国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

絲素蛋白再生醫(yī)學(xué)材料對(duì)細(xì)胞功能調(diào)控的研究進(jìn)展

2022-02-14 09:40趙瑞波謝番羅丹丹孔祥東
絲綢 2022年1期
關(guān)鍵詞:骨細(xì)胞神經(jīng)細(xì)胞

趙瑞波 謝番 羅丹丹 孔祥東

摘要: 絲素蛋白是重要的天然生物高分子材料,具有出色的機(jī)械性能、生物相容性、生物降解性,易于化學(xué)修飾等特性,成為再生醫(yī)學(xué)研究中重要的生物材料。近年來,基于絲素蛋白的再生醫(yī)學(xué)材料在骨、皮膚、神經(jīng)、胰島等組織修復(fù)和再生醫(yī)學(xué)中被廣泛應(yīng)用研究,絲素蛋白材料對(duì)細(xì)胞功能調(diào)控作用逐漸被闡明并成為其指導(dǎo)設(shè)計(jì)和構(gòu)建醫(yī)用絲素蛋白材料結(jié)構(gòu)的重要參考,加速了絲素蛋白材料在臨床醫(yī)學(xué)上的應(yīng)用。本文在對(duì)絲素蛋白性質(zhì)與再生醫(yī)學(xué)關(guān)系進(jìn)行綜述分析的基礎(chǔ)上,總結(jié)絲素蛋白基生物材料在骨、皮膚、神經(jīng)、胰島等再生醫(yī)學(xué)領(lǐng)域中對(duì)細(xì)胞及關(guān)聯(lián)干細(xì)胞的功能調(diào)控作用,為絲素蛋白材料的生物醫(yī)學(xué)設(shè)計(jì)和應(yīng)用提供新的思路。

關(guān)鍵詞: 絲素蛋白;骨細(xì)胞;皮膚細(xì)胞;神經(jīng)細(xì)胞;胰島細(xì)胞;再生醫(yī)學(xué)

中圖分類號(hào): TS102.1;Q813 ? ?文獻(xiàn)標(biāo)志碼: A ? ?文章編號(hào): 1001-7003(2022)01-0010-10

引用頁碼: 011102DOI: 10.3969/j.issn.1001-7003.2022.01.002

絲素蛋白(Silk fibroin,SF)是蠶絲、蜘蛛絲等絲蛋白的主要組成。如圖1[1]所示,蠶繭中的蠶絲主要包含兩根絲素蛋白纖維(圖1(a)(b)),纖維外層被絲膠蛋白包裹,內(nèi)層絲素蛋白纖維由一束絲質(zhì)超細(xì)纖維組成(圖1(c)),在溶解過程中,脫膠絲素蛋白發(fā)生剝離,變成直徑幾百納米到1 μm的微纖維(圖1(d))。絲素纖維由直徑約30 nm的絲素納米纖維組成(圖1(e)),絲素納米纖維由平均厚度約0.4 nm和寬度約為20~32 nm的絲素納米帶組成(圖1(f)),絲素納米帶包含β-晶相和非晶相結(jié)構(gòu)蛋白(圖1(g)(h))。此外,SF一級(jí)結(jié)構(gòu)包含兩條肽鏈:一條重鏈,相對(duì)分子質(zhì)量約為391 kDa,主要由甘氨酸和丙氨酸疏水重復(fù)序列(GAGAGS)(GAGAGY)組成(占總纖維蛋白50%),形成反向平行的β-折疊;另一條為相對(duì)分子質(zhì)量26 kDa的輕鏈和糖蛋白P25組成[2]。SF二級(jí)結(jié)構(gòu)以三種形式存在:Silk Ⅰ、Silk Ⅱ和Silk Ⅲ。其中,Silk Ⅰ為水溶性亞穩(wěn)態(tài)溶液,存在α-螺旋結(jié)構(gòu)及Ⅱ型β-折疊[3],另外含有無規(guī)卷曲結(jié)構(gòu);Silk Ⅱ主要由β-折疊組成,結(jié)構(gòu)穩(wěn)定且不溶于水;而Silk Ⅲ主要為三重螺旋鏈構(gòu)象,主要存在于水/空氣界面。在蠶絲形成過程中,SF蛋白構(gòu)象從溶解態(tài)Silk Ⅰ轉(zhuǎn)變?yōu)槟痰腟ilk Ⅱ。目前,通過有機(jī)溶劑(甲醇或乙醇)處理、物理剪切、電磁場(chǎng)等仿生策略可實(shí)現(xiàn)Silk Ⅰ向Silk Ⅱ的轉(zhuǎn)化[4],并在骨組織、皮膚組織、神經(jīng)組織、胰島組織修復(fù)再生中具有廣闊的應(yīng)用前景。

本文主要基于絲素材料特征分析,綜述絲素材料性質(zhì)與細(xì)胞功能調(diào)控作用的關(guān)系,討論絲素蛋白材料在組織再生醫(yī)學(xué)中對(duì)骨細(xì)胞、皮膚細(xì)胞、神經(jīng)細(xì)胞、胰島細(xì)胞及其他關(guān)聯(lián)細(xì)胞可能發(fā)揮的調(diào)控作用(圖2)。

1 絲素生物材料的主要特征

生物醫(yī)用材料在組織修復(fù)及再生醫(yī)學(xué)中需要具備3個(gè)關(guān)鍵特征。1) 材料必須具備生物相容性或生物安全性,具有較低的宿主免疫反應(yīng),可支持或提高細(xì)胞生命活動(dòng)促進(jìn)組織修復(fù)再生[5-6]。2) 材料具有適當(dāng)?shù)慕Y(jié)構(gòu)和高的比表面積及良好的通透性,支持氧氣/營(yíng)養(yǎng)素運(yùn)輸,實(shí)現(xiàn)并維持細(xì)胞間的相互作用。3) 對(duì)再生修復(fù)材料需具有生物降解性或吸收性,降解速率應(yīng)與組織再生速率相匹配。SF作為天然生物材料,具備優(yōu)異的生物相容性,可通過交聯(lián)或共混調(diào)節(jié)材料結(jié)晶度、存在形式等控制絲素蛋白材料的機(jī)械性能和降解速率,在組織工程和再生醫(yī)學(xué)研究中具有良好的應(yīng)用潛力。

SF是一種生物相容性優(yōu)異且免疫原性較低的天然材料,降解產(chǎn)生的氨基酸和多肽可以被細(xì)胞吸收利用。絲素蛋白材料的生物相容性取決于蛋白的脫膠提取和純化過程,常將碳酸鈉、氫氧化鈉溶液用于SF的脫膠[7]。脫膠的SF在體內(nèi)外具有免疫惰性,絲素蛋白材料的體內(nèi)生物相容性已開展廣泛研究,研究顯示與SF刺激有關(guān)的淋巴細(xì)胞活化因子IL-1β和炎性環(huán)氧合酶-2(COX-2)基因表達(dá)水平與膠原蛋白沒有明顯差異[8],可與骨細(xì)胞、胰島細(xì)胞、成骨細(xì)胞、成纖維細(xì)胞、內(nèi)皮細(xì)胞、間充質(zhì)干細(xì)胞等細(xì)胞高度相容。目前,SF已獲得美國(guó)食品藥品監(jiān)督管理局(FDA)批準(zhǔn)用于生物醫(yī)學(xué)應(yīng)用,SF基外科手術(shù)網(wǎng)已通過了ISO 10993生物相容性和安全性測(cè)試并符合醫(yī)學(xué)標(biāo)準(zhǔn)[9-10]。SF降解后產(chǎn)物為氨基酸,無毒且安全性良好,其二級(jí)結(jié)構(gòu)和含量是影響其在體內(nèi)降解速率的重要因素。SF中β-折疊的含量越高SF降解越慢,再生醫(yī)學(xué)材料中SF的含量越高,孔徑越小,SF材料在體內(nèi)的降解速率越小。此外,SF在體內(nèi)降解也與材料所處的組織微環(huán)境密切相關(guān)。SF材料皮下植入時(shí),在組織細(xì)胞如巨噬細(xì)胞的吞噬作用下,抗張強(qiáng)度逐漸降低,并最終緩慢降解[11-12]。在組織修復(fù)過程中,較低的降解速率可保持材料長(zhǎng)時(shí)間的穩(wěn)定性與機(jī)械強(qiáng)度,有利于制備傷口敷料,另外可使得材料的降解與新組織再生/修復(fù)的進(jìn)程協(xié)調(diào),具有良好的應(yīng)用潛力。

機(jī)械強(qiáng)度可調(diào)節(jié)是SF應(yīng)用于生物醫(yī)學(xué)領(lǐng)域的另一重要特征,在細(xì)胞調(diào)控中,材料剛性需與目標(biāo)細(xì)胞剛性匹配,SF基材料剛性及強(qiáng)度變化對(duì)細(xì)胞分裂及功能分化具有重要作用。此外,絲素蛋白材料剛性會(huì)影響材料穩(wěn)定性和降解性。研究顯示SF二級(jí)結(jié)構(gòu)與機(jī)械性能密切關(guān)聯(lián),可通過調(diào)控材料中β-折疊含量調(diào)節(jié)SF的機(jī)械性,形成不同剛性SF溶液、凝膠或支架等,該策略無需交聯(lián)即可提供與細(xì)胞相匹配的機(jī)械性能[13]。此外,研究顯示再生SF支架材料及絲素膜的機(jī)械性能與天然絲纖維相比較弱,可通過甲醇或乙醇誘導(dǎo)提高絲素內(nèi)β-折疊含量增強(qiáng)材料機(jī)械性能[13-14],如將SF膜于甲醇中分別浸泡10 min和60 min,其彈性模量可分別增至40 MPa和80 MPa[15]。此外,不同來源SF的機(jī)械性能也有差異,與非桑樹來源的SF相比,桑樹來源的蠶絲絲素材料具有更高的機(jī)械性能[16]。

除以上性質(zhì)外,絲素蛋白材料易于加工,可根據(jù)功能和應(yīng)用領(lǐng)域加工成為可注射溶液、纖維材料、薄膜材料、水凝膠材料、支架材料等,并已在硬組織(骨骼)和軟組織(皮膚、神經(jīng)、胰島)等再生醫(yī)學(xué)研究中發(fā)揮細(xì)胞調(diào)控的重要作用。

2 絲素蛋白材料影響細(xì)胞行為的主要因素

細(xì)胞-胞外基質(zhì)間的相互作用與細(xì)胞增殖、遷移、分化和功能調(diào)控密切相關(guān)。通過調(diào)節(jié)絲素蛋白材料的性質(zhì)可模擬細(xì)胞外基質(zhì)的主要功能,并可調(diào)控細(xì)胞黏附、生長(zhǎng)和分化等行為。絲素蛋白材料影響細(xì)胞行為的主要因素可概括為三方面:絲素蛋白的氨基酸組成,SF材料的機(jī)械強(qiáng)度及材料的拓?fù)浣Y(jié)構(gòu)如材料尺寸、孔徑、表面特征等[17]。

絲素蛋白由18種氨基酸組成,其中甘氨酸(Gly)、丙氨酸(Ala)和絲氨酸(Ser)含量最多,占總氨基酸量的75%左右,與殼聚糖等氨基聚糖類似材料聯(lián)用,可模擬天然細(xì)胞外基質(zhì)。不同蠶絲來源的絲素蛋白在氨基酸組成上有稍許差異,與家蠶絲素蛋白相比,天蠶等非家蠶絲素蛋白含有Arg-Gly-Asp(RGD)三肽序列[18],RGD可以與細(xì)胞膜上的整合素特異性結(jié)合,誘導(dǎo)整合素相關(guān)的信號(hào)通路,增強(qiáng)細(xì)胞的黏附[19],更好地促進(jìn)細(xì)胞生長(zhǎng)。

SF材料的生物力學(xué)性能對(duì)調(diào)節(jié)細(xì)胞生長(zhǎng)、形態(tài)、分化、遷移和功能具有重要影響[20]。細(xì)胞可以通過感知基質(zhì)力學(xué)性質(zhì),將機(jī)械刺激轉(zhuǎn)化為化學(xué)信號(hào),刺激/抑制因子的分泌,從而調(diào)控細(xì)胞分化。機(jī)械信號(hào)是干細(xì)胞遷移及分化的關(guān)鍵調(diào)節(jié)劑[21],如較低的剪應(yīng)力(0.2 kPa)可以通過SDF-1/CXCR4、Jun N端激酶、p38絲裂原活化蛋白激酶途徑誘導(dǎo)細(xì)胞遷移[22]。機(jī)體內(nèi)不同組織剛度差異較大,如大腦的剛度約為01~1 kPa,而骨基質(zhì)的剛度超過25 kPa[23-25]。研究證實(shí),細(xì)胞外基質(zhì)組成和結(jié)構(gòu)及所產(chǎn)生的機(jī)械特性可以誘導(dǎo)干細(xì)胞增殖和分化為譜系細(xì)胞,如間充質(zhì)干細(xì)胞(MSC)在體外經(jīng)不同剛性如0.1~1 kPa、8~17 kPa和25~40 kPa材料誘導(dǎo)時(shí)會(huì)分別分化成神經(jīng)細(xì)胞、肌肉細(xì)胞和成骨細(xì)胞[23];高的力學(xué)性能更利于成骨分化,當(dāng)力學(xué)性能大于25 kPa時(shí),骨髓間充質(zhì)干細(xì)胞(BMSCs)傾向于成骨方向分化,力學(xué)性能低于20 kPa時(shí),BMSCs易向神經(jīng)方向分化[23,26]。此外,絲素材料在胚胎分化中同樣發(fā)揮重要作用,Sun等[27]制備的1 kPa左右的絲素蛋白-明膠水凝膠可以誘導(dǎo)小鼠胚胎干細(xì)胞分化為外胚層。

SF基生物材料形貌、大小等因素也會(huì)影響細(xì)胞功能。Bondar等[28]研究顯示170~250 nm絲素纖維可與內(nèi)皮細(xì)胞整合素受體識(shí)別,促進(jìn)細(xì)胞黏著斑形成,誘導(dǎo)細(xì)胞整合素分泌,顯著提高細(xì)胞黏附及生長(zhǎng)。在絲素蛋白的支架中,Bidgoli等[29]通過加入納米級(jí)(<100 nm)和微米級(jí)(6 μm)生物玻璃微球,形成抗壓強(qiáng)度分別為0.94 MPa和1.2 MPa的復(fù)合SF支架材料,結(jié)合支架內(nèi)10~50 μm和500~600 μm的分級(jí)孔徑可使骨髓間充質(zhì)干細(xì)胞(BMSC)的黏附效率協(xié)同提高50%,并顯著促進(jìn)成骨細(xì)胞分化。此外,支架材料的孔徑和表面粗糙度與細(xì)胞生長(zhǎng)、分化等行為也密切相關(guān),100~300 μm孔徑的SF支架中培養(yǎng)的細(xì)胞比其他孔徑中培養(yǎng)的細(xì)胞顯示出更強(qiáng)的生長(zhǎng)、分化和分泌胞外基質(zhì)的能力。材料孔徑為100~300 μm的SF支架能使BMSC具有更好的增殖能力,可提高胞外基質(zhì)的密度,具有促進(jìn)成骨分化和骨骼愈合的特性[30]。SF表面微結(jié)構(gòu)的改變通過影響細(xì)胞黏著斑的形成進(jìn)而調(diào)控細(xì)胞行為,Diener等[31]證實(shí)SF材料表面粗糙度對(duì)成骨細(xì)胞(MG63)黏附與生長(zhǎng)具有重要作用,相對(duì)光滑表面更利于細(xì)胞黏附與生長(zhǎng)。

3 再生醫(yī)學(xué)中絲素蛋白調(diào)控細(xì)胞的應(yīng)用

3.1 骨細(xì)胞調(diào)控

絲素蛋白材料在骨組織生物醫(yī)用材料研究和轉(zhuǎn)化潛力巨大。在骨修復(fù)中,SF修復(fù)材料可誘導(dǎo)骨缺損部位的組織再生,原位降解產(chǎn)物可被新生骨組織細(xì)胞吸收。骨組織工程材料中,SF支架材料可誘導(dǎo)成骨細(xì)胞增殖、黏附和分化,誘導(dǎo)新生骨血管生成,促進(jìn)骨組織再生[32-34]。骨組織中皮質(zhì)骨和松質(zhì)骨的楊氏模量范圍分別為15~20 GPa和0.1~2 GPa;皮質(zhì)骨和松質(zhì)骨的抗壓強(qiáng)度分別為100~200 MPa和2~20 MPa[35],而新骨組織生長(zhǎng)最佳支架孔徑為200~350 μm[36-38]。SF支架具有適當(dāng)?shù)臋C(jī)械性能和空隙率可調(diào)性,可根據(jù)修復(fù)要求不同(如皮質(zhì)骨和松質(zhì)骨),合成不同力學(xué)性能、不同空隙、不同降解時(shí)間的梯度骨修復(fù)支架材料,實(shí)現(xiàn)體內(nèi)可控降解并為新骨生長(zhǎng)留出空間,為骨細(xì)胞生長(zhǎng)分化提供仿生微環(huán)境,誘導(dǎo)骨細(xì)胞的增殖[36-38]。

在骨細(xì)胞調(diào)控中,絲素蛋白含有的Arg-Gly-Asp(RGD)多肽可有效與細(xì)胞外基質(zhì)中整聯(lián)蛋白結(jié)合,促進(jìn)成骨細(xì)胞黏附和增殖,提高骨再生能力[39]。與桑樹來源SF相比,非桑樹源SF具有更高比例的RGD多肽[40]。研究證實(shí),非桑樹SF可顯著促進(jìn)Saos-2成骨細(xì)胞的細(xì)胞附著和增殖能力,且細(xì)胞活力隨SF含量增加而明顯提升[40]。在骨組織修復(fù)中,多種信號(hào)通路與成骨細(xì)胞分化有關(guān),Jung等[41]研究表明絲素蛋白可抑制Notch激活的基因,上調(diào)堿性磷酸酶(ALP)的表達(dá)量,促進(jìn)骨髓細(xì)胞向成骨分化。此外,機(jī)械刺激對(duì)成骨細(xì)胞信號(hào)通路活化發(fā)揮重要調(diào)控作用,研究顯示2 000 μstrain 0.2 Hz力學(xué)刺激能夠激活JNK和ERK 1/2信號(hào)通路,可上調(diào)成骨樣細(xì)胞中護(hù)骨素(Osteoprotegerin,OPG)的表達(dá)量,促進(jìn)成骨細(xì)胞分化和形成[42]?;诖?,將絲素蛋白與磷酸鈣、生物玻璃等無機(jī)材料支架可以制備成具有可控的力學(xué)性質(zhì)復(fù)合支架材料,以此調(diào)控細(xì)胞絲裂原活化蛋白激酶通路中ERK和JNK信號(hào)通路,調(diào)控成骨細(xì)胞分化和形成。

此外,當(dāng)絲素蛋白中甘氨酸和丙氨酸含量超過70%時(shí),降解過程中會(huì)形成六肽(GAGAGA和GAGAGY)序列,推測(cè)此類六肽序列可能參與抑制Notch并激活MAPK信號(hào)通路等促成骨因子分泌和傳遞的重要分子機(jī)制,但其調(diào)控作用仍需進(jìn)一步研究。絲素蛋白材料中蛋白相對(duì)分子質(zhì)量與細(xì)胞成骨及骨礦化密切相關(guān),研究顯示低相對(duì)分子質(zhì)量絲素蛋白(2~10 kDa),具有良好的親水性并呈現(xiàn)負(fù)電性,具有促進(jìn)生物礦化的作用。采用低相對(duì)分子質(zhì)量絲素蛋白制備支架材料在骨再生過程中顯示出良好的骨誘導(dǎo)特性,具有替代骨形態(tài)發(fā)生蛋白(BMP2)的應(yīng)用潛力[43]。絲素蛋白材料硬度等性質(zhì)對(duì)骨細(xì)胞進(jìn)行礦化行為調(diào)控也密切相關(guān),并對(duì)骨細(xì)胞膠原蛋白和骨鈣素的分泌具有顯著調(diào)控作用。

3.2 皮膚細(xì)胞調(diào)控

SF基材料已被廣泛用于皮膚再生治療中,如縫扎結(jié)扎絲線、絲素面膜、腹壁重建外科手術(shù)網(wǎng),整形外科中的絲素海綿及聲帶填充物等[44-46]。絲素蛋白可在密封傷口腔輔助傷口愈合時(shí)緩慢降解,降解產(chǎn)物可被機(jī)體吸收利用。此外,SF還具有保水性和彈性,也利于皮膚組織的修復(fù)與再生。

成纖維細(xì)胞是皮膚修復(fù)調(diào)控的重要細(xì)胞,具有形成膠原纖維、彈力纖維構(gòu)筑皮膚基質(zhì)的功能。SF材料對(duì)皮膚損傷止血及修復(fù)效果顯著[12],當(dāng)SF材料與皮膚接觸后,SF蛋白可與纖維蛋白原和血小板結(jié)合,誘發(fā)凝血級(jí)聯(lián)反應(yīng),發(fā)揮止血作用。利用纖維蛋白原、凝血酶與絲素蛋白制備成多孔海綿狀復(fù)合材料,將其用作止血基質(zhì)并可有效協(xié)同纖維蛋白原和凝血酶的止血作用[47]。Park等[48]研究顯示皮膚損傷修復(fù)時(shí),SF材料可激活細(xì)胞MEK、JNK、PI3K信號(hào)通路刺激成纖維細(xì)胞遷移到傷口部位,同時(shí)抑NF-κB信號(hào)通路,可提高成纖維細(xì)胞內(nèi)cyclin D1蛋白、纖維連接蛋白、波形蛋白和VEGF的表達(dá)量,誘導(dǎo)傷口愈合再生[45]。此外,將纖維細(xì)胞(如正常細(xì)胞L929、NIH/3T3)和癌細(xì)胞(Saos-2、CaSki)封裝到SF水凝膠中,發(fā)現(xiàn)SF能顯著抑制Saos-2、CaSki的生長(zhǎng),并維持L929、NIH/3T3的正常生長(zhǎng),推測(cè)原因可能與SF凝膠機(jī)械性能及微結(jié)構(gòu)有關(guān)[49]。血管化是促進(jìn)組織修復(fù)中的關(guān)鍵問題之一,設(shè)計(jì)和開發(fā)血管誘導(dǎo)系統(tǒng)對(duì)于維持血管生成、促進(jìn)缺損組織的修復(fù)中發(fā)揮重要作用。在傷口修復(fù)中,基于SF納米纖維負(fù)載血管生成因子在刺激缺損區(qū)域內(nèi)的血管生成中具有良好作用,并顯著加快傷口修復(fù)進(jìn)程。在血管化內(nèi)皮細(xì)胞的調(diào)控中,SF材料在內(nèi)皮祖細(xì)胞募集激發(fā)血管形成中發(fā)揮顯著作用,制備絲素蛋白材料時(shí),調(diào)節(jié)蛋白溶液至pH值為4.0,可消除電荷排斥,以實(shí)現(xiàn)更強(qiáng)的親水相互作用,促進(jìn)蛋白相互組裝,以此制備的絲素材料可顯著提高細(xì)胞血管內(nèi)壁黏附因子CD31分泌,促進(jìn)傷口血管化[50]。進(jìn)一步在絲素蛋白材料中添加膠原肽和S-亞硝基谷胱甘肽,可提高細(xì)胞外基質(zhì)富集作用,激活內(nèi)皮細(xì)胞一氧化氮信號(hào)通路,在體內(nèi)可促進(jìn)新血管形成[51-52],顯示絲素蛋白與細(xì)胞外基質(zhì)在促進(jìn)血管化調(diào)控中具有協(xié)同作用。

在皮膚創(chuàng)傷修復(fù)調(diào)控中,絲素蛋白具有較低的免疫原性,在使用的初始階段會(huì)引起輕度炎癥,有利于破壞損傷部位存在的病原體,同時(shí)募集免疫細(xì)胞刺激其分泌趨化因子和生長(zhǎng)因子(IL-1β、IL-6等)[15]。傷口修復(fù)過程中,絲素蛋白材料中富含氨基酸能促進(jìn)傷口細(xì)胞活化并形成抗菌微環(huán)境;同時(shí)激活巨噬細(xì)胞JNK-STAT信號(hào)通路,介導(dǎo)巨噬細(xì)胞形成M2極化,進(jìn)一步降低損傷組織部位炎癥反應(yīng),分泌血管生長(zhǎng)因子,并促進(jìn)成纖維細(xì)胞增殖和膠原蛋白分泌組裝,招募成纖維細(xì)胞和毛細(xì)血管等細(xì)胞,加速組織修復(fù)再生。在使用后期,SF材料緩慢降解,炎癥反應(yīng)減弱進(jìn)一步促進(jìn)組織修復(fù)[53-54]。在大面積皮膚修復(fù)中,基于SF材料的人造真皮可有效促進(jìn)細(xì)胞浸潤(rùn),血管形成和細(xì)胞外基質(zhì)富集[55]。在Ⅲ級(jí)燒傷創(chuàng)面治療研究中顯示,與對(duì)照組相比,SF水凝膠材料治療后創(chuàng)傷面血管密度提高約10倍[53],并顯著促進(jìn)組織中CK 10和CK 14表達(dá),表明SF材料可顯著促進(jìn)新形成表皮中角質(zhì)細(xì)胞的分化,并增強(qiáng)上皮再生和組織向內(nèi)生長(zhǎng)。此外,在頑固性皮膚損傷修復(fù)中,SF材料同樣顯示良好應(yīng)用潛力,絲素材料在急性傷口和糖尿病傷口愈合初期可快速促進(jìn)組織形成毛細(xì)血管[56]。

3.3 神經(jīng)細(xì)胞調(diào)控

神經(jīng)組織再生醫(yī)學(xué)材料研究聚焦于材料對(duì)神經(jīng)細(xì)胞行為(生長(zhǎng)、細(xì)胞擴(kuò)散、遷移和分化)的調(diào)控,介導(dǎo)神經(jīng)細(xì)胞及神經(jīng)干細(xì)胞對(duì)材料所處微環(huán)境的正向響應(yīng),實(shí)現(xiàn)基于材料調(diào)控的神經(jīng)組織修復(fù)是當(dāng)前面臨的主要挑戰(zhàn)。絲素纖維材料在神經(jīng)組織修復(fù)中具有信號(hào)傳導(dǎo)的作用,為神經(jīng)細(xì)胞調(diào)控提供契機(jī),并在腦組織工程修復(fù)中已顯示良好前景[57-59]。將絲素蛋白微粒填充到腦損傷部位后,可顯著減少腦損傷體積,并在修復(fù)14 d后誘導(dǎo)感覺功能的修復(fù)[57]。腦組織修復(fù)中,絲素蛋白可誘導(dǎo)P12神經(jīng)細(xì)胞黏附因子(E-cadherin和N-cadherin)表達(dá)增加,使神經(jīng)細(xì)胞能良好地黏附生長(zhǎng)于絲素材料表面[58]。細(xì)胞黏附后NCAM可促進(jìn)神經(jīng)細(xì)胞形態(tài)伸長(zhǎng),L-CAM提高神經(jīng)細(xì)胞的遷移,促進(jìn)神經(jīng)突出的形成,協(xié)同誘導(dǎo)神經(jīng)細(xì)胞的分化成熟。此外,NCAM和L1-CAM與絲素蛋白結(jié)合后可加速與其他細(xì)胞的相助作用,原位調(diào)控神經(jīng)細(xì)胞微環(huán)境,加快神經(jīng)組織修復(fù)[59]。細(xì)胞外基質(zhì)中的層黏連蛋白(Laminin,LN)是維持細(xì)胞外基質(zhì)的關(guān)鍵結(jié)構(gòu)蛋白,是腦基質(zhì)的主要結(jié)構(gòu)組成,基于LN蛋白及其衍生多肽已成為神經(jīng)調(diào)控重要因子,如Arg-Gly-Asp(RGD)、Ile-Lys-Val-Ala-Val(IKVAV)、Tyr-Ile-Gly-Ser-Arg(YIGSR)、Arg-Tyr-Val-Val-Leu-Pro-Arg(YVVLPR)和Arg-Asn-Ile-Ala-Glu-Ile-Ile-Lys-Asp-Ile(RNIAEIIKDI)。IKVAV多肽是LN蛋白α鏈C末端的組成結(jié)構(gòu),可快速激活細(xì)胞MAPK/ERK1/2和PI3K/Akt信號(hào)通路[60],促進(jìn)神經(jīng)干細(xì)胞黏附、神經(jīng)突生長(zhǎng)、血管生成和Ⅳ膠原酶表達(dá),可有效促進(jìn)神經(jīng)干細(xì)胞向神經(jīng)元分化?;贗KVAV肽修飾的SF水凝膠多孔支架可顯著提升神經(jīng)干細(xì)胞中β-微管蛋白Ⅲ(神經(jīng)元分化的標(biāo)志物)和MAP-2(成熟神經(jīng)元標(biāo)記物)表達(dá),有效提高神經(jīng)元分化和成熟,并顯著提升細(xì)胞活性[39]。再生絲素蛋白取向?qū)ι窠?jīng)細(xì)胞分化關(guān)系密切,將神經(jīng)祖細(xì)胞(NPCs)與定向和隨機(jī)再生絲素蛋白(RSF)支架共培養(yǎng)研究發(fā)現(xiàn):定向RSF和隨機(jī)RSF可顯著促進(jìn)神經(jīng)祖細(xì)胞增殖增,細(xì)胞增殖效率分別為143.8%±13.3%和156.3%±14.7%;在神經(jīng)元分化調(diào)控中,定向RSF和隨機(jī)RSF介導(dǎo)神經(jīng)元分化效率為93.2% ±6.4%和3 167.1%±4.8%,且RSF可為NPC提供功能性微環(huán)境,可為神經(jīng)組織工程提供新策略[61]。

SF蛋白凝膠的機(jī)械性能對(duì)神經(jīng)干細(xì)胞同樣有顯著調(diào)控作用,與高模量(1 028、1 735 Pa及19 700 Pa)SF水凝膠相比,183 Pa絲素蛋白水凝膠中的神經(jīng)干細(xì)胞分化和成熟水平顯著提高。IKVAV修飾的絲素蛋白水凝膠是腦組織工程的潛在3D支架。蘇州大學(xué)呂強(qiáng)團(tuán)隊(duì)[62-65]研究證實(shí),不同處理的絲素蛋白納米纖維與神經(jīng)干細(xì)胞的增殖、分化和遷移行為密切相關(guān),其分別采用真空水處理、50%甲醇、80%甲醇處理制備了絲素蛋白納米纖維。將不同處理與神經(jīng)干細(xì)胞共培養(yǎng)時(shí)發(fā)現(xiàn),與對(duì)照組相比,真空水處理、50%甲醇和80%甲醇處理的絲素蛋白納米纖維均能顯著降低神經(jīng)干細(xì)胞的死亡,且真空水處理和50%甲醇處理組可促進(jìn)神經(jīng)干細(xì)胞向星形膠質(zhì)細(xì)胞的分化,而80%甲醇處理組能抑制神經(jīng)干細(xì)胞向星形膠質(zhì)細(xì)胞的分化,實(shí)現(xiàn)了基于絲素蛋白材料對(duì)神經(jīng)干細(xì)胞的直接調(diào)控。

脊髓損傷與修復(fù)中神經(jīng)軸突的形成是實(shí)現(xiàn)脊髓損傷修復(fù)的關(guān)鍵環(huán)節(jié)。Qu等[66]將神經(jīng)元和星形膠質(zhì)細(xì)胞摻入400、800 nm和1 200 nm SF纖維中,與對(duì)照組相比,SF材料處理可顯著提高星形膠質(zhì)細(xì)胞遷移效率,誘導(dǎo)神經(jīng)突排列和伸長(zhǎng),直徑小于1 200 nm SF更有利于腦室下區(qū)域衍生神經(jīng)元發(fā)育和成熟,促進(jìn)神經(jīng)膠質(zhì)纖維酸性蛋白表達(dá),400 nm SF處理的神經(jīng)細(xì)胞伸展面積顯著高于1 200 nm SF處理組。由此顯示,SF纖維材料可為脊髓等中樞神經(jīng)細(xì)胞突觸生長(zhǎng)提供良好微環(huán)境,且有望通過調(diào)控纖維尺度實(shí)現(xiàn)神經(jīng)軸突的再生能力。

3.4 胰島細(xì)胞調(diào)控

胰島細(xì)胞是機(jī)體重要的分泌細(xì)胞,胰島B細(xì)胞的移植是治療I型糖尿病重要策略之一。然而,移植胰島中細(xì)胞基質(zhì)網(wǎng)絡(luò)和脈管系統(tǒng)會(huì)由于手術(shù)、機(jī)體免疫等因素被破壞,造成胰島細(xì)胞功能喪失,仿生構(gòu)建組織/細(xì)胞生長(zhǎng)微環(huán)境在胰島B細(xì)胞功能維持方面顯示良好的應(yīng)用潛力[5]。SF水凝膠及其多孔支架材料具有與細(xì)胞相匹配的彈性模量,在加工過程中,可通過調(diào)節(jié)絲素蛋白結(jié)構(gòu)類型及氨基酸組成比例等方式形成可注射水凝膠或蛋白支架,該SF水凝膠或蛋白支架可在移植中形成免疫屏障為胰島細(xì)胞提供良好的生長(zhǎng)空間,SF蛋白材料形成的包裹層具有多孔結(jié)構(gòu),利于營(yíng)養(yǎng)物質(zhì)和氣體運(yùn)輸(圖3)[67]。此外,絲素蛋白中的RGD序列可以與胰島細(xì)胞表面的整合素相互作用,以促進(jìn)胰島細(xì)胞的黏附、增殖,并調(diào)節(jié)改善胰島微環(huán)境和內(nèi)皮細(xì)胞活性促進(jìn)移植胰島的血管化,對(duì)維持胰島素的分泌有積極影響。

目前,基于SF包裹胰島細(xì)胞或間充質(zhì)干細(xì)胞用于Ⅰ型糖尿病治療已成為當(dāng)前研究的熱點(diǎn),有研究證實(shí)絲素蛋白用于構(gòu)建胰島的ECM[68-69],可增加胰島細(xì)胞的存活率及對(duì)胰島素的敏感性[70]。研究證實(shí):SF水凝膠包裹小鼠胰島可為胰島細(xì)胞提供天然微環(huán)境,在體外包封7 d后胰島細(xì)胞仍然存活,并維持胰島素分泌以應(yīng)對(duì)葡萄糖刺激。與未包裹細(xì)胞相比,包封胰島細(xì)胞中胰島素、胰高血糖素等基因表達(dá)量增加,而細(xì)胞角蛋白19和波形蛋白表達(dá)下降,表明經(jīng)SF凝膠包裹的胰島細(xì)胞分化程度降低,可維持更長(zhǎng)時(shí)間的生理活性和功能。此外,將胰島細(xì)胞與MSCs共同包裹時(shí),胰島素分泌可協(xié)同提高3.2倍[71],可以改善移植胰島的活性,且包裹胰島與MSCs的小鼠可快速恢復(fù)到正常血糖,而僅包裹胰島細(xì)胞的處理組小鼠在4 d恢復(fù)到正常血糖水平,僅包裹MSCs的治療時(shí)間為15 d[72],表明絲素水凝膠包裹可顯著調(diào)促進(jìn)間充質(zhì)干細(xì)胞與胰島細(xì)胞的協(xié)同作用,并有利于胰島素的分泌。此外,SF水凝膠材料中加入肝素、白介素4、地塞米松等[40,73]促進(jìn)周圍組織的血管形成,誘發(fā)M2巨噬細(xì)胞極化作用,可進(jìn)一步延長(zhǎng)移植胰島細(xì)胞的生理活性,具有良好的臨床應(yīng)用潛力。

3.5 其他細(xì)胞調(diào)控

除骨組織、皮膚組織、神經(jīng)組織和胰島組織相關(guān)的細(xì)胞調(diào)控,絲素再生醫(yī)學(xué)材料研究已延伸于多種組織細(xì)胞的調(diào)控中,如將絲素蛋白膜與人牙周膜成纖維細(xì)胞共同培養(yǎng)發(fā)現(xiàn),絲素蛋白膜可顯著提高細(xì)胞的黏附力和生存時(shí)間[74]。肝細(xì)胞經(jīng)SF膠囊化構(gòu)筑的活性再生醫(yī)學(xué)復(fù)合材料,可顯著提升肝細(xì)胞中葡萄糖、尿素和白蛋白代謝速率[75],為急性肝衰竭肝細(xì)胞移植提供具有功能活性的細(xì)胞群體。研究顯示,將骨髓間充質(zhì)干細(xì)胞(BMSCs)種植在再生絲素蛋白(RSF)支架上,形成SF支架-干細(xì)胞復(fù)合體(RSF-MSC),該復(fù)合體可使MSCs分化為肝細(xì)胞樣細(xì)胞,并在小鼠急性肝臟損傷模型中穩(wěn)定存活3個(gè)月,同時(shí)促進(jìn)損傷部位的血管、膽小管樣結(jié)構(gòu)和肝細(xì)胞樣細(xì)胞的形成,加速肝臟修復(fù),由此顯示在急性肝衰竭或慢性肝損傷的情況下,MSCs復(fù)合地RSF載細(xì)胞復(fù)合材料在組織再生中具有巨大的潛力[76]。此外,SF材料中富含羧基和氨基活性基團(tuán),易于對(duì)生物分子或配體的功能化修飾,可與抗生素、生長(zhǎng)因子和其他生物活性分子交聯(lián),在多功能SF材料研制中具有重要應(yīng)用潛力[77-79]。

4 結(jié) 語

絲素蛋白材料已被廣泛用于組織修復(fù)與再生醫(yī)學(xué)研究中,絲素蛋白具有良好的生物相容性,可發(fā)揮積極的細(xì)胞調(diào)控作用,顯示出良好的修復(fù)醫(yī)學(xué)應(yīng)用前景,已成為備受關(guān)注的醫(yī)學(xué)生物材料。當(dāng)前,絲素蛋白生物材料研究已經(jīng)取得重要的進(jìn)展,并可以根據(jù)需求加工形成顆粒、薄膜、纖維(管狀)、支架、水凝膠、海綿狀等,在組織工程和再生醫(yī)學(xué)相關(guān)細(xì)胞的功能調(diào)控中發(fā)揮重要作用,在未來骨組織、皮膚組織、神經(jīng)組織、胰島組織等再生醫(yī)學(xué)中具有廣泛的應(yīng)用預(yù)期。

當(dāng)前,構(gòu)筑載細(xì)胞的活性醫(yī)用材料已成為再生醫(yī)學(xué)研究的焦點(diǎn),而絲素蛋白的廣泛研究及其對(duì)細(xì)胞調(diào)控作用,使其成為最具有應(yīng)用前景的再生醫(yī)學(xué)材料之一。絲素蛋白材料影響細(xì)胞行為的主要因素可概括為以下三方面:絲素蛋白的氨基酸組成,絲素蛋白的生物力學(xué)性能,絲素蛋白材料的拓?fù)浣Y(jié)構(gòu)如尺寸、孔徑、表面特征等。盡管絲素蛋白材料的物理、化學(xué)制備和加工方面及相關(guān)理化學(xué)性質(zhì)調(diào)控研究已積累了很多有價(jià)值的成果,然而闡明絲素蛋白及其降解或衍生材料與細(xì)胞的相互作用等生物學(xué)調(diào)控功能,仍然是當(dāng)前絲素蛋白活性生物材料研究和實(shí)用化面臨的挑戰(zhàn)。為此需要對(duì)絲素蛋白材料在活體中的形態(tài)特征及其細(xì)胞功能調(diào)控機(jī)制開展更深入的研究,加快推動(dòng)絲素蛋白生物材料實(shí)用化及相關(guān)醫(yī)療器械的開發(fā)研究。

參考文獻(xiàn):

[1]NIU Q Q, PENG Q F, LU L, et al. Single molecular layer of silk nanoribbon as potential basic building block of silk materials[J]. ACS Nano, 2018, 12(12): 11860-11870.

[2]INOUE S, TANAKA K, ARISAKA F, et al. Silk fibroin of bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6 ︰ 6 ︰ 1 molar ratio[J]. Journal of Biological Chemistry, 2000, 275(51): 40517-40528.

[3]ASAKURA T. Structure of silk Ⅰ (bombyx mori silk fibroin before spinning) -type Ⅱ beta-turn, not alpha-helix[J]. Molecules, 2021, 26(12): 3706-3725.

[4]ZHAO M H, QI Z Z, TAO X S, et al. Chemical, thermal, time, and enzymatic stability of silk materials with silk Ⅰ structure[J]. International Journal of Molecular Medicine, 2021, 22(8): 4136-4151.

[5]明津法, 黃曉衛(wèi), 寧新, 等. 絲素蛋白材料制備及應(yīng)用進(jìn)展[J]. 絲綢, 2021, 58(2): 20-26.

MING Jinfa, HUANG Xiaowei, NING Xin, et al. Preparation and application of silk fibroin materials[J]. Journal of Silk, 2021, 58(2): 20-26.

[6]ZHAO R B, CAO J P, YANG X Y, et al. Inorganic material based macrophage regulation for cancer therapy: Basic concepts and recent advances[J]. Biomaterials Science, 2021, 9(13): 4568-4590.

[7]SAHOO J K, CHOI J, HASTURK O, et al. Silk degumming time controls horseradish peroxidase-catalyzed hydrogel properties[J]. Biomaterials Science, 2020, 8(15): 4176-4185.

[8]EOM S J, LEE N H, KANG M C, et al. Silk peptide production from whole silkworm cocoon using ultrasound and enzymatic treatment and its suppression of solar ultraviolet-induced skin inflammation[J]. Ultrasonics Sonochemistry, 2020, 61: 104803-104810.

[9]TOMEH M A, HADIANAMREI R, ZHAN X. Silk fibroin as a functional biomaterial for drug and gene delivery[J]. Pharmaceutics, 2019, 11(10): 494-515.

[10]KIJANSKA M, MARMARAS A, HEGGLIN A, et al. In vivo characterization of the integration and vascularization of a silk-derived surgical scaffold[J]. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2016, 69(8): 1141-1150.

[11]LI Y W, LIU Z M, TANG Y P, et al. Three-dimensional silk fibroin scaffolds enhance the bone formation and angiogenic differentiation of human amniotic mesenchymal stem cells: A biocompatibility analysis[J]. Biochimica et Biophysica Acta, 2020, 52(6): 590-602.

[12]CHOUHAN D, MANDAL B B. Silk biomaterials in wound healing and skin regeneration therapeutics: From bench to bedside[J]. Acta Biomaterialia, 2020, 103: 24-51.

[13]張媚, 王富平, 魏如男, 等. 絲素蛋白β-折疊含量影響細(xì)胞生長(zhǎng)的研究[J]. 絲綢, 2019, 56(5): 14-19.

ZHANG Mei, WANG Fuping, WEI Ru’nan, et al. Study on effect of -sheet content of silk fibroin on cell growth[J]. Journal of Silk, 2019, 56(5): 14-19.

[14]CHOI M, CHOI D, HONG J. Multilayered controlled drug release silk fibroin nanofilm by manipulating secondary structure[J]. Biomacromolecules, 2018, 19(7): 3096-3103.

[15]GHOLIPOURMALEKABADI M, SAPRU S, SAMADKUCHAKSARAEI A, et al. Silk fibroin for skin injury repair: Where do things stand[J]. Advanced Drug Delivery Reviews, 2020, 153: 28-53.

[16]GUAN J, ZHU W, LIU B, et al. Comparing the microstructure and mechanical properties of bombyx mori and antheraea pernyi cocoon composites[J]. Acta Biomaterialia, 2017, 47: 60-70.

[17]胡豆豆, 楊明英, 朱良均. 絲素蛋白生物材料對(duì)細(xì)胞行為的影響[J]. 蠶桑通報(bào), 2016, 47(1): 6-10.

HU Doudou, YANG Mingying, ZHU Liangjun. Influence of silk fibroin-based biomaterials on cell behaviors[J]. Bulletin of Sericulture, 2016, 47(1): 6-10.

[18]ASAKURA T, TANAKA C, YANG M, et al. Production and characterization of a silk-like hybrid protein, based on the polyalanine region of samia cynthia ricini silk fibroin and a cell adhesive region derived from fibronectin[J]. Biomaterials, 2004, 25(4): 617-624.

[19]PATRA C, TALUKAR S, NOVOYATLEVA T, et al. Silk protein fibroin from antheraea mylitta for cardiac tissue engineering[J]. Biomaterials, 2012, 33(9): 2673-2680.

[20]楊亞, 閆鳳祎, 王卉, 等. 絲素蛋白/磷酸八鈣復(fù)合材料生物界面的蛋白質(zhì)吸附和細(xì)胞響應(yīng)[J]. 紡織學(xué)報(bào), 2021, 42(2): 41-46.

YANG Ya, YAN Fengyi, WANG Hui, et al. Protein adsorption and cell response on bio-interfaces of silk fibroin/octacalcium phosphate composites[J]. Journal of Textile Research, 2021, 42(2): 41-46.

[21]CHEN L J, HUANG T, QIAO Y N, et al. Perspective into the regulation of cell-generated forces toward stem cell migration and differentiation[J]. Journal of Cellular Biochemistry, 2019, 120(6): 8884-8890.

[22]YUAN L, SAKAMOTO N, SONG G B, et al. Low-level shear stress induces human mesenchymal stem cell migration through the SDF-1/CXCR4 axis via MAPK signaling pathways[J]. Stem Cells and Development, 2013, 22(17): 2384-2393.

[23]ENGLER A J, SEN S, SWEENEY H L, et al. Matrix elasticity directs stem cell lineage specification[J]. Cell, 2006, 126(4): 677-689.

[24]COX T R, ERLER J T. Remodeling and homeostasis of the extracellular matrix: Implications for fibrotic diseases and cancer[J]. Disease Models & Mechanisms, 2011, 4(2): 165-178.

[25]BUITRAGO J O, PATEL K D, El-FIQI A, et al. Silk fibroin/collagen protein hybrid cell-encapsulating hydrogels with tunable gelation and improved physical and biological properties[J]. Acta Biomaterialia, 2018, 69: 218-233.

[26]OH S H, AN D B, KIM T H, et al. Wide-range stiffness gradient PVA/HA hydrogel to investigate stem cell differentiation behavior[J]. Acta Biomaterialia, 2016, 35: 23-31.

[27]SUN W, INCITTI T, MIGLIARESI C, et al. Genipin-crosslinked gelatin-silk fibroin hydrogels for modulating the behaviour of pluripotent cells[J]. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10(10): 876-887.

[28]BONDAR B, FUCHS S, MOTTA A, et al. Functionality of endothelial cells on silk fibroin nets: Comparative study of micro-and nanometric fibre size[J]. Biomaterial, 2008, 29(5): 561-572.

[29]BIDGOLI M R, ALEMZADEH I, TAMJIA E, et al. Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior[J]. Materials Science and Engineering C, 2019, 103: 109688-109715.

[30]ZHANG Y F, FAN W, MA Z C, et al. The effects of pore architecture in silk fibroin scaffolds on the growth and differentiation of mesenchymal stem cells expressing BMP7[J]. Acta Biomaterialia, 2010, 6(8): 3021-3028.

[31]DIENER A, NEBE B, LUTHEN F, et al. Control of focal adhesion dynamics by material surface characteristics[J]. Biomaterials, 2005, 26(4): 383-392.

[32]CAI Y R, GUO J M, CHEN C, et al. Silk fibroin membrane used for guided bone tissue regeneration[J]. Materials Science and Engineering C, 2017, 70: 148-154.

[33]DU C L, JIN J, LI Y C, et al. Novel silk fibroin/hydroxyapatite composite films: Structure and properties[J]. Materials Science & Engineering C, 2009, 29(1): 62-68.

[34]JIN Y S, KUNDU B, CAI Y R, et al. Bio-inspired mineralization of hydroxyapatite in 3D silk fibroin hydrogel for bone tissue engineering[J]. Colloids and Surfaces B: Biointerfaces, 2015, 134: 339-345.

[35]BHARADWAZ A, JAYASURIYA A C. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration[J]. Materials Science and Engineering C, 2020, 110: 110698-110716.

[36]BOSE S, ROY M, BANDYOPADHYAY A. Recent advances in bone tissue engineering scaffolds[J]. Trends Biotechnology, 2012, 30(10): 546-554.

[37]WANG C, HUANG W, ZHOU Y, et al. 3D printing of bone tissue engineering scaffolds[J]. Bioactive Materials, 2020, 5(1): 82-91.

[38]MURPHY C M, HAUGH M G, O’BRIEN F J. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering[J]. Biomaterials, 2010, 31(3): 461-466.

[39]SUN W, INCITTI T, MIGLIARESI C, et al. Viability and neuronal differentiation of neural stem cells encapsulated in silk fibroin hydrogel functionalized with an IKVAV peptide[J]. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11(5): 1532-1541.

[40]KUMAR M, GUPTA P, BHATTACHARJEE S, et al. Immunomodulatory injectable silk hydrogels maintaining functional islets and promoting anti-inflammatory M2 macrophage polarization[J]. Biomaterials, 2018, 187: 1-17.

[41]JUNG S R, SONG N J, YANG D K, et al. Silk proteins stimulate osteoblast differentiation by suppressing the Notch signaling pathway in mesenchymal stem cells[J]. Journal of Food and Nutrition Research, 2013, 33(2): 162-170.

[42]楊敏, 黃凌云, 呂澤平, 等. MAPK信號(hào)通路在力學(xué)刺激對(duì)MG-63成骨樣細(xì)胞護(hù)骨素表達(dá)中的作用[J]. 中華骨質(zhì)疏松和骨礦鹽疾病雜志, 2019, 12(1): 58-64.

YANG Min, HUANG Lingyun, L Zeping, et al. Effects of MAPK signaling pathway on mechanical stimulation-induced osteoprotegrin expression of MG-63 osteoblast-like cell[J]. Chinese Journal of Osteoporosis and Bone Mineral Research, 2019, 12(1): 58-64.

[43]MIDHA S, MURAB S, GHOSH S. Osteogenic signaling on silk-based matrices[J]. Biomaterials, 2016, 97: 133-153.

[44]HORAN R L, BRAMONO D S, STANLEY J R, et al. Biological and biomechanical assessment of a long-term bioresorbable silk-derived surgical mesh in an abdominal body wall defect model[J]. Hernia, 2009, 13(2): 189-199.

[45]CHOUHAN D, DEY N, BHARDWAJ N, et al. Emerging and innovative approaches for wound healing and skin regeneration: Current status and advances[J]. Biomaterials, 2019, 216: 119267.

[46]BROWN J E, GULKA C P, GIORDANO J, et al. Injectable silk protein microparticle-based fillers: A novel material for potential use in glottic insufficiency[J]. Journal of Voice, 2019, 33(5): 773-780.

[47]TEUSCHL A H, ZIPPERLE J, HUBER G C, et al. Silk fibroin based carrier system for delivery of fibrinogen and thrombin as coagulant supplements[J]. Journal of Biomedical Materials Research, 2017, 105(3): 687-696.

[48]PARK Y R, SULTAN M T, PARK H J, et al. NF-κB signaling is key in the wound healing processes of silk fibroin[J]. Acta Biomaterialia, 2018, 67: 183-195.

[49]LAOMEEPHOL C, GUEDES M, FERREIRA H, et al. Phospholipid-induced silk fibroin hydrogels and their potential as cell carriers for tissue regeneration[J]. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14(1): 160-172.

[50]HAN H Y, NING H Y, LIU S S, et al. Silk biomaterials with vascularization capacity[J]. Advanced Functional Materials, 2016, 26(3): 421-436.

[51]FAROKHI M, MOTTAGHITALAB F, REIS R L, et al. Functionalized silk fibroin nanofibers as drug carriers: Advantages and challenges[J]. Journal of Controlled Release, 2020, 321: 324-347.

[52]RAMADASS S K, NAZIR L S, THANGAM R, et al. Type I collagen peptides and nitric oxide releasing electrospun silk fibroin scaffold: A multifunctional approach for the treatment of ischemic chronic wounds[J]. Colloids and Surfaces B, 2019, 175: 636-643.

[53]CHOUHAN D, LOHE T U, SAMUDRALA P K, et al. In situ forming injectable silk fibroin hydrogel promotes skin regeneration in full thickness burn wounds[J]. Advanced Healthcare Materials, 2018, 7(24): 1801092-1801109.

[54]THURBER A E, OMENETTO F G, KAPLAN D L. In vivo bioresponses to silk proteins[J]. Biomaterials, 2015, 71: 145-157.

[55]GUAN G, BAI L, ZUO B, et al. Promoted dermis healing from full-thickness skin defect by porous silk fibroin scaffolds (PSFSs)[J]. Bio-medical Materials and Engineering, 2010, 20(5): 295-308.

[56]CHOUHAN D, JANANI G, CHAKRABORTY B, et al. Functionalized PVA-silk blended nanofibrous mats promote diabetic wound healing via regulation of extracellular matrix and tissue remodelling[J]. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12(3): 1559-1570.

[57]MOISENOVICH M M, PLOTNIKOV E Y, MOYSENOVICH A M, et al. Effect of silk fibroin on neuroregeneration after traumatic brain injury[J]. Neurochemical Research, 2019, 44(10): 2261-2272.

[58]WEI G J, WANG L P, DONG D M, et al. Promotion of cell growth and adhesion of a peptide hydrogel scaffold via mTOR/cadherin signaling[J]. Journal of Cellular Physiology, 2018, 233(2): 822-829.

[59]AN B, TANG-SCHOMER M, HUANG W, et al. Physical and biological regulation of neuron regenerative growth and network formation on recombinant dragline silks[J]. Biomaterials, 2015, 48: 137-146.

[60]LI X W, LIU X Y, JOSEY B, et al. Short laminin peptide for improved neural stem cell growth[J]. Stem Cells Translational Medicine, 2014, 3(5): 662-670.

[61]LI G F, CHEN K, DAN Y, et al. Laminin-coated electrospun regenerated silk fibroin mats promote neural progenitor cell proliferation, differentiation, and survival in vitro[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 190-202.

[62]DING Z Z, HAN H Y, FAN Z H, et al. Nanoscale silk-hydroxyapatite hydrogels for injectable bone biomaterials[J]. ACS Applied Materials & Interfaces, 2017, 9(20): 16913-16921.

[63]SANG Y H, LI M R, LIU J J, et al. Biomimetic silk scaffolds with an amorphous structure for soft tissue engineering[J]. ACS Applied Materials & Interfaces, 2018, 10(11): 9290-9300.

[64]WANG L L, LU G Z, LU Q, et al. Controlling cell behavior on silk nanofiber hydrogels with tunable anisotropic structures[J]. ACS Biomaterials Science & Engineering, 2018, 4(3): 933-941.

[65]LU Q, HU X, WANG X Q, et al. Water-insoluble silk films with Silk Ⅰ structure[J]. Acta Biomaterialia, 2010, 6(4): 1380-1387.

[66]QU J, WANG D, WANG H H, et al. Electrospun silk fibroin nanofibers in different diameters support neurite outgrowth and promote astrocyte migration[J]. Journal of Biomedical Materials Research, 2013, 101(9): 2667-2678.

[67]KUMAR M, NANDI S K, KAPLAN D L, et al. Localized immunomodulatory silk macrocapsules for islet-like spheroid formation and sustained insulin production[J]. ACS Biomaterials Science & Engineering, 2017, 3(10): 2443-2456.

[68]ZHU Y, WANG D Z, YAO X H, et al. Biomimetic hybrid scaffold of electrospun silk fibroin and pancreatic decellularized extracellular matrix for islet survival[J]. Journal of Biomaterials Science, 2021, 32(2): 151-165.

[69]PARK S Y, KIM B, LEE Y K, et al. Silk fibroin promotes the regeneration of pancreatic beta-cells in the C57BL/KsJ-Lepr(db/db) mouse[J]. Molecules, 2020, 25(14): 3259-3266.

[70]CHEN S, MATSUMOTO H, MOROOKA Y, et al. Smart microneedle fabricated with silk fibroin combined semi-interpenetrating network hydrogel for glucose-responsive insulin delivery[J]. ACS Biomaterials Science & Engineering, 2019, 5(11): 5781-5789.

[71]DAVIS N E, BEENKEN-ROTHKOPF L N, MIRSOIAN A, et al. Enhanced function of pancreatic islets co-encapsulated with ECM proteins and mesenchymal stromal cells in a silk hydrogel[J]. Biomaterials, 2012, 33(28): 6691-6697.

[72]HAMILTON D C, SHIH H H, SCHUBERT R A, et al. A silk-based encapsulation platform for pancreatic islet transplantation improves islet function in vivo[J]. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11(3): 887-895.

[73]MAO D, ZHU M F, ZHANG X Y, et al. A macroporous heparin-releasing silk fibroin scaffold improves islet transplantation outcome by promoting islet revascularisation and survival[J]. Acta Biomaterialia, 2017, 59: 210-220.

[74]GEAO C, COSTA-PINTO A R, CUNHA-REIS C, et al. Thermal annealed silk fibroin membranes for periodontal guided tissue regeneration[J]. Journal of Materials Research, 2019, 30(2): 27-45.

[75]NAYAK S, DEY S, KUNDU S C. Silk sericin-alginate-chitosan microcapsules: Hepatocytes encapsulation for enhanced cellular functions[J]. International Journal of Biological Macromolecules, 2014, 65: 258-266.

[76]XU L J, WANG S F, SUI X, et al. Mesenchymal stem cell-seeded regenerated silk fibroin complex matrices for liver regeneration in an animal model of acute liver failure[J]. ACS Applied Materials & Interfaces, 2017, 9: 14716-14723.

[77]NGUYEN T P, NGUYEN Q V, NGUYEN V H, et al. Silk fibroin-based biomaterials for biomedical applications: A review[J]. Polymers (Basel), 2019, 11(12): 1933-1957.

[78]GRABSKA-ZIELINSKA S, SIONKOWAKA A. How to improve physico-chemical properties of silk fibroin materials for biomedical applications? Blending and cross-linking of silk fibroin: A review[J]. Materials, 2021, 14(6): 1510-1540.

[79]RIBEIRO V P, SILVACORREIA J, GONCALVES C, et al. Rapidly responsive silk fibroin hydrogels as an artificial matrix for the programmed tumor cells death[J]. PLos One, 2018, 13(4): 194441-194461.

Abstract: Silk fibroin is an important natural biopolymer material with excellent mechanical properties, biocompatibility, biodegradability, and easy chemical modification of functional groups. It has received extensive attention in biomedical materials and regenerative medicine research. In recent years, silk fibroin-based regenerative medicine biomaterials have shown good application potential in repair and regenerative medicine concerning tissues such as bone, skin, nerves and pancreatic islets. The interactions between these materials and cells are gradually elucidated, which further provides positive feedback to the silk biomedical materials design and preparation, significantly accelerating the clinical translation of silk fibroin-based biomedical materials.

Currently, silk fibroin materials have been manufactured into injectable solution, fiber material, film material, hydrogel material and scaffold material that can mimic the functions of extracellular matrix in the regulation of cell adhesion, proliferation and differentiation. Generally, the biomedical materials in tissue repair and regenerative medicine have several characterizations, such as biocompatibility, low host immune response and good permeability, which could support or enhance cellular life activities to promote tissue repair and regeneration. As an important natural material, silk fibroin has displayed excellent biocompatibility, biodegradability, low immunogenicity, mechanical properties and easy chemical modification of functional groups, presenting high potential in cell regulation for regenerative medicine. The adjustable mechanical strength is another important feature of silk fibroin, which could make its rigidity match thatof cells, revealing an important role in cell division and functional differentiation. In the recent decade, the regulation of silk fibroin material on cell function has been gradually clarified and has become the important cue for design and construction of silk fibroin biomaterials, which accelerates the clinical medicine application of silk fibroin, showing great potential in cell regulation during bone, skin, nerve, pancreatic islets tissue repair and regenerative medicine.

In terms of bone cells regulation, silk fibroin scaffold material can induce osteoblast proliferation, adhesion and differentiation, induce new bone angiogenesis and promote bone tissue regeneration. More importantly, silk fibroin biomaterials could be degraded and absorbed in situ during new bone generations. As for skin cells regulation, silk fibroin-based materials are widely used in skin regeneration treatment, and they have been produced into suture and ligation silk thread, silk fibroin mask, abdominal wall reconstruction surgical net, silk fibroin sponge in plastic surgery and vocal cord filler. Furthermore, silk fibroin could influence the NF-κB associated signaling, and the treatment of fibroblasts with silk fibroin could increase the expression of cyclin D1, vimentin, fibronectin, and vascular endothelial growth factor, which benefits skin regeneration. In the recent decade, silk fibroin materials have further been investigated widely and deeply for nerve tissues engineering. During the process of nerve cell regulation, silk fibroin-based biomedical materials could induce the expression of neural cell adhesion molecules, which could enhance cell adhesion and proliferation. Besides, the regulations for neural cells are always concerned with the silk orientation, which is demonstrated in neural progenitor cells, and the migration efficiency of neurons and astrocytes on different diameters of silk fiber scaffolds has further been verified.

Materials-based encapsulation is an important strategy for cell behavior regulation. Due to the regulatory function and biosafety of silk fibroin material, it is regarded as a feasible cell coating material and is used for islet cells encapsulation in type I diabetes therapy research. Currently, the silk fibroin wrapping pancreatic islet cells or mesenchymal stem cells have become a hot research topic, and it has been confirmed that silk fibroin can be used to construct the ECM-similar structure to support long-term survival and insulin-secretion function of islet cells or islet microtissue in vitro and in vivo, which presents great potential for the islet implant.

At present, silk fibroin is synthesized into many types of biomedical materials according to clinical research demand, which reflectsits great potentials in cell regulations in regenerative medicine. The preparation of cell-carrying active medical materials has become the focus of regenerative medicine research, and the extensive research on silk fibroin and its cell regulation make it one of the most promising regenerative medicine materials. Although much valuable experience has been accumulated in physical and chemical preparation and processing of silk protein materials and in related physiochemical property regulation studies, the elucidation of the biological regulation functions of silk protein and its degraded or derived materials such as the interaction with cells is still a challenge for the research and practicalization of silk protein active biomaterials. Therefore, it is necessary to carry out in-depth biomedical research on the morphological and functional changes over the cellular effect of silk fibroin materials in vivo, which may accelerate the clinical application of silk fibroin-based biomedical materials and development of related medical devices.

Key words: silk fibroin; bone cells; skin cells; nerve cells; pancreatic islet cells; regenerative medicine

猜你喜歡
骨細(xì)胞神經(jīng)細(xì)胞
哺乳動(dòng)物視網(wǎng)膜中發(fā)現(xiàn)新神經(jīng)細(xì)胞
為什么大腦能記住事情?
人為什么要睡覺?
Tenascin-R的研究進(jìn)展
小蘇打或可靶向治療骨質(zhì)疏松
激素性股骨頭壞死發(fā)生機(jī)制的新認(rèn)識(shí)
ImageJ在骨細(xì)胞陷窩特性3D呈現(xiàn)中的應(yīng)用
一種多功能鬧鐘按摩枕頭
黃秦艽活性提取物對(duì)雪上一枝蒿所致PC12細(xì)胞毒性的保護(hù)作用研究
Ghrelin在類風(fēng)濕關(guān)節(jié)炎中的研究進(jìn)展