhu R L, Liang X L, et al. Synergistic adsorption of Cd(II) with sulfate/phosphate on ferrihydrite: anATR–FTIR/2D–COS study[J]. Chemical Geology, 2018, 477: 12–21. 嚴(yán)玉鵬, 王小明, 胡震, 等. 磷酸根在礦物表面的吸附–解吸特性研究進(jìn)展. 土壤, 2021, 53(3): 439–448. Research Progresses on Sorption and Desorption Characteristics of Phosphate on Minerals YAN Yupeng1,2, WANG Xiaoming1, HU Zhen1, WANG Hui3, YIN Hui1, LIU Fan1, FENG Xionghan1* (1 Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; 2 College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China; 3 Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei 230001, China) The research progresses of phosphate sorption and desorption on common soil minerals are reviewed. The sorption characteristics of phosphate on mineral surface are affected by pH, ionic strength, temperature, reaction time, mineral type, and so on. Generally, the amount of phosphate adsorbed on the surface of mineral increases with decreasing pH and is less affected by ionic strength. The sorption kinetics of phosphate on the mineral surface can be divided into rapid sorption and slow sorption processes, and microporous diffusion processes exist on weakly crystalline minerals. Phosphate desorption on mineral surface usually has two stages (initial rapid desorption and subsequent slow desorption), and even re-sorption occurs in the later stage of desorption reaction. In addition, coexistence of anions or metal cations in multiple systems also affects the sorption of phosphate on minerals. Coexisting anions (ligands) affect phosphate sorption through site competition, electrostatic interaction and steric hindrance. The sorption of phosphate on minerals is decreased by the presence of natural organic matter (e.g., humic acid and fulvic acid), especially at low pH. In general, the effects of the fulvic acid are more effective than humic acid in reducing phosphate sorption on minerals. When metal cations coexist, the sorption of phosphate and metal on the mineral surface could be promoted by surface electrostatic effects, formation of ternary complexes, and formation of surface precipitates. Finally, hot spots are proposed for future researches related to the sorption of phosphate on mineral surfaces. Mineral; Phosphate; Sorption-desorption; Characteristics; Iron oxides; Aluminum oxides; Clay S153.3 A 國(guó)家重點(diǎn)研發(fā)專項(xiàng)(2017YFD0200201)和國(guó)家自然科學(xué)基金項(xiàng)目(41603100)資助。 (fxh73@mail.hzau.edu.cn) 嚴(yán)玉鵬(1986—),男,湖北孝感人,博士,講師,主要從事磷素土壤化學(xué)研究。E-mail: ypyan@mail.hzau.edu.cn 10.13758/j.cnki.tr.2021.03.0013 多元體系中磷酸根在礦物表面的吸附特性
3.1 配體對(duì)磷酸根吸附的影響
3.2 共存金屬陽(yáng)離子的影響
4 總結(jié)及展望