劉志虹,盛萬興,杜松懷,蘇 娟,夏 越
基于區(qū)域劃分的農(nóng)村有源配電網(wǎng)動態(tài)重構(gòu)方法
劉志虹,盛萬興,杜松懷,蘇 娟※,夏 越
(中國農(nóng)業(yè)大學信息與電氣工程學院,北京 100083)
分布式電源和電動汽車的大規(guī)模接入,使得農(nóng)村配電網(wǎng)的“源-荷”側(cè)呈現(xiàn)顯著不確定性。傳統(tǒng)農(nóng)村配電網(wǎng)的拓撲結(jié)構(gòu)無法應對“源-荷”雙重不確定性所帶來的沖擊和影響,急需研究新的農(nóng)村有源配電網(wǎng)動態(tài)重構(gòu)方法。該研究考慮“源-荷”時變特性,提出了一種基于區(qū)域劃分的農(nóng)村有源配電網(wǎng)動態(tài)重構(gòu)方法。首先,對配電網(wǎng)絡(luò)結(jié)構(gòu)進行區(qū)域初始劃分,確定主干線區(qū)域和分支線區(qū)域;然后,以促進區(qū)域間分布式電源的協(xié)同應用為目標,基于圖論算法對區(qū)域初始劃分結(jié)果進行動態(tài)優(yōu)化;其次,對網(wǎng)絡(luò)重構(gòu)方案進行網(wǎng)絡(luò)拓撲約束的檢驗與修正;最后,采用快速非支配排序策略確定最優(yōu)方案。通過IEEE 33節(jié)點和PG&E 69節(jié)點算例驗證了所提方法的可行性與有效性。算例結(jié)果表明,所提方法能夠有效促進分布式電源消納、降低線損和改善電壓分布。尤其是在69節(jié)點算例中所提算法的優(yōu)化效果更顯著,提升了系統(tǒng)日DG平均消納利用率16.09個百分點,日線損降低了55.32%,研究可為農(nóng)村有源配電網(wǎng)重構(gòu)提供參考。。
能源;算法;農(nóng)村有源配電網(wǎng);區(qū)域劃分;網(wǎng)絡(luò)動態(tài)重構(gòu)
傳統(tǒng)農(nóng)村配電網(wǎng)多采用輻射式單向供電的方式,以開環(huán)形式運行[1-2]。與城市配電網(wǎng)相比,農(nóng)村配電網(wǎng)的供電模式較為單一,優(yōu)化運行的調(diào)控能力有限。近年來,大量的光伏、風電等分布式電源(Distributed Generation,DG)接入農(nóng)村配電網(wǎng)。當前農(nóng)村配電網(wǎng)的網(wǎng)絡(luò)結(jié)構(gòu)、DG并網(wǎng)的位置與容量、線路傳輸容量等系統(tǒng)條件,它們與不斷增加的農(nóng)村電力需求產(chǎn)生了沖突。此外,電動汽車(Electric Vehicle,EV)等柔性負荷的并網(wǎng)加劇了負荷側(cè)的波動。傳統(tǒng)農(nóng)村配電網(wǎng)的網(wǎng)絡(luò)結(jié)構(gòu)無法靈活、高效地應對DG與負荷雙重不確定性給配電網(wǎng)運行帶來的影響,容易產(chǎn)生棄電、網(wǎng)損增加、電壓越限等問題[3-7]。因此,需要一種智能優(yōu)化控制技術(shù)可以靈活、高效地應對DG與負荷的雙重不確定性,來增強農(nóng)村配電網(wǎng)安全可靠經(jīng)濟運行能力。
配電網(wǎng)重構(gòu)(Distribution Network Reconfiguration,DNR)是配電網(wǎng)優(yōu)化運行控制的重要手段[8]。DNR是通過改變線路中聯(lián)絡(luò)開關(guān)與分段開關(guān)的開/合狀態(tài)來尋求拓撲結(jié)構(gòu),使配電網(wǎng)以更可靠、更經(jīng)濟的方式運行[9]。DNR可分為靜態(tài)重構(gòu)與動態(tài)重構(gòu)兩類[10]。與靜態(tài)重構(gòu)相比,動態(tài)重構(gòu)可以充分考慮DG與負荷的時變特性,根據(jù)農(nóng)村配電網(wǎng)的運行工況對研究周期內(nèi)的網(wǎng)絡(luò)結(jié)構(gòu)進行動態(tài)優(yōu)化,從而更具靈活性與實用性。
目前國內(nèi)外學者對配電網(wǎng)動態(tài)重構(gòu)的研究已有一些成果。余健明等[11]提出了一種配電網(wǎng)動態(tài)分時段重構(gòu)方法,將研究時段分成多個連續(xù)的時間間隔,以網(wǎng)損最小為目標函數(shù),分別進行各時間間隔靜態(tài)重構(gòu)。Shariatkhah等[12]根據(jù)負荷波動聚類進行時段劃分,以損耗成本、中斷成本和切換成本為優(yōu)化目標,通過分時段靜態(tài)重構(gòu)實現(xiàn)動態(tài)重構(gòu)。趙靜翔等[13]提出了一種基于信息熵時段劃分的等效日負荷曲線分段方法,建立了以日損失費用最低為目標的動態(tài)重構(gòu)模型,利用基于十進制編碼的改進雜草混合算法進行求解。李振坤等[14]考慮到負荷的波動特性,提出了一種基于多代理技術(shù)的配電網(wǎng)動態(tài)重構(gòu)方法,利用混合粒子群算法進行多時段靜態(tài)重構(gòu)求解。王淳等[15]采用最優(yōu)模糊C均值聚類技術(shù)進行負荷聚類,將配電網(wǎng)動態(tài)重構(gòu)轉(zhuǎn)換為以聚類中心表示負荷狀態(tài)的多個靜態(tài)重構(gòu)問題。Zhu等[16]在實時調(diào)度階段考慮了負荷的時變特性,研究了配電網(wǎng)每小時動態(tài)重構(gòu)對DG消納的效用。易海川等[17]考慮了DG在不同時段出力不同的特性,以提高配電網(wǎng)對DG的接納能力為優(yōu)化目標構(gòu)建了動態(tài)重構(gòu)模型,并用遺傳算法對其進行求解。文獻[11-17]僅考慮了負荷或者DG的時變特性,這種假設(shè)導致了次優(yōu)的解決方案。文獻[18-19]充分考慮DG與負荷時變特性,構(gòu)建了多目標配電網(wǎng)重構(gòu)模型,但是僅適用于靜態(tài)重構(gòu)。傅曉飛等[20]綜合考慮DG與負荷的不確定性,建立了配電網(wǎng)動態(tài)重構(gòu)模型,并利用差分進化入侵雜草優(yōu)化算法進行求解。唐浩等[21]綜合考慮DG與負荷的時變特性,以網(wǎng)損費用和開關(guān)操作費用為目標函數(shù),將配電網(wǎng)進行分時段動態(tài)重構(gòu)。文獻[21]的優(yōu)化目標不包含DG消納。Zhu等[22]考慮DG與負荷的隨機特性,從DG規(guī)劃的角度分析了每小時動態(tài)重構(gòu)對于促進DG消納的作用。付洋洋[23]提出了通過最小數(shù)目的開關(guān)操作來提高DG消納能力的配電網(wǎng)多時段重構(gòu)模型。上述文獻大部分是基于時段劃分進行的多時段靜態(tài)重構(gòu)合并來實現(xiàn)動態(tài)重構(gòu),時段的劃分與合并存在一定的主觀性。此外,常規(guī)的動態(tài)重構(gòu)研究通常采用智能優(yōu)化算法求解構(gòu)建的數(shù)學模型以獲得最優(yōu)解,解的精度依賴于算法對優(yōu)化模型的求解計算,存在一定程度的尋優(yōu)誤差,難以保證解的最優(yōu)性。
基于上述背景,本文提出了一種基于區(qū)域劃分的農(nóng)村有源配電網(wǎng)動態(tài)重構(gòu)方法。首先,提出了一種區(qū)域初始劃分方法,對配電網(wǎng)主干線路、分支線路進行區(qū)域初始劃分;然后,提出了一種基于圖論的區(qū)域動態(tài)優(yōu)化劃分方法,對初始區(qū)域劃分結(jié)果進行動態(tài)優(yōu)化,以尋找所有的DNR可行方案;其次,采用快速非支配排序策略以確定最優(yōu)方案;最后,通過算例驗證所提方法的有效性。
本節(jié)描述了農(nóng)村有源配電網(wǎng)動態(tài)重構(gòu)問題的目標函數(shù)及其相關(guān)約束。
1)DG消納利用率
2)線路損耗
電力系統(tǒng)的線損是反映電力系統(tǒng)經(jīng)濟性的重要指標,在滿足系統(tǒng)安全穩(wěn)定運行的條件下,應盡最大可能降低系統(tǒng)的線損。系統(tǒng)總線損定義為[24]
1)功率平衡約束
2)節(jié)點電壓約束為
3)支路電流約束為
4)DG有功功率輸出約束為
5)開關(guān)動作次數(shù)約束為
配電網(wǎng)動態(tài)重構(gòu)中描述開關(guān)狀態(tài)的是離散整數(shù)變量,是一種復雜的非線性組合優(yōu)化問題[25]。在綜合考慮算法效率和全局尋優(yōu)性能的基礎(chǔ)上,本文提出了一種基于區(qū)域劃分的農(nóng)村有源配電網(wǎng)動態(tài)重構(gòu)方法,并設(shè)計了相應的動態(tài)重構(gòu)流程,實現(xiàn)步驟主要包括3部分,如圖1所示。
本文依照以下2個原則針對存在環(huán)路的線路進行區(qū)域初始劃分:
1)主干線路的區(qū)域初始劃分原則
如果主干線路上包含可控DG,以DG接入節(jié)點前的開關(guān)為區(qū)域劃分界線,從根節(jié)點到線路末端依次劃分為一個獨立的區(qū)域。即劃分后的區(qū)域內(nèi)最多包含一個DG。如果主干線路上不包含可控DG,則從根節(jié)點到主干線路末端劃為一個獨立的區(qū)域。
2)分支線路的區(qū)域初始劃分原則
如果分支線路上包含可控DG,則分支線路的區(qū)域初始劃分原則與主干線路的區(qū)域初始劃分原則一致;如果分支線路上不包含可控DG,則從分支界定開關(guān)到支路末端劃分為一個獨立的區(qū)域。
基于上述區(qū)域初始劃分原則,可將整個配電網(wǎng)絡(luò)結(jié)構(gòu)劃分為多個初始區(qū)域(Initial Region,IR)。
基于區(qū)域動態(tài)優(yōu)化劃分方法獲取DNR可行方案,主要包括以下3個步驟:
1)區(qū)域電力供需分析
首先,基于區(qū)域初始劃分結(jié)果和源-荷歷史數(shù)據(jù),根據(jù)公式(11)、(12)分別計算各區(qū)域的源-荷不平衡度與DG充裕度,分析當前各區(qū)域的電力供需平衡情況。
區(qū)域源-荷不平衡度是指研究區(qū)域內(nèi)總DG與總負荷之間的差值占總負荷的比重。各區(qū)域源-荷不平衡度可以表示為
各區(qū)域的DG充裕度可以表示為
2)基于圖論算法的區(qū)域動態(tài)優(yōu)化劃分
首先,采用圖論算法中的廣度優(yōu)先遍歷算法[26],確定各IR的鄰接區(qū)域(Adjacent Region,AR)。然后,根據(jù)區(qū)域電力供需分析結(jié)果,篩選出具有電力互補特性的AR集合。假設(shè)配電網(wǎng)各線路的單位阻抗一致,則線路損耗與線路長度成正相關(guān)關(guān)系。再次,采用圖論算法中的深度優(yōu)先遍歷算法[27],從具有電力互補特性的AR集合進一步中篩選出符合配電網(wǎng)潮流正向且距離相近的AR集合。最后,通過開關(guān)的優(yōu)化控制實現(xiàn)若這些AR之間的靈活組合,形成多個新的區(qū)域,以最小各AR的源-荷不平衡度,即求解以下數(shù)學模型
式中1表示IR集合中相鄰的A和A合并后的區(qū)域源-荷不平衡度;2表示A、A之間的線路長度,km。
3)DNR可行方案的檢驗與修正
為了保證配電網(wǎng)中不存在環(huán)網(wǎng)結(jié)構(gòu)和孤島,首先基于區(qū)域動態(tài)優(yōu)化劃分結(jié)果,采用圖論中的深度優(yōu)先遍歷算法對合并區(qū)域之后的配電網(wǎng)絡(luò)結(jié)構(gòu)進行連通性和輻射性檢驗。然后,基于檢驗結(jié)果對環(huán)網(wǎng)進行解環(huán)、對孤島進行連接,以滿足配電網(wǎng)拓撲約束,從而可獲得所有的DNR可行方案。
1)基于有源配電網(wǎng)動態(tài)重構(gòu)模型的約束條件確定DNR有效方案
為避免DG接入可能引起電壓越限的問題,遍歷所有的可行方案,從中選取滿節(jié)點電壓約束條件的DNR方案。在此基礎(chǔ)上,為了降低開關(guān)動作對其使用壽命以及電壓穩(wěn)定的影響,進一步篩選出滿足開關(guān)動作次數(shù)約束條件的可行方案。
2)基于快速非支配排序策略確定最優(yōu)方案
采用快速非支配排序遺傳算法 2[28]中的快速非支配排序策略,對DNR有效方案進行非劣排序,可獲得非劣排序?qū)蛹壸罡叩腄NR最優(yōu)方案。
根據(jù)上述的農(nóng)村有源配電網(wǎng)區(qū)域初始劃分原則、基于圖論算法的配電網(wǎng)區(qū)域動態(tài)劃分方法以及DNR最優(yōu)方案搜索方法求解配電網(wǎng)動態(tài)重構(gòu)問題,可根據(jù)配電網(wǎng)的實際運行工況對任意時間段的網(wǎng)絡(luò)拓撲結(jié)構(gòu)進行優(yōu)化調(diào)整。如此反復循環(huán),直至獲得整個研究時段內(nèi)的DNR最優(yōu)方案集合。
3.1.1 測試數(shù)據(jù)
本文基于IEEE 33節(jié)點配電網(wǎng)標準算例[29],加入了分布式光伏、風力發(fā)電和EV充電站,來模擬源、荷具有時變特性的農(nóng)村有源配電網(wǎng),如圖2所示。在節(jié)點6、9、15、22上分別接入了小型風機、風電場、小型光伏電站和光伏電站。各DG的額定容量見表1。在節(jié)點12上接入了EV充電站,額定容量為1MW?;趨^(qū)域初始劃分方法可以將配電網(wǎng)劃分為4個主干線區(qū)域(A1~A4)和3個分支線區(qū)域(A5~A7),如圖2所示。
表1 DG配置參數(shù)
假設(shè)在相同的地區(qū)、時間條件下,相同類型的DG出力特性一致,則相同類型的DG有功功率輸出值與其額定容量呈正相關(guān)關(guān)系。本文將DG有功功率輸出數(shù)值與DG額定容量的比值,定義為DG出力率。本文通過DG額定容量乘以DG出力率的變化值來模擬隨時間變化的DG出力值,通過節(jié)點原始負荷乘以節(jié)點變化率來模擬隨時間變化的負荷值。需要說明的是,采用其他方法來模擬各個節(jié)點負荷以及DG的出力時序變化情況,不會影響使用本文所提方法。重構(gòu)前DG出力率以及負荷變化曲線如圖3所示。
由圖3可以看出,光伏與風力發(fā)電以及EV充電負荷皆存在很強的波動性、間歇性與隨機性。源-荷側(cè)的不確定性容易導致棄風棄光現(xiàn)象以及電壓越限等問題,增加了配電網(wǎng)優(yōu)化運行控制的難度。
3.1.2 結(jié)果分析
各時段重構(gòu)得到的最優(yōu)開關(guān)組合見表2,其中每個開關(guān)用其對應線路兩端的節(jié)點編號表示。本文設(shè)定研究時段內(nèi)每個開關(guān)的操作次數(shù)和所有開關(guān)的總操作次數(shù)上限分別為3和16次,可保證配電網(wǎng)動態(tài)重構(gòu)的安全穩(wěn)定性。由表2可知,隨著負荷需求與DG出力的時序變化,相應時段的配電網(wǎng)重構(gòu)最優(yōu)開關(guān)組合也在不斷調(diào)整。
表2 不同時段最優(yōu)開關(guān)組合
本文對24 h內(nèi)配電網(wǎng)動態(tài)重構(gòu)前后的仿真結(jié)果進行對比分析。其中,線路損耗如圖4所示;配電網(wǎng)總DG平均消納利用情況,如圖5所示。
由圖4可以看出,配電網(wǎng)線損在網(wǎng)絡(luò)結(jié)構(gòu)經(jīng)過優(yōu)化之后有一定程度降低,在11:00至17:00時間段內(nèi)降損效果明顯,尤其是在14:00線路損耗降低了71.41%,降損效果尤為顯著,說明該方法能有效提高配電網(wǎng)運行的經(jīng)濟性。
由圖5所知,配電網(wǎng)絡(luò)結(jié)構(gòu)經(jīng)過動態(tài)優(yōu)化之后總DG的平均消納率得到了較大幅度的提升,說明該方法能有效提高配電網(wǎng)的電力供需平衡能力和經(jīng)濟運行水平。
為了深入分析本文所提網(wǎng)絡(luò)結(jié)構(gòu)動態(tài)優(yōu)化方法對各DG消納利用的影響,因此對網(wǎng)絡(luò)結(jié)構(gòu)動態(tài)優(yōu)化前后各DG的日平均消納利用率進行了對比,如表3所示。
表3 配電網(wǎng)動態(tài)重構(gòu)前后各DG日平均消納利用對比分析
由表3可知,配電網(wǎng)絡(luò)結(jié)構(gòu)優(yōu)化后每個DG的日內(nèi)平均消納率均有一定程度的提升,其中,DG4實現(xiàn)了完全消納。網(wǎng)絡(luò)結(jié)構(gòu)優(yōu)化后各DG消納利用水平的上升,意味著該方法能降低棄風棄光現(xiàn)象出現(xiàn)的概率,因此該方法能有效提高配電網(wǎng)運行的經(jīng)濟性以及環(huán)保性。
上述是針對24 h時間段內(nèi)配電網(wǎng)絡(luò)結(jié)構(gòu)優(yōu)化前后仿真結(jié)果進行的分析,為了進一步分析本文所提方法在時間斷面上對配電網(wǎng)運行的優(yōu)化效果,基于圖3顯示的DG總發(fā)電在上午11:00左右達到頂峰,本文選取11:00時刻重構(gòu)前后的配電網(wǎng)運行情況進行細致分析。其中,各DG消納利用的變化情況見表4。經(jīng)過潮流計算進行電壓校驗,配電網(wǎng)重構(gòu)前后33個節(jié)點電壓分布,如圖6所示。
表4 11:00 DNR前后各DG消納利用情況
由表4可知,在11:00根據(jù)區(qū)域動態(tài)優(yōu)化劃分方法得到的配電網(wǎng)絡(luò)結(jié)構(gòu)內(nèi)部分DG的消納利用率升高了。其中,DG1和DG2的消納利用率在網(wǎng)絡(luò)結(jié)構(gòu)優(yōu)化前后均達到了完全消納,DG1和DG2在初始網(wǎng)絡(luò)結(jié)構(gòu)下實現(xiàn)了完全消納,這與DG1和DG2的接入容量以及研究時間段內(nèi)DG有功出力以及負荷大小相關(guān);連接在22節(jié)點的DG4消納利用率提升最顯著,上升了31.30個百分點;DG3消納利用率的提升效果也很明顯,上升了18.97個百分點。
假設(shè)配電網(wǎng)線電壓的基準值以根節(jié)點為準,則根節(jié)點電壓標幺值為1.0。由圖6可知,網(wǎng)絡(luò)結(jié)構(gòu)優(yōu)化后各節(jié)點電壓的標幺值都在0.95到1.05之間,符合節(jié)點電壓上下限的要求。此外,配電網(wǎng)絡(luò)結(jié)構(gòu)優(yōu)化后的節(jié)點電壓有了一定的提升,尤其是DG接入點附近的電壓提升最為顯著。
結(jié)合表4與圖6可知,雖然DG1和DG2的消納利用率在網(wǎng)絡(luò)結(jié)構(gòu)優(yōu)化前后均達到了完全消納,但是初始網(wǎng)絡(luò)結(jié)構(gòu)下的節(jié)點電壓存在越限問題,經(jīng)過區(qū)域優(yōu)化劃分方法得到的網(wǎng)絡(luò)結(jié)構(gòu)下各節(jié)點電壓均符合電壓質(zhì)量要求。
3.2.1 測試數(shù)據(jù)
為進一步驗證本文所提方法的有效性,本節(jié)采用復雜的PG&E 69節(jié)點配電系統(tǒng)[30]進行測試,系統(tǒng)的結(jié)構(gòu)如圖7所示。本文分別在節(jié)點23、38上接入了額定容量分別為0.8、1MW的光伏電站,在節(jié)點53、59上分別接入了額定容量均為0.8MW的風電場。基于區(qū)域初始劃分方法可以將配電網(wǎng)絡(luò)劃分為2個主干線區(qū)域(A1、A2)以及6個分支線區(qū)域(A3~A8),如圖7所示。
為保證配電網(wǎng)動態(tài)重構(gòu)的安全穩(wěn)定性,設(shè)定每個開關(guān)的操作次數(shù)和所有開關(guān)的操作次數(shù)上限分別為3次和20次。計算所采用的DG出力率的變化情況與圖3中的DG變化曲線一致,負荷率變化曲線如圖8所示。
3.2.2 結(jié)果分析
69節(jié)點配電系統(tǒng)動態(tài)重構(gòu)結(jié)果對比見表5。
由表5可知,與未重構(gòu)相比,動態(tài)重構(gòu)后的配電網(wǎng)對DG的消納利用率整體上升了16.09個百分點,線損降低了55.32%。
可以看出,該結(jié)果與采用IEEE 33節(jié)點測試系統(tǒng)所得結(jié)論一致,同樣表明了所提方法能夠促進DG消納、提升系統(tǒng)運行的經(jīng)濟安全運行能力。
表5 69節(jié)點系統(tǒng)動態(tài)重構(gòu)前后結(jié)果對比
在大規(guī)模DG和EV接入農(nóng)村配電網(wǎng)的新形式下,本文圍繞農(nóng)村有源配電網(wǎng)的動態(tài)重構(gòu)問題,提出了一種新的基于區(qū)域劃分的農(nóng)村有源配電網(wǎng)動態(tài)重構(gòu)方法。主要研究工作及結(jié)論如下:
1)計及DG與負荷的雙重時變特性,提出了一種農(nóng)村有源配電網(wǎng)區(qū)域初始劃分原則。根據(jù)區(qū)域初始劃分原則,可以對主干線路和分支線路進行區(qū)域初始劃分,形成初始配電網(wǎng)絡(luò)劃分圖,為快速求解動態(tài)重構(gòu)問題奠定基礎(chǔ)。
2)提出了一種基于圖論算法的區(qū)域動態(tài)優(yōu)化劃分方法,可根據(jù)農(nóng)村有源配電網(wǎng)的實際運行工況對區(qū)域初始劃分結(jié)果進行動態(tài)優(yōu)化,從而獲得區(qū)域間開關(guān)控制方案,有助于提高動態(tài)重構(gòu)問題的求解效率。
3)基于IEEE 33節(jié)點和PG&E 69節(jié)點算例進行了仿真驗證,仿真結(jié)果表明:所提方法在33節(jié)點算例中損耗降低效果很好,尤其是14:00時的網(wǎng)絡(luò)損耗顯著降低了71.41%,此時提高DG消耗的效果也是最明顯的;在69節(jié)點算例中提升了系統(tǒng)日DG平均消納率16.09個百分點,日線損降低了55.32%。這說明本文所提方法能夠?qū)崿F(xiàn)農(nóng)村有源配電網(wǎng)提升DG消納、降低線損以及改善電壓質(zhì)量等技術(shù)要求。
[1] Oureilidis K O, Bakirtzis E A, Demoulias C S. Frequency-based control of islanded microgrid with renewable energy sources and energy storage[J]. Journal of Modern Power Systems & Clean Energy, 2016, 4(1): 54-62.
[2] 董逸超,王守相,閆秉科. 配電網(wǎng)分布式電源接納能力評估方法與提升技術(shù)研究綜述[J]. 電網(wǎng)技術(shù),2019(7):2258-2266.
Dong Yichao, Wang Shouxiang, Yan Bingke. Summary of research on evaluation method and improvement technology of distributed power supply acceptability in distribution network[J]. Power System Technology, 2019(7): 2258-2266. (in Chinese with English abstract)
[3] 孟曉芳,樸在林,王英男,等. 中壓配電網(wǎng)網(wǎng)架優(yōu)化規(guī)劃方法[J]. 農(nóng)業(yè)工程學報,2011,27(11):164-164.
Meng Xiaofang, Piao Zailin, Wang Yingnan. Optimal planning method for medium voltage distribution network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(11): 164-164. (in Chinese with English abstract)
[4] 蘇向敬,陳思利,米陽,等. 分布式電池儲能在含高比例可再生能源不平衡配電網(wǎng)中的序次優(yōu)化配置[J]. 電網(wǎng)技術(shù),2019,43(10):3698-3707.
Su Xiangjing, Chen Sili, Mi Yang, et al. Sequential optimization configuration of distributed battery energy storage in unbalanced distribution network with high proportion of renewable energy[J]. Power System Technology, 2019, 43(10): 3698-3707. (in Chinese with English abstract)
[5] 牛煥娜,楊明皓,井天軍,等. 農(nóng)村主動型配電網(wǎng)優(yōu)化調(diào)度線性模型與算法[J]. 農(nóng)業(yè)工程學報,2013,29(16):190-197.
Niu Huanna, Yang Minghao, Jing Tianjun, et al. Linear optimal operation model and algorithm for active distribution network in rural areas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(16): 190-197. (in Chinese with English abstract)
[6] 孟曉芳,樸在林,王英男,等. 考慮分布式電源影響的配電網(wǎng)降損分析[J]. 農(nóng)業(yè)工程學報,2013,29(25):128-131.
Meng Xiaofang, PiaoZailin, Wang Yingnan, et al. Analysis of distribution network loss considering influence of distributed generation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(25): 128-131. (in Chinese with English abstract)
[7] 唐巍,薄博,叢鵬偉,等. 含分布式發(fā)電接入的農(nóng)村電網(wǎng)多目標規(guī)劃[J]. 農(nóng)業(yè)工程學報,2013,29(增刊):132-137.
TangWei, Bo Bo, Cong Pengwei, et al. Multi-objective planning of rural power network incorporating distributed generation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(Supp1. ): 132-137. (in Chinese with English abstract)
[8] 高燕,楊仁剛,李偉. 考慮分布式電源的農(nóng)村配電網(wǎng)網(wǎng)絡(luò)重構(gòu)[J]. 農(nóng)業(yè)工程學報,2013,29(9):162-169.
Gao Yan, Yang Rengang, Li Wei. Rural distribution network reconfiguration with dispersed generation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(9): 162-169. (in Chinese with English abstract)
[9] Hamida I B, Salah S B, Msahli F, et al. Optimal network reconfiguration and renewable DG integration considering time sequence variation in load and DGs[J]. Renewable Energy, 2018, 121(6): 66-80.
[10] 翟鶴峰,楊明,趙利剛,等. 提升分布式電源接納能力的配電網(wǎng)三相魯棒動態(tài)重構(gòu)[J]. 電力系統(tǒng)自動化,2019,43(18):35-42.
ZhaiHefeng, Yang Ming, Zhao Ligang, et al. Three-phase robust dynamic reconfiguration of distribution network to improve acceptance ability of distributed generator[J]. Automation of Electric Power Systems, 2019, 43(18): 35-42. (in Chinese with English abstract)
[11] 余健明,王征,許苗. 考慮負荷變化的配電網(wǎng)動態(tài)分時段重構(gòu)[J]. 高電壓技術(shù),2007,33(9):125-128.
YuJianming, Wang Zheng, Xu Miao. Dynamic reconfiguration of distribution network with dividing time and considering load changes[J]. High Voltage Engineering, 2007, 33(9): 125-128. (in Chinese with English abstract)
[12] Shariatkhah M H, Haghifam M R, Salehi J, et al. Duration based reconfiguration of electric distribution networks using dynamic programming and harmony search algorithm[J]. International Journal of Electrical Power & Energy Systems, 2012, 41(1): 1-10.
[13] 趙靜翔,牛煥娜,王鈺竹. 基于信息熵時段劃分的主動配電網(wǎng)動態(tài)重構(gòu)[J]. 電網(wǎng)技術(shù),2017,41(2):402-408.
ZhaoJingxiang, Niu Huanna, Wang Yuzhu. Dynamic reconfiguration of active distribution network based on information entropy of time intervals[J]. Power System Technology, 2017, 41(2): 402-408. (in Chinese with English abstract)
[14] 李振坤,陳星鶯,趙波,等. 配電網(wǎng)動態(tài)重構(gòu)的多代理協(xié)調(diào)優(yōu)化方法[J]. 中國電機工程學報,2008,28(34):72-79.
Li Zhenkun, Chen Xingying, Zhao Bo, et al. Dynamic reconfiguration of the distribution network based on multi-agent systems[J]. Proceedings of the CSEE, 2008, 28(34): 72-79. (in Chinese with English abstract)
[15] 王淳,高元海. 采用最優(yōu)模糊C均值聚類和改進化學反應算法的配電網(wǎng)絡(luò)動態(tài)重構(gòu)[J]. 中國電機工程學報,2014,34(10):1682-1691.
Wang Chun, Gao Yuanhai. Dynamic reconfiguration of distribution network based on optimal fuzzy C-means clustering and improved chemical reaction optimization[J]. Proceedings of the CSEE, 2014, 34(10): 1682-1691. (in Chinese with English abstract)
[16] Zhu J, Wu Z, Jiang P, et al. An improved PSO algorithm based on statistics for distribution network reconfiguration to increase the penetration of distributed generations[J]. 2015, DoI: 10.1049.CP.2015.09.02.
[17] 易海川,張彼德,王海穎,等. 提高DG接納能力的配電網(wǎng)動態(tài)重構(gòu)方法[J]. 電網(wǎng)技術(shù),2016,40(5):1431-1436.
Yi Haichuan, Zhang Bide, Wang Haiying, et al. Distribution network dynamic reconfiguration method for improving distribution network’s ability of accepting DG[J]. Power System Technology, 2016, 40(5): 1431-1436. (in Chinese with English abstract)
[18] 叢鵬偉,唐巍,張璐,等. 基于機會約束規(guī)劃考慮DG與負荷多狀態(tài)的配電網(wǎng)重構(gòu)[J]. 電網(wǎng)技術(shù),2013,37(9):2573-2579.
Cong Pengwei, Tang Wei, Zhang Lu, et al. Chance-constrained programming based distribution network reconfiguration considering multi-states of distributed generation and load[J]. Power System Technology, 2013, 37(9): 2573-2579. (in Chinese with English abstract)
[19] 趙晶晶,李新,彭怡,等. 基于粒子群優(yōu)化算法的配電網(wǎng)重構(gòu)和分布式電源注入功率綜合優(yōu)化算法[J]. 電網(wǎng)技術(shù),2009,33(17):162-166.
Zhao Jingjing, Li Xin, Peng Yi, et al. A comprehensive optimization algorithm for injection power of distributed generation and distribution network reconfiguration based on particle swarm optimization[J]. Power System Technology, 2009, 33(17): 162-166. (in Chinese with English abstract)
[20] 傅曉飛,紀坤華,廖天明,等. 含間歇性DG的主動配電網(wǎng)動態(tài)重構(gòu)研究[J]. 浙江電力,2018,37(11):73-81.
Fu Xiaofei, Ji Kunhua, Liao Tianming, et al. Study on dynamic reconfiguration of active distribution network considering intermittent DG[J]. Zhejiang Electric Power, 2018, 37(11): 73-81. (in Chinese with English abstract)
[21] 唐浩,周步祥,彭章剛,等. 采用改進細菌覓食算法的含分布式電源配電網(wǎng)動態(tài)重構(gòu)[J]. 電力系統(tǒng)及其自動化學報,2017,29(4):122-128.
Tang Hao, Zhou Buxiang, Peng Zhanggang, et al. Dynamic reconfiguration of distribution network with distributed generations using improved bacterial foraging algorithm[J]. Proceedings of the CSU-EPSA, 2017, 29(4): 122-128. (in Chinese with English abstract)
[22] Zhu J, Gu W, Lou G, et al. Learning automata based methodology for optimal allocation of renewable distributed generation considering network reconfiguration[J]. IEEE Access, 2017, 5: 14275-14288.
[23] 付洋洋. 提高可再生能源消納能力的配電網(wǎng)多時段重構(gòu)研究[D]. 天津:天津大學,2018.
Fu Yangyang. Research on Multi-period Network Reconfiguration for Increasing the Hosting Capacity of Distribution Networks[D]. Tianjin: Tianjin University, 2018. (in Chinese with English abstract)
[24] Singh J, Tiwari R. Real power loss minimisation of smart grid with electric vehicles using distribution feeder reconfiguration[J]. IET Generation, Transmission & Distribution, 2019, 13(18): 4249-4261.
[25] 陳正鵬,黃純,張亞萍,等. 基于改進雙種群遺傳算法的含分布式電源配電網(wǎng)重構(gòu)[J]. 電力系統(tǒng)及其自動化學報,2017,29(4):78-83.
Chen Zhengpeng, Huang Chun, Zhang Yaping, et al. Distribution network reconfiguration with different distributed generations based on improved dual population genetic algorithm[J]. Proceedings of the CSU-EPSA, 2017, 29(4): 78-83. (in Chinese with English abstract)
[26] Peng J, Wenli D. Multi-objective modeling and optimization for scheduling of cracking furnace systems[J]. Chinese Journal of Chemical Engineering, 2017, 25(8): 992-999.
[27] 湯旻安,張凱越,許希元. 基于啟發(fā)式規(guī)則與AHP-CRITIC算法的配電網(wǎng)故障恢復策略[J]. 電力系統(tǒng)保護與控制,2020,48(14):1-9.
Tang Wenan, Zhang Kaiyue, Xu Xiyuan. Service restoration strategy of a distribution network based on heuristic rules and the AHP-CRITIC algorithm[J]. Power System Protection and Control, 2020, 48(14): 1-9. (in Chinese with English abstract)
[28] 徐成司,董樹鋒,孫洲,等. 基于網(wǎng)絡(luò)簡化和深度優(yōu)先遍歷的配電網(wǎng)路徑搜索算法[J]. 電力系統(tǒng)自動化,2017,41(24):170-176.
Xu Chengsi, Dong Shufeng, Sun Zhou, et al. A path searching algorithm for distribution network based on network simplification and depth first traversal[J]. Automation of Electric Power Systems, 2017, 41(24): 170-176. (in Chinese with English abstract)
[29] Nguyen T T, Nguyen T T, Nguyen N A. Optimal network reconfiguration to reduce power loss using an initial searching point for continuous genetic algorithm[J]. Complexity, 2020, 2020(6): 1-21.
[30] Moghaddam M J H, Kalam A, Shi J, et al. A new model for reconfiguration and distributed generation allocation in distribution network considering power quality indices and network losses[J]. IEEE Systems Journal, 2020, 14(3): 1-9.
Dynamic reconfiguration method of rural active distribution network based on regional division
Liu Zhihong, Sheng Wanxing, Du Songhuai, Su Juan※, Xia Yue
(,,100083,)
In recent years, under the guidance of China's green energy development strategy, a large number of photovoltaic, wind power and other DGs have been connected to the rural distribution network. The current rural distribution network structure, DG grid-connected location and capacity, line transmission capacity and other system conditions are in conflict with the ever-increasing rural power demand. DG output and load demand are continuously changing with time. The large-scale access of DGs and EVs has made the “source-load” side of the rural distribution network present significant uncertainty. The traditional topology of rural distribution network cannot cope with the impact of this “source-load” double uncertainty. Therefore, it is urgent to study a new method of dynamic reconfiguration for rural active distribution network. This paper establishes a dynamic reconfiguration model of active distribution network with DG consumption and line loss as objective functions. Taking into account the time-varying characteristics of “source-load”, this paper proposes a new method of dynamic reconfiguration of rural active distribution network based on regional division, and designs the process of this dynamic reconfiguration method. In order to improve the efficiency of solving the problem of dynamic reconfiguration of active distribution network, a regional division method is proposed for the first time. The regional division method includes two parts: The initial division of regions and the optimized division of regions. The dynamic reconfiguration method of active distribution network based on area division mainly includes the following four steps. Firstly, the distribution network structure is divided into several initial regions which include main line regions and branch line regions based on the regional initial division method. Secondly, with the goal of promoting the flexible and efficient combined application of DGs between regions, the result of regional initial division is optimized dynamically based on the breadth-first traversal algorithm in the graph theory algorithm. Thirdly, based on the obtained results of dynamic regional optimization, the depth-first traversal algorithm is used to test and modify the DNR scheme to meet the topology constraints of the distribution network. At this time, all feasible DNR schemes can be obtained. Finally, the fast non-dominated sorting strategy is adopted to select the best network reconfiguration scheme that meets the constraints such as node voltage. To validate the performance of the proposed method, it is tested on the well-known IEEE 33-node and PG&E 69-node distribution system. The simulation result of 33-node distribution system shows that the loss reduction effect of the proposed method is very good. Especially at 14:00, the loss reduction effect of the distribution network was the most obvious, which was reduced by 71.41%. At this time, the effect of increasing the utilization rate of DG consumption is also obvious. On this basis, the proposed method on the consumption of each DG was deeply analyzed in this article. Result shows that the proposed method can achieve complete consumption of DG. The voltage of each node under the network structure obtained by the regional optimization division method meets the voltage quality requirements. In addition, the average daily DG consumption rate of the PG&E 69-node distribution system was increased by 16.09 percent point, and the daily line loss was reduced by 55.32%. The effectiveness of the proposed method is verified by the simulation of these two case studies. The simulation results show that the proposed method can fully switch and adjust the ability to improve the absorption capacity of the distributed power, reduce the line loss, suppress the fluctuation of the distributed power, and keep the node voltage smooth.
energy; algorithm; rural active distribution network; regional division; network dynamic reconfiguration
劉志虹,盛萬興,杜松懷,等. 基于區(qū)域劃分的農(nóng)村有源配電網(wǎng)動態(tài)重構(gòu)方法[J]. 農(nóng)業(yè)工程學報,2021,37(20):248-255.doi:10.11975/j.issn.1002-6819.2021.20.028 http://www.tcsae.org
Liu Zhihong, Sheng Wanxing, Du Songhuai, et al. Dynamic reconfiguration method of rural active distribution network based on regional division[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(20): 248-255. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.20.028 http://www.tcsae.org
2021-07-15
2021-10-11
國家自然科學基金項目(52007194);國家電網(wǎng)公司總部科技項目(SGXJWL00YJJS1801742);中國農(nóng)業(yè)大學2115人才工程資助
劉志虹,博士研究生,研究方向為配電網(wǎng)優(yōu)化運行與控制。Email:zhihongliu@cau.edu.cn
蘇娟,博士,副教授,博士生導師,研究方向為農(nóng)業(yè)電氣化與自動化、電力市場等。Email:sujuan@cau.edu.cn
10.11975/j.issn.1002-6819.2021.20.028
TM761
A
1002-6819(2021)-20-0248-08