呂雪珊 祝杭琪 王雪琴
摘要: 紡織面料虛擬化對產(chǎn)品感官傳播與參考的作用越來越高,絲綢品種的傳承與創(chuàng)新傳播同樣需要借助此手段。本研究聚焦于多品類絲綢面料,參考真實(shí)絲綢類面料的懸垂性來進(jìn)行虛擬絲綢懸垂性實(shí)驗(yàn)并對比他們之間的差異,從而驗(yàn)證絲綢類面料懸垂虛擬化的可行性。通過CLO3D、C4D搭建虛擬實(shí)驗(yàn)環(huán)境,并利用Matlab對真實(shí)和虛擬懸垂測試得到的懸垂圖像進(jìn)行圖像處理,得出8個(gè)懸垂指標(biāo)。實(shí)驗(yàn)表明,懸垂系數(shù)、波數(shù)和最大波峰幅值這3個(gè)方面有較好的模擬效果。相對于真實(shí)絲綢類面料,CLO3D環(huán)境中面料虛擬化的懸垂性仿真效果與實(shí)際較為接近,但懸垂虛擬化具有更均勻的懸垂形態(tài)分布。
關(guān)鍵詞: 真絲織物;虛擬化仿真;懸垂性;CLO3D;C4D;面料虛擬化
中圖分類號: TS941.42 ? ?文獻(xiàn)標(biāo)志碼: A ? ?文章編號: 1001-7003(2022)01-0038-08
引用頁碼: 011106DOI: 10.3969/j.issn.1001-7003.2022.01.006
紡織服裝虛擬可視化正處于一個(gè)深入化、精細(xì)化、智能化的發(fā)展階段[1]。同樣,虛擬可視化技術(shù)在紡織上的應(yīng)用也方興未艾,需要不斷地探索和研究[2]。
目前,國內(nèi)針對織物三維可視化的研究主要有以下三個(gè)方面:傳統(tǒng)服飾再現(xiàn)[1]、織物三維仿真[3-5]與虛擬懸垂性研究[6]。國外針對織物三維可視化的研究主要有以下六個(gè)方面:虛擬織物懸垂性、服裝可視化仿真、可視化仿真效果評價(jià)[7]、虛擬觸感[8]、虛擬試衣與虛擬可視化算法等相關(guān)研究。針對織物懸垂性的虛擬仿真,國內(nèi)研究主要在虛擬織物的懸垂屬性與虛擬面料相關(guān)參數(shù)的相關(guān)性分析較多[9-11]。與國外的織物三維可視化模擬研究水平相比,國內(nèi)研究還有所欠缺[2]。
在現(xiàn)有研究中,Zulaikha等[12],Buyukaslan等[13],Hyo等[14]分別針對幾類服裝和窗簾等具體的應(yīng)用場景進(jìn)行虛擬化評價(jià)與基礎(chǔ)算法的分析,并沒有對面料的細(xì)化類型進(jìn)行對比研究。祝杭琪等[15]為了弘揚(yáng)當(dāng)代絲綢品種的傳播,選取了78塊最受市場喜愛的不同種類真絲面料進(jìn)行懸垂性測試。在此實(shí)驗(yàn)基礎(chǔ)上,本文繼續(xù)從絲綢類面料虛擬化的懸垂性出發(fā),通過CLO3D與Matlab得到虛擬懸垂指標(biāo),對比真實(shí)懸垂指標(biāo),從而分析虛擬絲綢類面料模擬的差異與可行性。基于廣泛應(yīng)用的CLO3D軟件進(jìn)行虛擬面料的生成與對比研究,可為設(shè)計(jì)師們在軟件中設(shè)計(jì)絲綢類面料及其產(chǎn)品時(shí),提供一個(gè)理性的參考,為絲綢類面料的虛擬仿真數(shù)字化研究提供可行方案。
1 虛擬面料庫的建立
CLO3D軟件具有配套的面料屬性測試儀器與對應(yīng)虛擬面料生成程序,首先實(shí)驗(yàn)對真實(shí)絲綢類面料依據(jù)CLO3D軟件的要求進(jìn)行屬性測試與虛擬面料的生成。
對選取78塊絲綢類面料按照CLO3D面料屬性檢測的要求,分別在經(jīng)向、緯向與斜對角45°三個(gè)方向裁剪出3 cm× 22 cm的試樣。測量質(zhì)量、厚度、彎曲強(qiáng)度與拉伸強(qiáng)度的相關(guān)參數(shù),并在CLO3D中進(jìn)行面料參數(shù)的輸入、面料的生成和保存。
由軟件自身計(jì)算而得的虛擬面料所包含的參數(shù),根據(jù)實(shí)際物理測試的彎曲強(qiáng)度與拉伸強(qiáng)度數(shù)據(jù),CLO3D軟件中計(jì)算出了相關(guān)的面料虛擬屬性參數(shù):“Stretch-Weft”“Stretch-Warp”“Shear”“Bending-Weft”“Bending-Warp”“Bending-Bias”“Density”。
2 虛擬懸垂實(shí)驗(yàn)
2.1 虛擬懸垂儀建立
利用C4D建模軟件進(jìn)行虛擬懸垂儀模型的建立,如圖1所示。模型數(shù)據(jù)嚴(yán)格根據(jù)XDP-1型懸垂測試儀(上海新纖儀器有限公司)的參數(shù)進(jìn)行數(shù)字化測試模型的建立。圖2為CLO中相應(yīng)的虛擬懸垂測試儀的受力點(diǎn)與應(yīng)力圖。
2.2 虛擬懸垂實(shí)驗(yàn)
進(jìn)行面料正反面的懸垂測試實(shí)驗(yàn),主視圖與俯視圖如圖3所示。參照真實(shí)織物懸垂實(shí)驗(yàn),每塊虛擬面料依次進(jìn)行正面與反面的懸垂實(shí)驗(yàn)各3次并進(jìn)行保存。
3 懸垂指標(biāo)獲取
為統(tǒng)一虛擬與真實(shí)懸垂實(shí)驗(yàn)所得的懸垂指標(biāo),本文利用Matlab軟件對真實(shí)和虛擬懸垂測試得到的懸垂圖像進(jìn)行處理。經(jīng)處理,得出8個(gè)懸垂指標(biāo):懸垂系數(shù)、波數(shù)、波峰均勻度、波峰夾角均勻度、最大波峰幅值、最小波峰幅值、最大波峰夾角、最小波峰夾角。
3.1 圖像的基礎(chǔ)處理
利用Matlab讀取懸垂圖像,并進(jìn)行灰度化、二值化及懸垂輪廓的提取。圖像讀取采用的函數(shù)是Ior=imread(′1-1jpg′),灰度化采用的函數(shù)是Igr=rgb2gray(Ior)。通過gt=graythresh(Igr)函數(shù)求出閾值后,再利用函數(shù)Ied=edge(Ibw,′sobel′)求取懸垂輪廓線。
由表1可以觀察得出,真實(shí)懸垂測試儀得出的懸垂圖像由于光線的問題,在圖像的二值化與輪廓的提取時(shí)出現(xiàn)了明顯的誤差。為修正這個(gè)誤差,將懸垂圖像在(Photoshop,PS)中進(jìn)行初步處理,通過增加懸垂圖像區(qū)域與空白區(qū)域的對比度來提取清晰的懸垂圖像,經(jīng)PS處理后的懸垂圖像提取如表2所示。
3.2 建立數(shù)學(xué)坐標(biāo)處理圖像數(shù)據(jù)及指標(biāo)求取
懸垂輪廓經(jīng)坐標(biāo)原點(diǎn)轉(zhuǎn)換后的示意如圖4所示。伸出半徑R為懸垂輪廓上各點(diǎn)與托盤邊緣的距離,懸垂輪廓上任一點(diǎn)P(X,Y)與原點(diǎn)O的距離為R′,故伸出半徑R=DP=R′-d/2。夾角A為點(diǎn)P與X軸的夾角,即∠POX,其夾角的求法如下所示:
P點(diǎn)位于X軸上方時(shí)公式為:
A=cos-1(X/R′)(1)
P點(diǎn)位于X軸下方時(shí)公式為:
A=cos-1-XR′+π(2)
相關(guān)懸垂指標(biāo)有8個(gè)。其中,靜態(tài)懸垂系數(shù)、試樣面積的公式及托盤面積的計(jì)算公式為:
F=(As-Ad)/(AD-Ad)(3)
AD=π×122(4)
Ad=π×62(5)
式中:F為靜態(tài)懸垂系數(shù);As為投影面積,mm2;AD為試樣面積,mm2;Ad為托盤面積,mm2。
波數(shù)(N)表示懸垂輪廓線一周的波峰個(gè)數(shù)。波峰幅值(WC)表示波峰點(diǎn)對應(yīng)的伸出半徑R值。波峰幅值均勻度(CVR)表示了波峰幅值的離散程度,其公式為:
CVR/%=1WC×∑ni=1(WC(i)-WC)2n-1×100(6)
式中:CVR為波峰幅值均勻度,%;WC為波峰幅值,mm;n為個(gè)數(shù)。
波峰夾角(CA)表示兩個(gè)相鄰波峰點(diǎn)所對應(yīng)的夾角的值。波峰夾角均勻度(CVA)代表了波峰夾角(CA)的離散程度,其公式為:
CVA/%=1CA×∑ni=1(CA(i)-CA)2n-1×100(7)
式中:CVA為波峰夾角均勻度,%;CA為波峰夾角,(°)。
4 與真實(shí)懸垂測試結(jié)果的比較
將虛擬與真實(shí)的懸垂指標(biāo)進(jìn)行對比,通過對8個(gè)懸垂指標(biāo)的配對樣本T檢驗(yàn)與配對樣本的秩和檢驗(yàn),確定虛擬與真實(shí)絲綢類面料的懸垂性仿真效果的差異是否較大,獲得CLO3D在絲綢類面料的懸垂性仿真效果的整體判斷與評價(jià)。
4.1 配對樣本T檢驗(yàn)
在SPSS軟件中對真實(shí)與虛擬懸垂指標(biāo)的差值進(jìn)行正態(tài)性檢驗(yàn),若差值符合正態(tài)分布,則對兩組數(shù)據(jù)進(jìn)行配對樣本T檢驗(yàn),否則使用配對樣本的秩和檢驗(yàn)。
4.1.1 差值正態(tài)性檢驗(yàn)
選擇適用于小樣本的SW檢驗(yàn)對這8個(gè)懸垂指標(biāo)進(jìn)行正態(tài)性檢驗(yàn),得到的結(jié)果如表3所示。顯著性P值大于0.05的只有最大波峰幅值和最大波峰夾角,其差值符合正態(tài)分布,可采用配對樣本T檢驗(yàn),其余6個(gè)懸垂指標(biāo)則采用配對樣本的秩和檢驗(yàn)。
4.1.2 配對樣本T檢驗(yàn)
對最大波峰幅值與最大波峰夾角這2個(gè)懸垂指標(biāo)進(jìn)行配對樣本T檢驗(yàn),提出原假設(shè)。分別為:
假設(shè)1:由真實(shí)與虛擬懸垂實(shí)驗(yàn)所得的最大波峰幅值,其兩組數(shù)據(jù)間差值的均值為零;
假設(shè)2:由真實(shí)與虛擬懸垂實(shí)驗(yàn)所得的最大波峰夾角,其兩組數(shù)據(jù)間差值的均值為零。
由表4—表6可得,真實(shí)與虛擬懸垂實(shí)驗(yàn)所得的最大波峰幅值的平均值、標(biāo)準(zhǔn)偏差與標(biāo)準(zhǔn)誤差平均值較為接近,而最大波峰夾角則存在一定的差異。他們的相關(guān)性系數(shù)都大于0.7,屬于強(qiáng)相關(guān),且顯著性P值都小于0.05,存在統(tǒng)計(jì)學(xué)意義。最大波峰幅值的顯著性P值大于0.05,所以接受原假設(shè)1。而最大波峰夾角的顯著性P值小于0.05,拒絕原假設(shè)2。
4.1.3 配對樣本的秩和檢驗(yàn)
最大波峰幅值和最大波峰夾角,其差值符合正態(tài)分布,不適用于秩和檢驗(yàn),對差值不符合正態(tài)分布的6項(xiàng)進(jìn)行配對樣本的秩和檢驗(yàn),并提出原假設(shè)。分別為:
假設(shè)3:由真實(shí)與虛擬懸垂實(shí)驗(yàn)所得的懸垂系數(shù)、波數(shù)的差值中位數(shù)為零;
假設(shè)4:由真實(shí)與虛擬懸垂實(shí)驗(yàn)所得的波峰幅值均勻度、波峰夾角均勻度、最小波峰幅值、最小波峰夾角的差值中位數(shù)為零。
表7是這6項(xiàng)的平均值、標(biāo)準(zhǔn)偏差與百分位的描述統(tǒng)計(jì)。由表7可得出,除了懸垂系數(shù)和波數(shù)的平均值、標(biāo)準(zhǔn)偏差值與百分位值比較接近,而其余的差別都比較大。表8是配對樣本秩和檢驗(yàn)結(jié)果,可得懸垂系數(shù)與波數(shù)的顯著性P值都大于0.05,所以接受原假設(shè)3。而波峰幅值均勻度、波峰夾角均勻度、最小波峰幅值、最小波峰夾角的顯著性P值都小于0.05,拒絕原假設(shè)4。
由上述配對樣本T檢驗(yàn)與配對樣本的秩和檢驗(yàn)結(jié)果可以得到,懸垂系數(shù)、波數(shù)與最大波峰幅值之間不存在顯著差異,而波峰幅值均勻度、波峰夾角均勻度、最小波峰幅值、最大波峰夾角與最小波峰夾角則在兩組數(shù)據(jù)之間存在顯著差異。說明CLO3D軟件在絲綢類面料的懸垂性模擬上,在懸垂系數(shù)、波數(shù)、最大波峰幅值方面有較好的模擬效果。
4.2 懸垂性仿真效果綜合評價(jià)
為探索CLO3D在絲綢類面料的懸垂性模擬上的差異情況,本文根據(jù)真實(shí)與虛擬懸垂實(shí)驗(yàn)所得的懸垂指標(biāo)的聚類結(jié)果[15]進(jìn)行對比分析。
4.2.1 懸垂圖像評價(jià)
由真實(shí)懸垂實(shí)驗(yàn)所得的懸垂指標(biāo)聚類結(jié)果[15]可知,絲綢類面料根據(jù)其懸垂性可以分為五類:懸垂對稱平挺型面料、懸垂雙向挺闊型面料、懸垂異向挺闊型面料、懸垂勻稱垂墜型面料和懸垂勻稱柔軟型面料?,F(xiàn)將五類面料的真實(shí)懸垂所得的懸垂圖像與虛擬懸垂實(shí)驗(yàn)所得的懸垂圖像進(jìn)行對比,來進(jìn)一步探討CLO3D在絲綢類面料的懸垂性模擬上的具體效果。五類面料的真實(shí)懸垂圖像與虛擬懸垂圖像的對比如表9所示。
由表9可以得出,五類面料的真實(shí)懸垂圖像與虛擬懸垂圖像在懸垂形狀與懸垂系數(shù)上具有很高的相似性。結(jié)合配對樣本T檢驗(yàn)與配對樣本的秩和檢驗(yàn)的結(jié)果,可以進(jìn)一步驗(yàn)證CLO3D軟件在絲綢類面料的懸垂系數(shù)、波數(shù)、最大波峰幅值的模擬具有較好的效果。
4.2.2 其他懸垂指標(biāo)評價(jià)
根據(jù)配對樣本T檢驗(yàn)與配對樣本的秩和檢驗(yàn)的結(jié)果,將最小波峰幅值和最大波峰夾角真實(shí)與虛擬懸垂實(shí)驗(yàn)所得的懸垂指標(biāo)進(jìn)行了對比,如圖5和圖6所示。由圖5、圖6可以看出,它們整體模擬效果相貼近,而另外3個(gè)指標(biāo)可以從表9的類5和類3中看出,虛擬懸垂圖像比真實(shí)懸垂圖像在波峰幅值均勻度、波峰夾角均勻度上分布更均勻,類2與類5的懸垂圖像都呈現(xiàn)較規(guī)整的多邊形形態(tài),其波峰分布與最小波峰夾角也呈現(xiàn)較好的均勻?qū)ΨQ狀態(tài)。
5 結(jié) 論
本文基于真實(shí)絲綢類懸垂性綜合評價(jià),利用CLO作為軟件平臺(tái)進(jìn)行虛擬化絲綢類面料的懸垂性研究,并對比他們的差異性。豐富了絲綢類面料真實(shí)與虛擬化的懸垂性對比的應(yīng)用基礎(chǔ)研究,為更多品類的真絲面料虛擬可視化方案的可靠性提供依據(jù)及參考。同時(shí)拓展大眾及設(shè)計(jì)師對真絲面料的認(rèn)知、使用依據(jù)及視角。
1) 利用CLO3D配套的面料屬性檢測設(shè)備,獲取真絲面料的各項(xiàng)指標(biāo)生成虛擬的真絲面料。參照XDP-1懸垂測試儀的設(shè)備參數(shù),利用3D建模軟件構(gòu)建數(shù)字化展示測試模型。將CLO3D中虛擬絲綢類面料在虛擬懸垂測試儀上進(jìn)行懸垂性實(shí)驗(yàn),利用Matlab對懸垂圖像進(jìn)行圖像處理,獲得虛擬絲綢類面料的8個(gè)懸垂指標(biāo)。
2) 通過配對樣本T檢驗(yàn)與配對樣本的秩和檢驗(yàn)相結(jié)合的方法,來比較真實(shí)與虛擬絲綢類面料的懸垂性。結(jié)合懸垂圖像對比,可得出結(jié)論:8個(gè)懸垂指標(biāo)中,懸垂系數(shù)、波數(shù)和最大波峰幅值這3個(gè)方面有較好的模擬效果,而波峰幅值均勻度、波峰夾角均勻度、最小波峰幅值、最大波峰夾角與最小波峰夾角這5個(gè)方面的模擬效果與真實(shí)的懸垂情況有著相近的趨勢與分布范圍。
3) 基于CLO的軟件平臺(tái)能有效地展現(xiàn)各類真絲面料的虛擬化懸垂特征。面料懸垂特征主要是依賴于懸垂系數(shù)和波數(shù),而在面料懸垂性的模擬上,涉及計(jì)算機(jī)程序、相關(guān)力學(xué)模型,以及真實(shí)與虛擬環(huán)境。這就導(dǎo)致差異性不可避免,虛擬化面料不可能與現(xiàn)實(shí)狀態(tài)下的面料完全相同,只能盡可能地縮小彼此間差異性,期待進(jìn)一步的研究來減小一些現(xiàn)存的差異。
《絲綢》官網(wǎng)下載
中國知網(wǎng)下載
參考文獻(xiàn):
[1]JIANG Y, GUO R, MA F, et al. Cloth simulation for Chinese traditional costumes[J]. Multimedia Tools and Applications, 2019, 78(4): 5025-5050.
[2]朱敏, 敖雪琪, 張華, 等. 織物與服裝虛擬仿真技術(shù)研究進(jìn)展[J]. 輕工科技, 2016, 32(5): 115-116.
ZHU Min, AO Xueqi, ZHANG Hua, et al. Research progress of fabric and clothing virtual simulation technology[J]. Light Industry Science and Technology, 2016, 32(5): 115-116.
[3]鄭培曉, 蔣高明. 基于WebGL的緯編提花織物三維仿真[J]. 紡織學(xué)報(bào), 2021, 42(5): 59-65.
ZHENG Peixiao, JIANG Gaoming. Three-dimensional simulation of weft-knitted jacquard fabric based on WebGL[J]. Journal of Textile Research, 2021, 42(5): 59-65.
[4]李雙雙, 胡新榮, 劉軍平, 等. 基于自適應(yīng)網(wǎng)格重劃分的織物動(dòng)態(tài)仿真[J]. 絲綢, 2020, 57(4): 35-39.
LI Shuangshuang, HU Xinrong, LIU Junping, et al. Fabric dynamic simulation based on adaptive remeshing[J]. Journal of Silk, 2020, 57(4): 35-39.
[5]劉海桑, 蔣高明, 董智佳. 基于Web的少梳經(jīng)編色織物仿真與虛擬展示[J]. 紡織學(xué)報(bào), 2021, 42(2): 87-92.
LIU Haisang, JIANG Gaoming, DONG Zhijia. Simulation and virtual display for few-guide bar yarn dyed fabric based Web[J]. Journal of Textile Research, 2021, 42(2): 87-92.
[6]王會(huì)威, 張輝, 郭瑞良. 基于三維服裝CAD系統(tǒng)的織物懸垂性模擬研究[J]. 北京服裝學(xué)院學(xué)報(bào)(自然科學(xué)版), 2015, 35(3): 26-32.
WANG Huiwei, ZHANG Hui, GUO Ruiliang. Study on the drape simulation of fabrics based on 3D apparel CAD system[J]. Journal of Beijing Institute of Clothing Technology(Natural Science Edition), 2015, 35(3): 26-32.
[7]BUYUKASLAN E, KALAOGLU F, JEVSNIK S. Drape simulation and subjective assessment of virtual drape[J]. IOP Conference Series: Materials Science and Engineering, 2017, 256(16): 162002.
[8]BUENO M A, LEMAIRE-SEMAIL B, AMBERG M, et al. A simulation from a tactile device to render thetouch of textile fabrics: A preliminary study on velvet[J]. Textile Research Journal, 2014, 84(13): 1428-1440.
[9]云暢, 張輝. CLO3D下的經(jīng)緯異性織物懸垂性模擬研究[J]. 北京服裝學(xué)院學(xué)報(bào)(自然科學(xué)版), 2017, 37(2): 33-39.
YUN Chang, ZHANG Hui. Study on draping simulation of the fabric with difference in warp and weft in CLO3D[J]. Journal of Beijing Institute of Clothing Technology(Natural Science Edition), 2017, 37(2): 33-39.
[10]王鵬程, 劉基宏. 基于3D掃描技術(shù)的織物懸垂性測試方法[J]. 絲綢, 2018, 55(6): 25-30.
WANG Pengcheng, LIU Jihong. Method of fabric drape test based on 3D scanning technology[J]. Journal of Silk, 2018, 55(6): 25-30.
[11]陳明, 周華, 楊蘭君, 等. 織物三維懸垂形態(tài)測試指標(biāo)與三維重建[J]. 紡織學(xué)報(bào), 2008, 29(9): 51-55.
CHEN Ming, ZHOU Hua, YANG Lanjun, et al. Coefficient of 3D draping test of fabrics and 3D reconstruction[J]. Journal of Textile Research, 2008, 29(9): 51-55.
[12]ZULAIKHA S Z B, KIM K, TAKATERA M. Similarities and differences between virtual and actual pants[J]. International Journal of Clothing Science and Technology, 2020, 33(2): 199-217.
[13]BUYUKASLAN E, JEVSNIK S, KALAOGLU F. Comparative analysis of drape characteristics of actually and virtually draped fabrics[J]. International Journal of Clothing Science and Technology, 2018, 30(3): 286-301.
[14]HYO K S, SUNGMIN K, KYU P C. Development of similarity evaluation method between virtual and actual clothing[J]. International Journal of Clothing Science and Technology, 2017, 29(5): 743-750.
[15]祝杭琪, 王雪琴. 真絲類織物懸垂性綜合評價(jià)[J]. 絲綢, 2021, 58(6): 25-29.
Abstract: Silk as a treasure of China with a history of more than 7, 000 years impressed the world with soft, elegant and magnificent images and thus became a symbol of wealth and beauty. Silk is still popular among consumers for its unique charm to this day. Chinese domestic silk market still has great potential in the consumption of silk products. With the advocacy of "Belt and Road Initiative", the silk industry is facing new development opportunities. Today’s silk industry, not only a traditional industry in people’s impression, is an industry incorporating innovation and fashion. With the vigorous development of information technology and the Internet economy, virtual visualization and 3D technology have been gradually integrated into all walks of life, and 3D digitization will inevitably become a major trend in future product design and application. In terms of the textile industry, much software for virtual visualization of textiles, clothing, and home furnishings are emerging, such as C4D, Substance Designer, Substance Painter, CLO 3D and other three-dimensional software, which can be applied to the design and modeling of virtual models, virtual clothing, and virtual products, material creation and rendering of virtual products, and the dynamic display of virtual products. However, for silk fabrics, there is no comprehensive research on three-dimensional visual simulation. 3D visualization requires not only the simulation of appearance and texture but also a comprehensive simulation according to the actual drape, touch and appearance of fabrics. Among the existing studies, very scarce studies are focused on the virtualization of multi-category silk fabrics. With the increasingly important role of textile fabric virtualization in products sensory communication and reference, this method is also necessary for the inheritance and innovative dissemination of silk varieties.
The research is focused on various kinds of silk fabrics. Virtual silk fabric drapability experiments were carried out with reference to the drapability of real silk fabrics, and the differences between them were compared to verify the feasibility of virtual silk fabric drapability. First, a virtual experimental environment was established using CLO3D and C4D to generate virtual fabrics and virtual drape instrument. Matlab was adopted to process the drape images obtained from real and virtual drape tests, thus obtaining eight drape indexes: drape coefficient, wave number, wave crest uniformity, wave crest angle uniformity, maximum wave crest amplitude, minimum wave crest amplitude, maximum wave crest angle and minimum wave crest angle. On this basis, the drape indexes and drape images of real and virtual fabrics were compared through paired sample t-test and paired sample rank sum test to evaluate the simulation effect of CLO3D on silk fabric drapability. The drape indicators obtained from the virtual drape experiment were clustered, and the cluster results were compared with the cluster results of the real drape indicators to judge and evaluate the drapability of silk fabrics in the CLO3D environment.
The experimental results show that drape coefficient, wave number and maximum wave crest amplitude have exhibited good simulation effects, while the simulation effects in the other five aspects have similar trend and distribution range with the real drape situation. Compared with real silk fabrics, the drape simulation effect of fabric virtualization in CLO3D environment is closer to the reality, but drape virtualization exhibits a more uniform drape morphological distribution.
Promoting the spread of contemporary silk varieties plays an important role in the rise of domestic brands and the spread of traditional Chinese culture. It can promote people’s understanding of silk fabrics, provide designers with more cognitive perspectives on silk fabrics, and provide reference suggestions for further research.
Key words: silk fabric; virtual simulation; drapability; CLO3D; C4D; fabric virtualization