段漢坤,謝應明?,謝梅萍
季鹽對氣體水合物相平衡影響研究進展*
段漢坤1,2,謝應明1,2?,謝梅萍1,2
(1. 上海理工大學 能源與動力工程學院,上海 200093;2. 上海市動力工程多相流動與傳熱重點實驗室,上海 200093)
季鹽是一種高效的水合物生成添加劑,通常通過填充水合物籠達到改善水合物相平衡條件的效果。季鹽對CH4、CO2等氣體水合物相平衡條件的影響效果主要與季鹽濃度有關(guān)。就甲烷水合物而言,同等相平衡壓力條件下,TiPeAF和TiAAB對相平衡影響顯著:添加了TiPeAF(0.315%)、TiAAB(0.438%)的體系,其相平衡溫度分別比純水體系高20 K和22 K;TBANO3、TAAB、TAAC對相平衡影響甚微:其相平衡溫度較添加TBAB、TBAC等季鹽的體系低10 K。對于CO2水合物,添加TiAAB的體系相平衡溫度比純水體系高29 K,添加TBAF體系的相平衡溫度比純水體系高26 K。此外,季鹽與其他類型添加劑復配后對水合物的相平衡條件有更好的提升效果:相較于僅添加TBAB的體系,TBAB(0.05%)和NaCl(0.03%)的復配體系可以使水合物相平衡溫度再升高10 K。
季鹽;氣體;水合物;相平衡;顯微結(jié)構(gòu)
水合物通常是在一定溫度和壓力下由水分子與客體分子(如N2、CO2、CH4等)共同形成,水分子直接通過氫鍵互相連接形成晶穴,客體分子進入晶穴而形成籠型水合物。水合物應用范圍廣泛,但是由于其較為嚴苛的生成條件導致其在實際運用中存在困難。研究如何降低水合物生成條件、加快水合物生成速率顯得至關(guān)重要。其中添加促進劑是高效制備水合物的研究熱點,研究人員發(fā)現(xiàn)季鹽類促進劑要比其他水合物促進劑更好[1]。季鹽是一種可溶于水的熱力學添加劑,研究較多的季鹽有丁基銨鹽(T-butylammonium X, TBAX)和丁基膦鹽(T-butylphosphonium X, TBPX),如四丁基溴化銨(tetrabutylammonium bromide, TBAB)、四丁基氯化銨(tetrabutylammonium chloride, TBAC)、四丁基氟化膦(tetrabutylphosphonium fluoride, TBAF)、三丁基氧化膦(tri-n-butyl phosphine oxide, TBPO)等;還有甲基銨鹽(T-methylammonium X, TMAX)、乙基銨鹽(T-ethylammonium X, TEAX)、丙基銨鹽(T-propylammonium X, TPrAX)、戊基銨鹽(T-amylammonium X, TAAX或T-pentylammonium X, TPeAX)、異戊基銨鹽(T-isoamylamylammonium X, TiAAX或T-isoamylpentylammonium X, TiPeAX)也會對水合物的相平衡產(chǎn)生不同程度的影響。其中陰離子X常見的有氟離子(F?)、氯離子(Cl?)、溴離子(Br?),除此之外還可以是硝酸根離子(NO3?)、氫氧根離子(OH?)、醋酸根離子(CH3COO?)、氧離子(O2?)等。其中甲、乙、丙基的季鹽會使得水合物相平衡條件趨于低溫高壓方向,而丁、戊、異戊基季鹽則會使水合物相平衡條件趨于高溫低壓方向。本文介紹有季鹽參與生成的半籠型水合物結(jié)構(gòu)的特殊性,從對相平衡條件的影響綜述各類季鹽對不同種類水合物相平衡的影響。分析不同種類季鹽產(chǎn)生不同效果的原因,最后提出今后關(guān)于季鹽對水合物相平衡影響的研究方向。
籠型水合物的晶體結(jié)構(gòu)通常包括I型、II型和H型。半籠型水合物促進劑大多為季鹽類有機物,氨離子或膦離子中的氫原子被烷基取代即為季鹽[2]。1940年FOWLER等[3]發(fā)現(xiàn)一系列季銨鹽水溶液可以在常壓下形成水合物,而且熔點也相對較高,如TBAF生成的水合物熔點可達37℃。隨后JEFFREY等[4]利用X射線衍射研究發(fā)現(xiàn)這類水合物的陰離子(如F?、Cl?、Br?等)會替代一個水分子參與晶穴的構(gòu)成,陽離子(如TBA+)則會占據(jù)大孔穴,即形成“半籠型水合物”。常見的半籠型水合物結(jié)構(gòu)包括六邊形結(jié)構(gòu)(2P?2T?3D?40H2O, HS)、四邊形結(jié)構(gòu)(4P?16T?10D?172H2O, TS)和立方結(jié)構(gòu)(48T?16D?368H2O, SCS)[5]。如圖1所示,TBAB質(zhì)量濃度(若無特殊說明,文后均指質(zhì)量濃度)較低時(<18%)為HS型、濃度較高時(>18%)為TS型[6]。TBAC為TS型[7]、TBAF可以形成TS或SCS型(超立方結(jié)構(gòu))[8]。
TBPB可形成TBPB?32H2O和TBPB?38H2O兩種不同結(jié)構(gòu)的半籠型水合物[9],TBPB?38H2O的結(jié)構(gòu)如圖2所示,其與TBAB形成的HS結(jié)構(gòu)類似。
圖1 HS半籠型水合物(左)和TS半籠型水合物(右)結(jié)構(gòu)[6]
圖2 TBPB?38H2O的結(jié)構(gòu)圖
將上述季鹽加入到CO2/CH4/H2等氣體+ 水體系中,這些小氣體分子會進入季鹽形成的“半籠型水合物”的小孔穴之中。在這種特殊的結(jié)構(gòu)中,客體分子(氣體小分子和季鹽的陽離子)與主體分子(水分子)間不僅有范德華力作用,還有氫鍵作用,因此半籠型水合物擁有更好的熱力學穩(wěn)定性[10],從而使水合物的相平衡條件向著高溫低壓的方向偏移。
然而,并非所有季鹽都會生成半籠型水合物,如KHAN等[11]發(fā)現(xiàn)TMAOH/TEAOH/TPrAOH + CH4+ CO2體系的水合物解離焓數(shù)據(jù)與I型水合物相近,但水合物的解離焓往往和水合物結(jié)構(gòu)有關(guān),因此部分季鹽可能不會生成半籠型水合物。在TMAC/TEAOH/TPrAOH + CO2+ H2O體系中也得出了類似的結(jié)論[12]。這些碳鏈較短的甲基、乙基、丙基銨鹽往往使原水合物的相平衡壓力更高,這與半籠型水合物的特性不符。水合物的相平衡條件和水合物的結(jié)構(gòu)有一定相關(guān)性,但是這些季鹽的結(jié)構(gòu)數(shù)據(jù)還較少,需要更進一步的研究。
甲烷水合物大量存在于自然界中,具有替代傳統(tǒng)化石能源的潛力[13],還可應用在海水淡化、天然氣固態(tài)儲運等方面[13-14]。季鹽對CH4水合物相平衡影響的研究很多,在TBPB[15-17]、TBPC[18]、TBPO[19]、TBAC[20-21]、TBAB[22]、TBAF[23]等研究實驗中,均發(fā)現(xiàn)隨著季鹽濃度的增加,相平衡曲線均不斷右移,但移動幅度不斷變小。說明隨著季鹽濃度的增加,CH4水合物相平衡條件向著高溫低壓的方向偏移,但季鹽對CH4水合物的相平衡條件的影響不是線性的,越多的季鹽使其相平衡條件向高溫低壓方向偏移的趨勢逐漸減小,過多的季鹽甚至會降低CH4水合物穩(wěn)定性。除上述季鹽外,TBANO3、TBAOH、TAAB、TAAC、TiAAB、TiPeAF均可在不同程度上使CH4水合物的相平衡條件向著高溫低壓的方向偏移。大部分季鹽對CH4水合物相平衡的影響類似,隨著季鹽濃度增大,CH4水合物相平衡條件向高溫低壓趨勢先變大后減小,即存在一個最佳濃度。將上述研究中各種季鹽濃度與最佳濃度整理于表1中,發(fā)現(xiàn)各種季鹽的最佳質(zhì)量分數(shù)大多在0.30 ~ 0.35之間。但TAAB的最佳質(zhì)量分數(shù)為0.1,TiAAB、TiPeAF、TAAC、TBANO3的研究濃度較為單一,還需進一步研究。
表1 各種季鹽對CH4水合物相平衡影響研究
從表1選取各種季鹽的最佳濃度的相平衡數(shù)據(jù)整理于圖3。從圖中可以觀察到,TiPeAF和TiAAB對相平衡的影響最明顯,在相同相平衡壓力下,添加TiPeAF(0.315%)和TiAAB(0.438%)的體系,其相平衡溫度可比純水體系分別高20 K和22 K。TBANO3、TAAB、TAAC對相平衡影響最不明顯,其相平衡溫度比添加TBAB、TBAC等季鹽的體系低10 K。
從圖3中還可以觀察到,對于丁基銨鹽,其使相平衡向高溫低壓方向偏移的作用隨陰離子的摩爾體積減小而增大[41]。文獻[7]中離子半徑的數(shù)據(jù)列于表2,發(fā)現(xiàn)此規(guī)律不僅限于丁基銨鹽中,在陽離子相同的情況下,陰離子半徑越大,半籠型水合物相平衡條件越嚴苛,但O2?例外,是由于在TBPB和TBPC中,陽離子均有4條碳鏈,但是在TBPO中僅有3條碳鏈,由此可以推斷碳鏈的數(shù)量也可能是影響半籠型水合物相平衡條件的一項因素。TiAAB與TAAB的化學式雖相同,但由于結(jié)構(gòu)不同而導致對水合物相平衡的影響大不相同,需要在以后進行更多的結(jié)構(gòu)分析。
圖3 各種季鹽最佳濃度對CH4水合物相平衡的影響
表2 陰離子半徑[7]
CO2會造成全球氣候變暖,但全球CO2排放量居高不下,水合物封存[42]可以在一定程度上減少CO2的排放量。此外,CO2水合物也是一種當今研究的替代型蓄冷介質(zhì)[43]。但是其有生成壓力高、誘導時間長等缺點,引入季鹽類添加劑可以有效緩解。
有學者研究了TBAB[44-45]、TBAC[46]、TBAF[23]對CO2相平衡的影響,均發(fā)現(xiàn)隨著季鹽濃度的增大,半籠型水合物的相平衡條件向著高溫低壓方向偏移,且均存在最佳濃度,當季鹽濃度過大時,對相平衡的緩解效果將會降低。如YE等[45]發(fā)現(xiàn)當TBAB質(zhì)量分數(shù)為0.55時,水合物相平衡溫度有所降低,并介于0.19 ~ 0.32之間。
ZHOU等[44]研究了TBAB質(zhì)量分數(shù)為0.01 ~ 0.32對CO2水合物相平衡的影響。隨著TBAB的濃度增加,在一定的壓力下,平衡溫度明顯升高。平衡壓力對溫度更加敏感。這使得CO2+ TBAB體系會更適用于空調(diào)系統(tǒng)卻不適用于儲氣庫和其他應用中。YE等[46]發(fā)現(xiàn)當TBAC或TBPC的質(zhì)量分數(shù)從0.01增加到0.35時,相平衡溫度的升高幅度不斷變小,并發(fā)現(xiàn)在較低壓力下TBAC或TBPC對緩和CO2水合物的相平衡條件的作用更明顯。LEE等[23]發(fā)現(xiàn)在質(zhì)量分數(shù)為0.448的TBAF + CO2體系中,只有部分TBAF參與了半籠型水合物的形成,剩下的TBA+和F?均以自由離子的形式存在。它們會對半籠型水合物形成抑制作用。這很好地解釋了季鹽具有最佳濃度的原因。
不同于其他添加劑,從SILVA等[19]的研究發(fā)現(xiàn),TBPO濃度的增加對CO2水合物的相平衡影響趨勢卻不明顯,而且在不同的壓力下,最佳濃度不同,例如當壓力為1.0 MPa和1.5 MPa時最佳質(zhì)量分數(shù)為0.15,但當壓力增加到2.0 MPa和3.0 MPa時最佳質(zhì)量分數(shù)則變成了0.20和0.30。這可能與TBPO的結(jié)構(gòu)特殊有關(guān)。
表3 各種季鹽對CO2水合物相平衡影響研究
TBAA、TAAB、TAAC、TBANO3、TiAAB均有實驗證明可使CO2水合物相平衡條件向高溫低壓方向偏移[47-53],現(xiàn)有研究中各種添加劑最佳濃度見表3,其規(guī)律與CH4水合物類似,最佳質(zhì)量分數(shù)也在0.30 ~ 0.35之間。TAAB、TBPO的最佳質(zhì)量分數(shù)為0.1和0.15。其中TiAAB、TBAF效果較好,在相同相平衡壓力下,添加TiAAB和TBAF的體系,其相平衡溫度比純水體系分別高29 K和26 K。
圖4 各種季鹽最佳添加濃度對CO2水合物相平衡的影響
將表3中各種季鹽的最佳濃度的相平衡數(shù)據(jù)整理于圖4中,將圖3與圖4對比,總結(jié)各種季鹽對CO2水合物和CH4水合物相平衡的影響,可以得出一些相同的結(jié)論如:在陽離子相同的情況下,陰離子半徑越大,半籠型水合物相平衡條件越嚴苛;在陰離子相同的情況下,季鹽對水合物熱力學穩(wěn)定性的促進效果為異戊基> 丁基> 戊基;季鹽均存在最佳濃度;但也有不相同的結(jié)論,如對于CO2水合物,TBANO3最佳質(zhì)量分數(shù)是0.15,但是對于CH4水合物,最佳質(zhì)量分數(shù)是0.34。
N2水合物可以用于CO2捕集和水合物儲氫等方面[54-55]。H2是一種新型的清潔能源,但由于其易燃易爆的性質(zhì),H2的安全儲存與運輸顯得至關(guān)重要。李璐伶等[56]指出水合物儲氫是一種可行的儲氫材料,當加入季鹽生成半籠型水合物時,雖然穩(wěn)定性提高,但是儲能密度卻會下降。除此之外,季鹽還被應用在Ar、Xe、H2S、CF4等氣體水合物生成過程中,將現(xiàn)有的研究列于表4。
表4 各種季鹽對其他氣體水合物的影響研究
由表4可知,這些季鹽對絕大多數(shù)氣體的相平衡影響作用類似,即都可以使水合物的相平衡條件向著高溫低壓的方向偏移,且具有最佳濃度,但有些實驗數(shù)據(jù)較為匱乏,需要在未來進一步研究。此外部分季鹽對某些氣體水合物的相平衡影響有特殊性,如KARIMI等[60]研究TBAOH對H2水合物的相平衡影響時發(fā)現(xiàn),在不同壓力下最佳濃度不同,但兩者之間的關(guān)系并不明顯;BABAEE等[63]研究了TBAB對CF4水合物相平衡的影響,結(jié)果發(fā)現(xiàn)TBAB對CF4水合物的相平衡影響不大。
在天然氣和石油工業(yè)中,水合物的形成會造成管路堵塞,影響工業(yè)正常運行,造成巨大損失[64]。碳鏈較短的甲、乙、丙基銨鹽可作為水合物抑制劑應用在這些領(lǐng)域中[65]。TMAA[66]、TMAB[27-28,65,67]、TMAC[12,68]、TMAOH[69-70]、TEAB[27-28,65,67]、TEAC[71]、TEAI[65,67]、TEAOH[12]、TPrAB[27]、TPrAOH[12,33]、TPeAOH[33]等季鹽均被研究證明可使CH4或CO2水合物的相平衡向低溫高壓方向偏移。
QASIM等[65,67]研究了TEAB、TEAI、TMAB三種季鹽對CH4和CO2水合物相平衡影響,KHAN等[12]研究了TMAC、TEAOH、TPrAOH對CO2水合物相平衡影響,均發(fā)現(xiàn)影響效果和季鹽種類與濃度有關(guān),濃度越高,相平衡向低溫高壓方向偏移越大。不同種類季鹽的作用雖有不同但差距不大。SU等[27,33]研究指出,部分季鹽會使得水合物相平衡向低溫高壓方向偏移,類似于被廣泛研究的無機鹽NaCl,這說明水合物熔點的下降有可能是一種綜合效應,即熔點的降低只與溶質(zhì)的濃度有關(guān)。QASIM等[65]在其研究中還發(fā)現(xiàn)TEAB、TEAI、TMAB三種季鹽與乙二醇組成混合劑有更強的使相平衡向低溫高壓方向偏移效果。
表5 季鹽與其他物質(zhì)復配對水合物相平衡影響的實驗研究
當季鹽與其他物質(zhì)復配時,可以進一步降低水合物相平衡壓力,在現(xiàn)有的研究中,其他物質(zhì)主要有熱力學添加劑、無機鹽和納米顆粒。將一些學者研究得出的結(jié)論列于表5中,可以發(fā)現(xiàn),季鹽與熱力學添加劑或NaCl一起使用時,一般情況下可以進一步改變相平衡條件:在相同壓力下質(zhì)量分數(shù)為0.05的TBAB和0.03的NaCl可使得相平衡溫度再升高10 K。但是,在部分復配濃度下,促進效果不明顯甚至會有反作用,因此如何復配才能得到更好的促進效果還需進一步研究;與納米顆粒共同使用時,相平衡數(shù)據(jù)變化不大或向著低溫的方向偏移1 K左右。
本文總結(jié)歸納了季鹽對水合物相平衡的影響,得到如下結(jié)論,并提出一些建議:
(1)丁基季鹽會打破水合物的常規(guī)結(jié)構(gòu),其中的陰離子會替代一個水分子參與晶穴的構(gòu)成,陽離子則會占據(jù)大孔穴,形成“半籠型水合物”。但碳鏈較短的甲、乙、丙基季鹽不會形成“半籠型水合物”,其結(jié)構(gòu)研究還較少,需要進一步研究。
(2)對于CH4水合物,在相同相平衡壓力下,質(zhì)量分數(shù)為0.315的TiPeAF和質(zhì)量分數(shù)為0.438的TiAAB可使水合物相平衡溫度高于其他體系15 K甚至更多,TBAOH與TBAF的效果次之,BANO3、TAAB、TAAC的效果最低。對于CO2水合物,在相同壓力下,添加TiAAB和TBAF,其相平衡溫度高于其他體系至少13 K。使水合物相平衡條件向高溫低壓趨向的季鹽均有最佳濃度,大多數(shù)季鹽的最佳質(zhì)量分數(shù)在0.3 ~ 0.35之間。
(3)季鹽使相平衡條件向高溫低壓趨向作用除了與濃度有關(guān)外,還與碳鏈長度和數(shù)量、陰離子半徑有關(guān)。不同長度碳鏈促進效果為異戊基> 丁基> 戊基,陰離子半徑越小促進效果越強。通過此規(guī)律便于尋找效果更好的季鹽,有關(guān)異戊基與戊基季鹽之間的差異也值得深入研究。
(4)季鹽與其他種類添加劑一起使用可以進一步加強相平衡條件偏移的趨勢,但如何復配以獲得更好的效果還需要繼續(xù)深入研究。與納米顆粒共同使用時,相平衡數(shù)據(jù)變化不大或向著低溫的方向偏移1 K左右。
(5)使水合物相平衡條件向低溫高壓偏移的季鹽,其效果與季鹽種類關(guān)系不明顯,類似于無機鹽NaCl,效果會隨季鹽濃度增大而增強。
[1] 周麟晨, 孫志高, 李娟, 等. 水合物形成促進劑研究進展[J]. 化工進展, 2019, 38(9): 4131-4141. DOI: 10.16085/j.issn.1000-6613.2018-2415.
[2] 李亮. 室溫穩(wěn)定四異戊基溴化銨半籠型水合物的合成、結(jié)構(gòu)及性能研究[D]. 廣州: 華南理工大學, 2018.
[3] FOWLER D L, LOEBENSTEIN W V, PALL D B, et al. Some unusual hydrates of quaternary ammonium salts[J]. Journal of the american chemical society, 1940, 62(5): 1140-1142. DOI: 10.1021/ja01862a039.
[4] JEFFREY G A. Water structure in organic hydrates[J]. Accounts of chemical research, 1969, 2(11): 344-352. DOI: 10.1021/ar50023a004.
[5] 史伶俐, 梁德青, 丁家祥. 季銨鹽半籠型甲烷水合物激光拉曼光譜研究[J]. 工程熱物理學報, 2018, 39(11): 2362-2365.
[6] SHIMADA W, EBINUMA T, OYAMA H, et al. Separation of gas molecule using tetra-n-butyl ammoniumbromide semi-clathrate hydrate crystals[J]. Japanese journal of applied physics, 2003, 42(2A): L129-L131. DOI: 10.1143/JJAP.42.L129.
[7] RODIONOVA T, KOMAROV V, VILLEVALD G, et al. Calorimetric and structural studies of tetrabutylammonium chloride ionic clathrate hydrates[J]. The journal of physical chemistry B, 2010, 114(36): 11838-11846. DOI: 10.1021/jp103939q.
[8] TRUEBA A T, RADOVI? I R, ZEVENBERGEN J F, et al. Kinetic measurements and in situ Raman spectroscopy study of the formation of TBAF semi-hydrates with hydrogen and carbon dioxide[J]. International journal of hydrogen energy, 2013, 38(18): 7326-7334. DOI:10.1016/ j.ijhydene.2013.03.154.
[9] MUROMACHI S, TAKEYA S, YAMAMOTO Y, et al. Characterization of tetra--butylphosphonium bromide semiclathrate hydrate by crystal structure analysis[J]. CrystEngComm, 2014, 16(10): 2056-2060. DOI: 10.1039/C3CE41942H.
[10] 史伶俐, 梁德青. 四丁基氯化銨半籠型水合物的相平衡模型[J]. 新能源進展, 2014, 2(3): 221-225. DOI: 10.3969/j.issn.2095-560X.2014.03.010.
[11] KHAN M S, LAL B, KEONG L K, et al. Experimental evaluation and thermodynamic modelling of AILs alkyl chain elongation on methane riched gas hydrate system[J].Fluid phase equilibria, 2018, 473: 300-309. DOI: 10.1016/ j.fluid.2018.07.003.
[12] KHAN M S, BAVOH C B, PARTOON B, et al. Thermodynamic effect of ammonium based ionic liquids on CO2hydrates phase boundary[J]. Journal of molecular liquids, 2017, 238: 533-539. DOI: 10.1016/j.molliq.2017.05.045.
[13] 劉芙蓉, 王勝杰, 張文玲, 等. 冰-水-氣生成天然氣水合物的實驗研究[J]. 西安交通大學學報, 2000, 34(12): 66-69. DOI: 10.3321/j.issn:0253-987X.2000.12.017.
[14] 梁艷, 王樹立, 孫譽珍, 等. 水合物法海水淡化脫鹽效率研究[J]. 環(huán)境工程, 2015, 33(5): 10-13, 47. DOI: 10.13205/j.hjgc.201505003.
[15] ILANI-KASHKOULI P, MOHAMMADI A H, NAIDOO P, et al. Hydrate phase equilibria for CO2, CH4, or N2+ tetrabutylphosphonium bromide (TBPB) aqueous solution[J]. Fluid phase equilibria, 2016, 411: 88-92. DOI: 10.1016/j.fluid.2015.11.021.
[16] SUGINAKA T, SAKAMOTO H, IINO K, et al. Phase equilibrium for ionic semiclathrate hydrate formed with CO2, CH4, or N2plus tetrabutylphosphonium bromide[J]. Fluid phase equilibria, 2013, 344: 108-111. DOI: 10.1016/j.fluid.2013.01.018.
[17] SILVA L P S, DALMAZZONE D, STAMBOULI M, et al. Phase equilibria of semi-clathrate hydrates of tetra-n-butyl phosphonium bromide at atmospheric pressure and in presence of CH4and CO2+ CH4[J]. Fluid phase equilibria, 2016, 413: 28-35. DOI: 10.1016/j.fluid.2015.09.042.
[18] SHI L L, DING J X, LIANG D Q. Thermodynamic Properties of double semiclathrate hydrates formed with tetrabutylphosphonium chloride + CH4[J]. Journal of chemical & engineering data, 2017, 62(12): 4377-4382. DOI: 10.1021/acs.jced.7b00738.
[19] SILVA L P S, DALMAZZONE D, STAMBOULI M, et al. Phase behavior of simple tributylphosphine oxide (TBPO) and mixed gas (CO2, CH4and CO2+ CH4) + TBPO semiclathrate hydrates[J]. The journal of chemical thermodynamics, 2016, 102: 293-302. DOI: 10.1016/j.jct.2016.07.022.
[20] SUN Z G, LIU C G. Equilibrium conditions of methane in semiclathrate hydrates of tetra-n-butylammonium chloride[J]. Journal of chemical & engineering data, 2012, 57(3): 978-981. DOI: dx.doi.org/10.1021/je201264g.
[21] MAKINO T, YAMAMOTO T, NAGATA K, et al. Thermodynamic stabilities of tetra--butyl ammonium chloride + H2, N2, CH4, CO2, or C2H6semiclathrate hydrate systems[J]. Journal of chemical & engineering data, 2010, 55(2): 839-841. DOI:10.1021/je9004883.
[22] MOHAMMADI A H, ESLAMIMANESH A, BELANDRIA V, et al. Phase equilibria of semiclathrate hydrates of CO2, N2, CH4, or H2+ tetra--butylammonium bromide aqueous solution[J]. Journal of chemical & engineering data, 2011, 56(10): 3855-3865. DOI:10.1021/je2005159.
[23] LEE S, LEE Y, PARK S, et al. Thermodynamic and spectroscopic identification of guest gas enclathration in the double tetra--butylammonium fluoride semiclathrates[J].The journal of physical chemistry B, 2012, 116(30): 9075-9081. doi: 10.1021/jp302647c.
[24] ARJMANDI M, CHAPOY A, TOHIDI B. Equilibrium data of hydrogen, methane, nitrogen, carbon dioxide, and natural gas in semi-clathrate hydrates of tetrabutyl ammonium bromide[J]. Journal of chemical & engineering data, 2007, 52(6): 2153-2158. DOI:10.1021/je700144p.
[25] MOHAMMADI A H, RICHON D. Phase equilibria of semi-clathrate hydrates of tetra--butylammonium bromide + hydrogen sulfide and tetra--butylammonium bromide + methane[J]. Journal of chemical & engineering data, 2010, 55(2): 982-984. DOI:10.1021/je9004257.
[26] SANGWAI J S, OELLRICH L. Phase equilibrium of semiclathrate hydrates of methane in aqueous solutions of tetra-n-butyl ammonium bromide (TBAB) and TBAB–NaCl[J]. Fluid phase equilibria, 2014, 367: 95-102. DOI: 10.1016/J.FLUID.2014.01.036.
[27] SU Y, BERNARDI S, SEARLES D J, et al. Effect of carbon chain length of organic salts on the thermodynamic stability of methane hydrate[J]. Journal of chemical & engineering data, 2016, 61(5): 1952-1960. DOI: 10.1021/acs.jced.6b00185.
[28] GUPTA P, NAIR V C, SANGWAI J S. Phase equilibrium of methane hydrate in the presence of aqueous solutions of quaternary ammonium Salts[J]. Journal of chemical & engineering data, 2018, 63(7): 2410-2419. DOI: 10.1021/acs.jced.7b00976.
[29] MOHAMMADI A, MANTEGHIAN M, MOHAMMADI A H. Phase equilibria of semiclathrate hydrates for methane+tetra n-butylammonium chloride (TBAC), carbon dioxide+TBAC, and nitrogen+TBAC aqueous solution systems[J]. Fluid phase equilibria, 2014, 381: 102-107. DOI: 10.1016/j.fluid.2014.08.012.
[30] MOHAMMADI A, MANTEGHIAN M, MOHAMMADI A H. Dissociation data of semiclathrate hydrates for the systems of tetra--butylammonium fluoride (TBAF) + methane + water, TBAF + carbon dioxide + water, and TBAF + nitrogen + water[J]. Journal of chemical & engineering data, 2013, 58(12): 3545-3550. DOI: 10.1021/je4008519.
[31] ILANI-KASHKOULI P, MOHAMMADI A H, NAIDOO P, et al. Thermodynamic stability conditions for semi-clathrate hydrates of CO2, CH4, or N2with tetrabutyl ammonium nitrate (TBANO3) aqueous solution[J]. The journal of chemical thermodynamics, 2016, 96: 52-56. DOI: 10.1016/j.jct.2015.11.030.
[32] DU J W, LIANG D Q, LI D L, et al. Phase equilibrium conditions of tetrabutyl ammonium nitrate + CO2, N2, or CH4semiclathrate hydrate systems[J]. Industrial & engineering chemistry research, 2011, 50(20): 11720-11723. DOI: 10.1021/ie200380j.
[33] SU Y, SEARLES D J, WANG L G. Semiclathrate hydrates of methane + tetraalkylammonium hydroxides[J].Fuel, 2017, 203: 618-626. DOI: 10.1016/j.fuel.2017.05.005.
[34] SHI L L, LIANG D Q. Phase equilibria of double semiclathrate hydrates formed with tetraamylammonium bromide plus CH4, CO2, or N2[J]. Journal of chemical & engineering data, 2015, 60(9): 2749-2755. DOI: 10.1021/acs.jced.5b00516.
[35] SHI L L, LIANG D Q. Phase equilibrium conditions for the double semiclathrate hydrate formed with tetraamylammonium chloride plus CH4, CO2, or N2[J]. Journal of chemical & engineering data, 2014, 59(11): 3705-3709. DOI: 10.1021/je500587m.
[36] DU J W, WANG L G. Equilibrium conditions for semiclathrate hydrates formed with CO2, N2, or CH4in the presence of tri--butylphosphine oxide[J]. Industrial & engineering chemistry research, 2014, 53(3): 1234-1241. DOI: 10.1021/ie403130h.
[37] CHA J H, KIM E S, LEE K S, et al. Phase equilibria and dissociation enthalpies of tri--butylphosphine oxide semiclathrate hydrates incorporated with CH4, CO2, and H2[J]. Journal of chemical & engineering data, 2013, 58(12): 3494-3498. DOI: 10.1021/je400773k.
[38] KIM S, KIM KS, SEO Y. CH4enclathration in tetra-iso-amyl ammonium bromide (TiAAB) semiclathrate and its significance for natural gas storage[J]. Chemical engineering journal, 2017, 330: 1160-1165. DOI: 10.1016/j.cej.2017.08.054.
[39] HUGHES T J, MARSH K N. Methane semi-clathrate hydrate phase equilibria with tetraisopentylammonium fluoride[J]. Journal of chemical & engineering data, 2011, 56(12): 4597-4603. DOI: dx.doi.org/10.1021/je200538d.
[40] ADISASMITO S, FRANK III R J, SLOAN E D JR. Hydrates of carbon dioxide and methane mixtures[J]. Journal of chemical & engineering data, 1991, 36(1): 68-71. DOI:10.1021/je00001a020.
[41] KOBORI T, MUROMACHI S, YAMASAKI T, et al. Phase behavior and structural characterization of ionic clathrate hydrate formed with tetra--butylphosphonium hydroxide: discovery of primitive crystal structure[J]. Crystal growth & design, 2015, 15(8): 3862-3867. DOI:10.1021/acs.cgd.5b00484.
[42] 孫玉景, 周立發(fā), 李越. CO2海洋封存的發(fā)展現(xiàn)狀[J]. 地質(zhì)科技情報, 2018, 37(4): 212-218. DOI: 10.19509/j.cnki.dzkq.2018.0428.
[43] 軒小波, 劉妮, 劉道平. 二氧化碳水合物漿在空調(diào)蓄冷技術(shù)中的研究進展[J]. 制冷技術(shù), 2010, 30(2): 44-47, 51.
[44] ZHOU X B, LONG Z, HE Y, et al. Phase equilibria and the crystallographic properties of TBAB–CO2semiclathrate hydrates[J]. Journal of chemical & engineering data, 2018, 63(5): 1249-1255. DOI:10.1021/acs.jced.7b00884.
[45] YE N, ZHANG P. Equilibrium data and morphology of tetra--butyl ammonium bromide semiclathrate hydrate with carbon dioxide[J]. Journal of chemical & engineering data, 2012, 57(5): 1557-1562. doi: 10.1021/je3001443.
[46] YE N, ZHANG P. Phase equilibrium and morphology characteristics of hydrates formed by tetra--butyl ammonium chloride and tetra--butyl phosphonium chloride with and without CO2[J]. Fluid phase equilibria, 2014, 361: 208-214. DOI: 10.1016/j.fluid.2013.10.055.
[47] ILANI-KASHKOULI P, HASHEMI H, BASDEO A, et al. Hydrate dissociation data for the systems (CO2/CH4/Ar) + water with (TBAF/TBAA/TBPB/TBANO3and cyclopentane)[J]. Journal of chemical & engineering data, 2019, 64(6): 2542-2549. DOI:10.1021/acs.jced. 8b01195.
[48] SHI L L, LIANG D Q, WU N Y. Phase equilibrium data of the double tetrabutylammonium chloride plus carbon dioxide or nitrogen semiclathrate hydrate[J]. Journal of chemical & engineering data, 2014, 59(7): 2320-2323. DOI: 10.1021/JE500445W.
[49] BABU P, PARICAUD P, LINGA P. Experimental measurements and modeling of the dissociation conditions of semiclathrate hydrates of tetrabutyl ammonium nitrate and carbon dioxide[J]. Fluid phase equilibria, 2016, 413: 80-85. DOI: 10.1016/j.fluid.2015.08.034.
[50] SHI L L, LIANG D Q, LI D L. Phase Equilibrium data of tetrabutylphosphonium bromide plus carbon dioxide or nitrogen semiclathrate hydrates[J]. Journal of chemical & engineering data, 2013, 58(7): 2125-2130. DOI: 10.1021/je400452f.
[51] ZHANG P, YE N, ZHU H, et al. Hydrate equilibrium conditions of tetra--butylphosphonium bromide + carbon dioxide and the crystal morphologies[J]. Journal of chemical & engineering data, 2013, 58(6): 1781-1786. doi: 10.1021/je400179t.
[52] KIM S, KO G, KIM KS, et al. Phase equilibria of tetra-iso-amyl ammonium bromide (TiAAB) semiclathrates with CO2, N2, or CO2+ N2[J]. The journal of chemical thermodynamics, 2020, 142: 106024. DOI: 10.1016/j.jct.2019.106024.
[53] MAJUMDAR A, MAINI B, BISHNOI P R, et al. Three-phase equilibrium conditions of TiAAB semiclathrates formed from N2, CO2, and their mixtures[J]. Journal of chemical & engineering data, 2012, 57(8): 2322-2327. DOI: 10.1021/je300449p.
[54] 孟慶國, 劉昌嶺, 業(yè)渝光, 等. 氮氣水合物儲氫的激光拉曼光譜研究[J]. 光譜學與光譜分析, 2012, 32(8): 2139-2142. DOI: 10.3964/j.issn.1000-0593(2012)08-2139-04.
[55] 孫志高, 焦麗君, 王功亮, 等. 氮氣及氮氣+二氧化碳在四丁基溴化銨水溶液中水合物相平衡研究[J]. 科學技術(shù)與工程, 2014, 14(17): 125-128. DOI:10.3969/j. issn.1671-1815.2014.17.024.
[56] 李璐伶, 樊栓獅, 陳秋雄, 等. 儲氫技術(shù)研究現(xiàn)狀及展望[J]. 儲能科學與技術(shù), 2018, 7(4): 586-594. DOI: 10.12028/j.issn.2095-4239.2018.0062.
[57] LEE S, LEE Y, PARK S, et al. Phase equilibria of semiclathrate hydrate for nitrogen in the presence of tetra--butylammonium bromide and fluoride[J]. Journal of chemical & engineering data, 2010, 55(12): 5883-5886. DOI: 10.1021/je100886b.
[58] DESCHAMPS J, DALMAZZONE D. Hydrogen storage in semiclathrate hydrates of tetrabutyl ammonium chloride and tetrabutyl phosphonium bromide[J]. Journal of chemical & engineering data, 2010, 55(9): 3395-3399. DOI: 10.1021/je100146b.
[59] SAKAMOTO J, HASHIMOTO S, TSUDA T, et al. Thermodynamic and Raman spectroscopic studies on hydrogen+tetra--butyl ammonium fluoride semi-clathrate hydrates[J]. Chemical engineering science, 2008, 63(24): 5789-5794. DOI: 10.1016/j.ces.2008.08.026.
[60] KARIMI A A, DOLOTKO O, DALMAZZONE D. Hydrate phase equilibria data and hydrogen storage capacity measurement of the system H2+tetrabutylammonium hydroxide+H2O[J]. Fluid phase equilibria, 2014, 361: 175-180. DOI: 10.1016/j.fluid.2013.10.043.
[61] FUJISAWA Y, TSUDA T, HASHIMOTO S, et al. Thermodynamic stability of hydrogen+tetra--butyl phosphonium bromide mixed semi-clathrate hydrate[J]. Chemical engineering science, 2012, 68(1): 660-662. DOI: 10.1016/j.ces.2011.09.045.
[62] GARCIA M, CLARKE M A. Equilibrium conditions for TBAB and TBAC semiclathrates of xenon and argon[J]. Journal of chemical & engineering data, 2014, 59(11): 3785-3790. DOI:10.1021/je5006642.
[63] BABAEE S, HASHEMI H, MOHAMMADI A H, et al. Experimental measurements and thermodynamic modelling of hydrate phase equilibrium conditions for CF4+TBAB aqueous solutions[J]. Chemical engineering communications, 2020, 207(2): 185-193. DOI: 10.1080/00986445.2019.1575823.
[64] 吳海浩, 楊璐, 呂曉方, 等. 天然氣水合物生成速率實驗研究[J]. 實驗技術(shù)與管理, 2014, 31(1): 36-40. DOI:10.16791/j.cnki.sjg.2014.01.012.
[65] QASIM A, KHAN M S, LAL B, et al. Quaternary ammonium salts as thermodynamic hydrate inhibitors in the presence and absence of monoethylene glycol for methane hydrates[J]. Fuel, 2020, 259: 116219. DOI: 10.1016/j.fuel.2019.116219.
[66] TARIQ M, CONNOR E, THOMPSON J, et al. Doubly dual nature of ammonium-based ionic liquids for methane hydrates probed by rocking-rig assembly[J]. RSC advances, 2016, 6(28): 23827-23836. DOI: 10.1039/C6RA00170J.
[67] QASIM A, KHAN M S, LAL B, et al. Phase equilibrium measurement and modeling approach to quaternary ammonium salts with and without monoethylene glycol for carbon dioxide hydrates[J]. Journal of molecular liquids, 2019, 282: 106-114. DOI: 10.1016/j.molliq.2019.02.115.
[68] KHAN M S, LAL B, KEONG L K, et al. Tetramethyl ammonium chloride as dual functional inhibitor for methane and carbon dioxide hydrates[J]. Fuel, 2019, 236: 251-263. DOI: 10.1016/j.fuel.2018.09.001.
[69] KHAN M S, PARTOON B, BAVOH C B, et al. Influence of tetramethylammonium hydroxide on methane and carbondioxide gas hydrate phase equilibrium conditions[J]. Fluid phase equilibria, 2017, 440: 1-8. DOI: 10.1016/j.fluid.2017.02.011.
[70] KHAN M S, LAL B, PARTOON B, et al. Experimental evaluation of a novel thermodynamic inhibitor for CH4and CO2hydrates[J]. Procedia engineering, 2016, 148: 932-940. DOI: 10.1016/j.proeng.2016.06.433.
[71] KESHAVARZ L, JAVANMARDI J, ESLAMIMANESH A, et al. Experimental measurement and thermodynamic modeling of methane hydrate dissociation conditions in the presence of aqueous solution of ionic liquid[J]. Fluid phase equilibria, 2013, 354: 312-318. DOI: 10.1016/j.fluid.2013.05.007.
[72] LIN W, DALMAZZONE D, FüRST W, et al. Thermodynamic properties of semiclathrate hydrates formedfrom the TBAB+TBPB+water and CO2+TBAB+TBPB+water systems[J]. Fluid phase equilibria, 2014, 372: 63-68. DOI: 10.1016/j.fluid.2014.03.026.
[73] HASSAN H, PAHLAVANZADEH H. Thermodynamic modeling and experimental measurement of semi-clathrate hydrate phase equilibria for CH4in the presence of cyclohexane (CH) and tetra-n-butyl ammonium bromide (TBAB) mixture[J]. Journal of natural gas science and engineering, 2020, 75: 103128. DOI: 10.1016/j.jngse.2019.103128.
[74] WU W Z, GUAN J A, SHEN X D, et al. Phase equilibrium data of methane hydrate in the aqueous solutions of additive mixtures (THF + TBAC)[J]. Journal of chemical & engineering data, 2016, 61(10): 3498-3503. DOI: 10.1021/acs.jced.6b00405.
[75] YANG M J, JING W, WANG P F, et al. Effects of an additive mixture (THF + TBAB) on CO2hydrate phase equilibrium[J]. Fluid phase equilibria, 2015, 401: 27-33. DOI: 10.1016/j.fluid.2015.05.007.
[76] 盛淑美, 章冶, 李棟梁, 等. 多壁碳納米管對CH4-CO2-TBAB水合物的促進作用[J]. 天然氣化工-C1化學與化工, 2019, 44(1): 51-56.
[77] LI D L, SHENG S M, ZHANG Y, et al. Effects of multiwalled carbon nanotubes on CH4hydrate in the presence of tetra--butyl ammonium bromide[J]. RSC advances, 2018, 8(18): 10089-10096. DOI: 10.1039/C8RA01124A.
[78] ZHOU S D, JIANG K, ZHAO Y L, et al. Experimental investigation of CO2hydrate formation in the water containing graphite nanoparticles and tetra--butyl ammonium bromide[J]. Journal of chemical & engineering data, 2018, 63(2): 389-394. DOI: 10.1021/acs.jced.7b00785.
Progress of Quaternary Salts on Phase Equilibrium of Gas Hydrate
DUAN Han-kun1,2, XIE Ying-ming1,2, XIE Mei-ping1,2
(1. School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; 2. Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai 200093, China)
Quaternary salt was an efficient additive for hydrate formation, which usually achieves the effect of improving hydrate phase equilibrium conditions by filling the hydrate cage. The effect of quaternary salt on phase equilibrium conditions of gas hydrates such as CH4and CO2was mainly relate to the concentration of quaternary salt. In terms of methane hydrate, TiPeAF and TiAAB had significant effects on phase equilibrium under the same phase equilibrium pressure: the phase equilibrium temperature of the system with TiPeAF (0.315%) and TiAAB (0.438%) was 20 K and 22 K higher than pure water system respectively. TBANO3, TAAB and TAAC had little effect on phase equilibrium: the phase equilibrium temperature was 10 K lower than that of the system with TBAB and TBAC. For CO2hydrate, the phase equilibrium temperature of TiAAB system was 29 K higher than pure water system, and that of TBAF system was 26 K higher than that of pure water system. In addition, the combination of quaternary salt and other additives had a better improvement effect on the phase equilibrium conditions of hydrate: the phase equilibrium temperature of hydrate in the combination system of TBAB (0.05%) and NaCl (0.03%) was 10 K higher compared with the system which adding TBAB only.
quaternary salts; gas; hydrate; phase equilibrium; microstructure
2095-560X(2022)01-0059-10
TK02;O621.2
A
10.3969/j.issn.2095-560X.2022.01.009
2021-08-30
2021-11-01
國家自然科學基金項目(50806050)
謝應明,E-mail:xymbox@163.com
段漢坤(1997-),男,碩士研究生,主要從事新型制冷空調(diào)技術(shù)和氣體水合物應用及仿真技術(shù)研究。
謝應明(1976-),男,博士,副教授,主要從事氣體水合物應用技術(shù)和新型制冷空調(diào)技術(shù)研究。