雷添淇
近年來,中考數(shù)學(xué)中涌現(xiàn)了一類將兩個(gè)反比例函數(shù)圖象“疊加”,使雙曲線成對(duì)出現(xiàn),設(shè)置“雙動(dòng)點(diǎn)”或“多點(diǎn)聯(lián)動(dòng)”的問題,下面向同學(xué)們介紹此類題的解題思路.
引例 點(diǎn)[A],B分別在兩個(gè)反比例函數(shù)[y=k1x]和[y=k2x]的圖象上,若點(diǎn)[A],B所連線段與坐標(biāo)軸平行,求證:線段AB與原點(diǎn)所構(gòu)成的三角形的面積等于[12k1-k2].
證明:已知點(diǎn)[A],B分別在反比例函數(shù)[y=k1x]和[y=k2x]的圖象上.
如圖1,當(dāng)AB[?]x軸時(shí),延長[AB]交[y]軸于點(diǎn)[C],因?yàn)閇S△AOC=12k1],[S△BOC=12k2],所以[S△AOB=12k1-k2].
同理,如圖2,當(dāng)AB[?]y軸時(shí),或無論[k1?k2>0]與[k1?k2<0]時(shí),結(jié)論均成立.
[x][x] [A][B][y = [k1x]][y = [k2x]][y][O][x] [y = [k1x]][y = [k2x]][y][A][B][O] [y = [k1x]][y = [k2x]][B][A][y][O]
圖2
熟練掌握該性質(zhì)可以幫助我們順利解決雙曲線疊加類問題,下面舉例介紹.
例1 如圖3,平行于[x]軸的直線與函數(shù)[y=k1x]([k1>0],[x>0]),[y=k2x]([k2>0],[x>0])的圖象分別相交于[A],[B]兩點(diǎn),點(diǎn)[A]在點(diǎn)[B]的右側(cè),[C]為[x]軸上的一個(gè)動(dòng)點(diǎn),若△[ABC]的面積為4,則[k1-k2=] .
解析:如圖3,連接[OA],[OB],設(shè)直線[AB]交[y]軸于[D],作[AF⊥x]軸于[F]、[BE⊥x]軸于[E].
∵AB[?]x軸,點(diǎn)[C]、點(diǎn)[O]均在[x]軸上,即△ABC與△AOB同底等高,
∴[S△ABC=S△AOB=S△AOD-S△BOD=12(S矩形ADOF-S矩形BDOE)=12(k1-k2)=4],
∴[k1-k2=8].
故填8.
點(diǎn)評(píng):(1)本題可以作為前文性質(zhì)的拓展結(jié)論1:如圖4,當(dāng)點(diǎn)C在與AB平行的坐標(biāo)軸上時(shí),有[S△ABC=S△AOB=12k1-k2].
(2)此外,可再加入一個(gè)動(dòng)點(diǎn)D,進(jìn)一步拓展,得到以下拓展結(jié)論2:如圖5,當(dāng)點(diǎn)C,D在與AB平行的坐標(biāo)軸上時(shí),若[CD=AB],則有[S?ABCD=2S△AOB=k1-k2].
[A][B][y = [k1x]][y = [k2x]][y][O][x] [C][圖4] [A][B][y = [k1x]][y = [k2x]][y][O][x] [C] [D][圖5]
例2 如圖6,已知反比例函數(shù)[y1=9x(x>0)]和[y2=5x(x>0)],若點(diǎn)[P]在[y1=9x]的圖象上,[PE⊥x]軸于點(diǎn)[E],交[y2=5x]的圖象于點(diǎn)[A],[PD⊥y]軸于點(diǎn)[D],交[y2=5x]的圖象于點(diǎn)[B],則[S四邊形PAOB=]? ? ? ? ? .
解析:如圖6,連接OP,
則[S四邊形PAOB=S△POB+S△POA=12k1-k2+12k1-k2 =k1-k2=9-5=4].
故填4.
點(diǎn)評(píng):(1)本題可以作為前文性質(zhì)的拓展結(jié)論3:如圖6,已知反比例函數(shù)[y1=k1x]([k1>0],[x>0]),[y2=k2x](0 < [k2<k1],[x>0]),若點(diǎn)[P]在[y1=k1x]的圖象上,[PE⊥x]軸于點(diǎn)[E],交[y2=k2x]的圖象于點(diǎn)[A],[PD⊥y]軸于點(diǎn)[D],交[y2=k2x]的圖象于點(diǎn)[B],則[S四邊形PAOB=k1-k2] .
(2)在本題中,還可以推導(dǎo)出如下結(jié)論:如圖6,已知反比例函數(shù)[y1=k1x]([k1>0],[x>0]),[y2=k2x]([k2>0],[x>0]),若點(diǎn)[P]在[y1=k1x]([k1>0],[x>0])的圖象上,[PE⊥x]軸于點(diǎn)[E],交[y2=k2x](0 < [k2<k1],[x>0])的圖象于點(diǎn)[A],[PD⊥y]軸于點(diǎn)[D],交[y2=k2x]([k2>0],[x>0])的圖象于點(diǎn)[B],則[S△PAB=(k1-k2)22k1].
如圖7,若點(diǎn)[P]在[y2=k2x]([k2>0],[x>0])的圖象上,[PE⊥x]軸于點(diǎn)[E],交[y1=k1x]([k1>k2>0],[x>0])的圖象于點(diǎn)[A],[PD⊥y]軸于點(diǎn)[D],交[y1=k1x]([k1>0],[x>0])于點(diǎn)[B],則[S△PAB=(k1-k2)22k2].
請(qǐng)同學(xué)們自己完成證明過程.
初中生學(xué)習(xí)指導(dǎo)·中考版2021年12期