国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

脂肪組織炎癥反應(yīng)在運(yùn)動(dòng)緩解肥胖性肌少癥中的作用

2022-04-15 09:02劉源楊風(fēng)英
關(guān)鍵詞:脂肪組織肥胖炎癥

劉源 楊風(fēng)英

摘 要:老年肌少癥是指骨骼肌質(zhì)量和功能的增齡性下降,在肥胖者中,這種增齡性退變更為明顯。肥胖和肌肉衰減并存稱為肥胖性肌少癥,兩者相互促進(jìn),形成惡性循環(huán)。肥胖引發(fā)的機(jī)體局部和系統(tǒng)慢性低級(jí)炎癥反應(yīng),即脂肪組織炎癥反應(yīng),被認(rèn)為是肥胖加重肌肉衰減的本質(zhì)原因。實(shí)踐證明運(yùn)動(dòng)可以有效抑制肥胖和緩解老年肌肉衰減,但運(yùn)動(dòng)是否可以通過(guò)影響脂肪組織炎癥反應(yīng)而達(dá)到緩解肥胖性肌肉衰減的作用是該研究關(guān)注的重點(diǎn)。該研究就目前脂肪組織炎癥與老年肌少癥的關(guān)系以及運(yùn)動(dòng)對(duì)脂肪組織炎癥反應(yīng)的影響的研究做系統(tǒng)性綜述,為進(jìn)一步探討運(yùn)動(dòng)緩解老年肥胖性肌少癥的機(jī)制提供線索。

關(guān)鍵詞:肌少癥;肥胖;炎癥;脂肪組織;運(yùn)動(dòng)

中圖分類號(hào):G804.2;R874?? 文獻(xiàn)標(biāo)識(shí)碼:A? 文章編號(hào):1006-2076(2022)01-0081-07

Role of Adipose Tissue Inflammation in Exercise Alleviating Obesity Sarcopenia

LIU Yuan1, YANG Fengying2

1.Dept. of P.E., Shandong Jianzhu University, Jinan 250101, Shandong, China; 2. College of Sports and Health, Shandong Sport University, Jinan 250102, Shandong, China

Abstract:

Sarcopenia refers to the age-related decline in skeletal muscle mass and function. In obese people, this age-related decline becomes more obvious and serious. The co-existence of obesity and muscle atrophy is called obese sarcopenia, and the two deteriorate each other. In obese people, adipose tissue can cause local and systemic chronic low grade inflammatory state, which is named adipose tissue inflammation, has been considered to be the essential cause of aggravating muscle decay. It has been proved that exercise can effectively inhibit obesity and alleviate muscle decay in the elderly. Whether exercise can alleviate obesity muscle decay by affecting the inflammatory response of adipose tissue is unknown. This paper reviews the relationship between adipose tissue inflammation and muscle decay in the elderly and the effect of exercise on adipose tissue inflammation in order to provide clues for further exploring the mechanism of exercise in alleviating obese sarcopenia.

Key words:sarcopenia; obese; inflammation; adipose tissue; exercise

肌少癥 (sarcopenia) 是指骨骼肌質(zhì)量和功能的增齡性下降,是引起老年人跌倒、骨折、體力下降等的直接原因。骨骼肌作為人體最大的代謝器官,其衰減亦成為肥胖、糖尿病、心腦血管病等衰老相關(guān)疾病的誘發(fā)因素[1];肥胖是老齡化社會(huì)非常嚴(yán)峻的公眾健康問(wèn)題,肥胖造成的機(jī)體炎癥狀態(tài)被認(rèn)為是老年人的最大威脅,尤其是近期關(guān)于新型冠狀病毒肺炎(COVID-19) 的研究發(fā)現(xiàn),肥胖老年人COVID-19易感并且更容易發(fā)展成為重癥患者的原因與肥胖導(dǎo)致炎癥狀態(tài)引發(fā)的內(nèi)皮細(xì)胞損害關(guān)系極為密切[2-3];更值得注意的是,肥胖和sarcopenia往往并存且兩者相互加重,共同誘發(fā)了多種與衰老相關(guān)疾病[1],其中肥胖者體內(nèi)脂肪組織 (adipose tissue, AT) 炎癥反應(yīng)亦被認(rèn)為是肥胖加速sarcopenia的重要機(jī)制。實(shí)踐證明,運(yùn)動(dòng)是緩解sarcopenia發(fā)生和發(fā)展的有效手段,同時(shí)運(yùn)動(dòng)有效緩解肥胖已被大量實(shí)踐證實(shí)。運(yùn)動(dòng)是否可以通過(guò)影響脂肪組織炎癥反應(yīng)進(jìn)而起到緩解sarcopenia的作用目前未見(jiàn)直接研究報(bào)道,但基于目前研究中關(guān)于脂肪組織炎癥反應(yīng)與sarcopenia的密切關(guān)系,以及運(yùn)動(dòng)對(duì)脂肪組織炎癥反應(yīng)的影響,我們有理由相信運(yùn)動(dòng)對(duì)脂肪組織炎癥反應(yīng)的有效調(diào)控是運(yùn)動(dòng)緩解肥胖性肌少癥的重要機(jī)制。

1 肥胖性肌少癥概念的提出及運(yùn)動(dòng)對(duì)其影響

因肥胖與sarcopenia往往共存,稱之為肥胖性肌少癥 (obese sarcopenia,OS),尤其是老年人,肥胖加速sarcopenia的同時(shí),骨骼肌質(zhì)量和功能的低級(jí)狀態(tài)又使肥胖進(jìn)一步惡化,也被稱之為肌肉衰減性肥胖 (sarcopenic obesity, SO),兩者形成惡性循環(huán)[1]。關(guān)于肥胖和sarcopenia間的串?dāng)_機(jī)制,目前認(rèn)為肥胖者體內(nèi)過(guò)量的脂肪酸不僅儲(chǔ)存在脂肪組織,還可以轉(zhuǎn)運(yùn)到骨骼肌變成肌肉內(nèi)脂肪組織 (intermuscular AT,IMAT) 和肌細(xì)胞內(nèi)三磷酸甘油脂質(zhì)(intramyocellular lipids,IMCLs) 以及脂肪酸衍生物[4]為兩者的串?dāng)_提供前提。肌內(nèi)脂肪成分妨礙了線粒體脂肪酸β氧化,使氧自由基生成增加進(jìn)而誘發(fā)細(xì)胞凋亡[5],且影響骨骼肌胰島素敏感性,導(dǎo)致肌纖維收縮減弱和老年人體力降低[6]。另外,脂肪細(xì)胞和骨骼肌細(xì)胞雖然分屬不同組織,但具有高度同源性,且兩者呈現(xiàn)競(jìng)爭(zhēng)性抑制狀態(tài)。對(duì)骨骼肌細(xì)胞和脂肪細(xì)胞共培養(yǎng),發(fā)現(xiàn)共培養(yǎng)的肌細(xì)胞體積更小,并且與肌萎縮相關(guān)的基因和蛋白表達(dá)增加[7];肌源性胰島素樣生長(zhǎng)因子II (insulin-like growth factors-II, IGF-II)和其結(jié)合蛋白(IGF bind protein-5, IGFBP-5)均可以刺激肌細(xì)胞的增殖和分化,然而在棕櫚酸酯干預(yù)情況下,肌細(xì)胞IGF-II/IGFBP-5表達(dá)顯著減低[8]。上述研究結(jié)果均證明肌內(nèi)脂肪成分的過(guò)度沉積嚴(yán)重影響了骨骼肌的質(zhì)量和功能。在我們前期的人群研究中發(fā)現(xiàn),肥胖是老年人sarcopenia 的獨(dú)立危險(xiǎn)因子[9],同時(shí)發(fā)現(xiàn)老年人肌衰征越明顯其包括肥胖、骨質(zhì)疏松、心腦血管疾病等代謝相關(guān)疾病的發(fā)病率就越高[10-11]。以上均構(gòu)成OS這一概念的有利證據(jù)。08F277FE-1812-42D5-97F5-6961A222F407

運(yùn)動(dòng)可以有效預(yù)防和緩解OS,其機(jī)制涉及多方面。運(yùn)動(dòng)可以通過(guò)增加能量消耗進(jìn)而達(dá)到減肥效果已被大量研究證實(shí),因此運(yùn)動(dòng)緩解由肥胖引起的骨骼肌質(zhì)量和功能下降存在著必然性;此外,運(yùn)動(dòng)促進(jìn)同化類激素分泌,激活成肌因子、抑制肌萎縮因子的表達(dá),激活肌衛(wèi)星細(xì)胞等方面,都被認(rèn)為是運(yùn)動(dòng)預(yù)防和緩解sarcopenia的重要原因[12];同時(shí),運(yùn)動(dòng)促進(jìn)骨骼肌表面胰島素受體表達(dá)和其敏感性以及線粒體生物合成等方面的效果[13]均能夠緩解由于肥胖對(duì)骨骼肌代謝功能的損害,亦成為運(yùn)動(dòng)緩解OS的有力證據(jù)。值得注意的是,脂肪組織不僅由脂肪細(xì)胞構(gòu)成,還由成纖維細(xì)胞、內(nèi)皮細(xì)胞和免疫細(xì)胞(如,脂肪組織巨噬細(xì)胞)組成,亦被認(rèn)為是重要的內(nèi)分泌器官,其分泌的被稱為脂肪因子的細(xì)胞因子樣激素,影響包括骨骼肌在內(nèi)的其他局部和系統(tǒng)炎性狀態(tài);同時(shí)衰老脂肪細(xì)胞的異位沉積將通過(guò)自分泌和旁分泌的形式導(dǎo)致炎癥細(xì)胞炎性因子產(chǎn)生失控,進(jìn)而導(dǎo)致骨骼肌和系統(tǒng)性低度炎性狀態(tài),如Kalinkovich等人[14]的研究發(fā)現(xiàn),共培養(yǎng)的肌細(xì)胞體積和數(shù)量減少的主要原因就是脂肪組織誘導(dǎo)的IL-6和IL-1β增加進(jìn)而導(dǎo)致肌鈣蛋白減低以及蛋白合成能力下降。上述脂肪組織炎癥反應(yīng)被認(rèn)為與sarcopenia的發(fā)生發(fā)展存在本質(zhì)聯(lián)系[15-16]。運(yùn)動(dòng)對(duì)脂肪組織炎癥反應(yīng)的調(diào)控也是運(yùn)動(dòng)延緩OS的重要機(jī)制。

2 脂肪組織炎癥反應(yīng)及其與sarcopenia的關(guān)系

最初被認(rèn)為是簡(jiǎn)單的能量?jī)?chǔ)存器的脂肪組織,其本身就含有包括巨噬細(xì)胞在內(nèi)的免疫細(xì)胞,且還是活躍的內(nèi)分泌器官,能分泌瘦素 (leptin)、脂聯(lián)素 (adiponectin)、抵抗素等脂肪因子,參與影響多種免疫細(xì)胞的功能狀態(tài)和局部以及系統(tǒng)性炎癥反應(yīng)。脂肪組織的上述炎癥反應(yīng)可能是肥胖加速sarcopenia的本質(zhì)原因。

2.1 脂肪組織巨噬細(xì)胞極化與sarcopenia的關(guān)系

近年來(lái)在對(duì)骨骼肌胰島素抵抗 (insulin resistance, IR) 和2型糖尿病的免疫研究中認(rèn)識(shí)到巨噬細(xì)胞在脂肪組織炎癥反應(yīng)中扮演重要角色。巨噬細(xì)胞在瘦人中占所有脂肪組織細(xì)胞的大約10,而在肥胖者中可達(dá)到50,并且瘦人脂肪組織的巨噬細(xì)胞以抗炎效應(yīng)的M2型為主,而肥胖者主要為前炎性效應(yīng)的M1型,但在不同內(nèi)環(huán)境下兩者可以相互轉(zhuǎn)化[17]。M2巨噬細(xì)胞可以參與脂肪細(xì)胞的胞葬作用 (efferocytosis),促進(jìn)衰老脂肪細(xì)胞的凋亡以利于內(nèi)環(huán)境的穩(wěn)定;而M1巨噬細(xì)胞被發(fā)現(xiàn)圍繞在瀕危脂肪細(xì)胞周?chē)璧K其與蛋白水解性脂肪細(xì)胞源抗原的結(jié)合,抑制其清除,從而進(jìn)一步加重機(jī)體的炎癥狀態(tài)[18-19]。如Kratz等人研究顯示,當(dāng)持續(xù)過(guò)度暴露于棕櫚酸酯等自由脂肪酸中時(shí),巨噬細(xì)胞由M2向M1型轉(zhuǎn)變,引起炎癥反應(yīng)和IR[20]。瘦人脂肪組織的M2型巨噬細(xì)胞與抗炎癥反應(yīng)有關(guān),當(dāng)被2型輔助性T細(xì)胞(T-helper type2, Th2) 介質(zhì)如白介素 (IL) 4,13激活后,產(chǎn)生抗炎癥細(xì)胞激酶IL-10和IL-1受體抗體(IL1Ra),且M2巨噬細(xì)胞可通過(guò)IL-10對(duì)抗腫瘤壞死因子α (Tumor Necrosis Factorα, TNFα) 誘導(dǎo)的IR[21];然而M1巨噬細(xì)胞可以被如γ干擾素 (Interferon γ, IFNγ)、1型輔助性T細(xì)胞 (Th1) 等激活,分泌前炎性分子,如TNFα、IL1-β、IL-6、單核細(xì)胞趨化蛋白1 (monocyte-chemoattractant protein-1, MCP-1/CCL2) [22]。研究證明TNFα、IL-6可直接促使肌環(huán)指蛋白-1(MuRF-1)、肌萎縮Fbox-1蛋白(muscle atrophy F-box-1,MAFbx,也稱作Atrogin-1)等肌萎縮因子表達(dá),引起骨骼肌的溶解[23]。早期對(duì)于慢性肩袖損傷患者的研究已經(jīng)發(fā)現(xiàn),損傷部位骨骼肌會(huì)出現(xiàn)明顯的脂肪異位沉積以及炎性因子如IL-1β和巨噬細(xì)胞F4/80、CD68、CD11b聚集現(xiàn)象,促使MuRF-1、Atrogin-1等肌萎縮因子的表達(dá)[24]。此外,研究亦發(fā)現(xiàn)老年機(jī)體脂肪組織巨噬細(xì)胞M1/M2比例升高[25],是導(dǎo)致老年群體脂肪組織炎癥狀態(tài)更為嚴(yán)重的重要原因,也是肥胖老年機(jī)體更容易發(fā)生肌肉衰減的重要依據(jù)。

2.2 肥胖誘導(dǎo)的淋巴細(xì)胞免疫反應(yīng)對(duì)sarcopenia的影響

T淋巴細(xì)胞在脂肪細(xì)胞免疫功能中扮演著重要角色。瘦人脂肪組織富含抗炎性CD4+Th2和調(diào)控性T淋巴細(xì)胞 (T-regulatory cells, Tregs) 以及非MHC限制性的自然殺傷killer T (iNKT) 細(xì)胞,并通過(guò)分泌和誘導(dǎo)IL-10的合成來(lái)抑制前炎性Th1細(xì)胞的擴(kuò)展[26]。肥胖狀態(tài)下T淋巴細(xì)胞從抗炎性Th2和Tregs向前炎性Th1和Th17細(xì)胞轉(zhuǎn)變,進(jìn)而誘導(dǎo)M1巨噬細(xì)胞釋放TNFα和IL-6[27],促使肌萎縮因子的表達(dá)[24]。 此外,有研究發(fā)現(xiàn)高脂膳食可促使B細(xì)胞亞型產(chǎn)生,進(jìn)而使前炎性IgG2c增加,促使巨噬細(xì)胞釋放TNFα以及通過(guò)激活I(lǐng)FNγ和IL-17進(jìn)而誘發(fā)機(jī)體炎性狀態(tài)[28]。彌漫性大B細(xì)胞淋巴瘤導(dǎo)致機(jī)體淋巴細(xì)胞炎性失控,而多個(gè)研究證明骨骼肌功能狀態(tài)直接影響患者的預(yù)后,肌衰征成為大B細(xì)胞淋巴瘤病人預(yù)后的獨(dú)立危險(xiǎn)因子[29],進(jìn)一步說(shuō)明骨骼肌的功能與淋巴細(xì)胞炎癥控制之間的相互制約關(guān)系。

2.3 脂肪因子的炎癥反應(yīng)及其對(duì)骨骼肌的影響

脂肪組織分泌的脂肪因子多種多樣,參與調(diào)控代謝和免疫,是脂肪組織炎癥反應(yīng)的重要組成部分,并可以通過(guò)與肌因子間的對(duì)話進(jìn)而對(duì)肌蛋白合成和骨骼肌代謝起到或促進(jìn)或抑制作用。脂肪因子炎癥反應(yīng)具有兩面性,肥胖者脂肪因子往往導(dǎo)致機(jī)體的低級(jí)炎癥狀態(tài),進(jìn)而對(duì)機(jī)體產(chǎn)生不利影響。肌內(nèi)脂肪因子的大量分泌更直接導(dǎo)致骨骼肌合成障礙和功能低下,加速sarcopenia 的發(fā)生和發(fā)展。

2.3.1 瘦素和脂聯(lián)素的炎癥反應(yīng)及其對(duì)骨骼肌的影響08F277FE-1812-42D5-97F5-6961A222F407

瘦素和脂聯(lián)素主要由白色脂肪組織分泌,近期的研究發(fā)現(xiàn),補(bǔ)充外源性瘦素和脂聯(lián)素均可顯著升高哺乳期大鼠血漿IgG、IgM水平,使脾臟CD8 +淋巴細(xì)胞比例升高,以及出現(xiàn)胸腺體積增加等免疫成熟的表現(xiàn)[30],說(shuō)明兩者均能全面參與機(jī)體的免疫調(diào)控。脂聯(lián)素的活性依賴肌小管分泌的脂聯(lián)素受體,而后激活A(yù)MP依賴的蛋白激酶(AMP-activated protein kinase, AMPK)和抑制核因子κB (nuclear factor kappa-B, NFκB)信號(hào)通路并與單核細(xì)胞、巨噬細(xì)胞產(chǎn)生TNFα和IFNγ量的降低以及IL-10和IL-1Ra的升高有關(guān)[31],如前所述,TNFα可直接損害人肌小管的分化,影響線粒體生物合成和成肌[24]。值得注意的是,脂聯(lián)素可通過(guò)激活A(yù)MPK信號(hào)通路的方式刺激骨骼肌和脂肪組織游離脂肪酸氧化和糖攝取,這一效應(yīng)在肥胖者被削弱[31];高脂膳食小鼠血清脂聯(lián)素下降伴隨Th1 CD4+T升高和Tregs降低以及脂肪組織IL-10的降低[32],這些炎癥特點(diǎn)均可誘導(dǎo)骨骼肌萎縮。人群研究發(fā)現(xiàn),肥胖者體內(nèi)血清脂聯(lián)素水平下降與肌生長(zhǎng)抑素水平呈負(fù)相關(guān)[33]并可以作為肌生長(zhǎng)抑素的獨(dú)立危險(xiǎn)預(yù)測(cè)因子[34],這可能是肥胖加速sarcopenia 的又一重要因素。肌生長(zhǎng)抑制素是TGF-β家族成員之一,由骨骼肌表達(dá),并通過(guò)抑制IGF-I/Akt/哺乳動(dòng)物雷帕霉素靶蛋白 (mammalian target of rapamycin, mTOR) 信號(hào)通路的活性進(jìn)而抑制肌蛋白合成,并可以加速FOXO介導(dǎo)的肌萎縮以及影響葡萄糖轉(zhuǎn)移體4 (Glucose Transporter 4 ,GLUT4) 和 AMPK活性影響骨骼肌能量攝取和利用[35]。隨著年齡增加,肌生長(zhǎng)抑素表達(dá)增加,尤其是肥胖人群血清肌生長(zhǎng)抑素水平顯著高于體脂正常人群[36],動(dòng)物實(shí)驗(yàn)進(jìn)一步證明這一現(xiàn)象與脂肪組織炎癥反應(yīng)密切相關(guān)[35]。與脂聯(lián)素不同,瘦素與體脂含量呈正相關(guān),瘦素可通過(guò)升高單核細(xì)胞分泌TNFα,IL-6,IL-12而促進(jìn)前炎性反應(yīng)[37],也被發(fā)現(xiàn)可使CD4+細(xì)胞分化成能產(chǎn)生IL-17的細(xì)胞,并升高IL-17A的水平同是抑制Tregs的形成[38],如前所述瘦素的這些炎性效應(yīng)均可通過(guò)介導(dǎo)淋巴細(xì)胞炎癥反應(yīng)引起骨骼肌衰減[22]。同時(shí)肥胖者體內(nèi)瘦素水平的增加抑制鳶尾素的表達(dá)[39]。鳶尾素主要由骨骼肌誘導(dǎo)分泌,可與過(guò)氧化物酶體增殖物激活受體γ輔激活因子1α (peroxisome proliferator-activated receptor γ coactiva-tor-1 , PGC1α) 互相激活,進(jìn)而提高小鼠骨骼肌肌管細(xì)胞線粒體數(shù)量和攝氧能力,同時(shí)可激活I(lǐng)GF-1/Akt/mTOR通路與骨骼肌面積,與肌肉力量和代謝能力呈正相關(guān)[40],被認(rèn)為是肌生長(zhǎng)抑素的拮抗因子。另外,肥胖者體內(nèi)高瘦素水平削弱了鳶尾素降低TNFα和IL-6水平以及誘導(dǎo)M2型巨噬細(xì)胞分化的效應(yīng)[41],也可能是瘦素促使sarcopenia的另一機(jī)制。

2.3.2 骨橋蛋白的炎癥反應(yīng)及其對(duì)骨骼肌的影響

骨橋蛋白 (osteopontin, OPN) 可在免疫細(xì)胞、脂肪組織和骨骼肌中表達(dá),并調(diào)控單核細(xì)胞附著轉(zhuǎn)移和分化以及吞噬作用,并且能募集前炎性Th1和Th17細(xì)胞轉(zhuǎn)移到脂肪組織[42]。高脂膳食和基因性肥胖小鼠脂肪組織中OPN表達(dá)分別升高40和80倍,同時(shí)高脂膳食可使OPN在巨噬細(xì)胞的表達(dá)升高并轉(zhuǎn)運(yùn)至脂肪組織[43],提示其參與肥胖相關(guān)的脂肪組織炎癥反應(yīng)。多種肌營(yíng)養(yǎng)不良患者和免疫性肌病患者骨骼肌OPN表達(dá)均增加[44-45]。OPN還被發(fā)現(xiàn)可誘導(dǎo)巨噬細(xì)胞極化,加速骨骼肌炎癥進(jìn)而抑制肌細(xì)胞的增殖和分化[42]以及通過(guò)介導(dǎo)免疫使肌肉內(nèi)TGF-β的生成增加進(jìn)而抑制Duchenne 型肌營(yíng)養(yǎng)不良基因鼠的肌肉再生[46]。

2.3.3 抵抗素、化學(xué)趨化因子和色素上皮源性因子的炎癥反應(yīng)與骨骼肌胰島素抵抗

抵抗素 (resistin) 因?yàn)槠浣閷?dǎo)了肥胖誘導(dǎo)的IR而得名,并可激活NFκB信號(hào)通路,升高單核細(xì)胞、巨噬細(xì)胞以及肝臟干細(xì)胞中TNFα、IL-6、IL-12和MCP-1表達(dá)。抵抗素不僅在脂肪細(xì)胞表達(dá),在骨骼肌中也被檢測(cè)到,并且當(dāng)注射IL-6后人體骨骼肌和脂肪組織的抵抗素水平均增加,同時(shí)明顯影響骨骼肌的氧化代謝能力誘導(dǎo)IR[47]。說(shuō)明抵抗素對(duì)骨骼肌功能具有顯著抑制作用,肥胖者脂肪細(xì)胞分泌抵抗素水平增加將成為肥胖性肌衰征的又一誘導(dǎo)因素。化學(xué)趨化因子 (Chemerin)可在脂肪細(xì)胞、巨噬細(xì)胞、骨骼肌細(xì)胞等分泌,屬于脂肪因子家族成員,參與調(diào)控脂肪細(xì)胞分裂增殖和骨骼肌IR等過(guò)程,其表達(dá)水平與瘦素呈正相關(guān)同時(shí)受脂聯(lián)素水平的抑制。在對(duì)C2C12肌管細(xì)胞培養(yǎng)實(shí)驗(yàn)中發(fā)現(xiàn),Chemerin誘導(dǎo)C2C12細(xì)胞向脂肪細(xì)胞分化[48]。人群研究發(fā)現(xiàn),Chemerin可誘導(dǎo)骨骼肌胰島素抵抗,無(wú)論是手術(shù)減肥還是低熱量飲食或運(yùn)動(dòng)減肥后血清Chemerin水平均下降[49]。另外Chemerin與TNFα, IL-6等炎性因子間互相誘導(dǎo),加重局部和整體的炎性狀態(tài)[50]。上述研究均提示抵抗素和chemerin與炎癥、肥胖、骨骼肌病理之間的密切聯(lián)系。另一個(gè)與肥胖、炎癥和肌肉病理聯(lián)系起來(lái)的因素是色素上皮源性因子 (pigment epithelium-derived factor, PEDF),它屬于絲氨酸蛋白酶抑制劑家族的脂肪因子,在骨骼肌和脂肪細(xì)胞以及巨噬細(xì)胞中均有表達(dá)且在肥胖、T2MD、高脂血癥患者血清PEDF水平均顯著高于正常人群[49]。PEDF與NF-κB、TNFα、 IL-6等免疫因子間均具有相互誘導(dǎo)效應(yīng),被認(rèn)為是其誘導(dǎo)骨骼肌胰島素抵抗的重要炎性因素[51]。最新一項(xiàng)對(duì)T2MD合并慢性腎病患者的8年追蹤實(shí)驗(yàn)研究發(fā)現(xiàn),患者PEDF水平升高與漸進(jìn)性骨骼肌質(zhì)量下降存在直接關(guān)系[52]。

以上研究表明,脂肪因子在調(diào)控包括骨骼肌在內(nèi)的局部和系統(tǒng)免疫中發(fā)揮重要作用,正常情況下各個(gè)系統(tǒng)相互制約達(dá)成機(jī)體免疫的平衡和協(xié)調(diào),但是當(dāng)機(jī)體過(guò)度肥胖時(shí),上述平衡出現(xiàn)紊亂,進(jìn)而導(dǎo)致肥胖——骨骼肌衰減——肥胖加重的惡性循環(huán)。08F277FE-1812-42D5-97F5-6961A222F407

3 運(yùn)動(dòng)對(duì)脂肪組織炎癥反應(yīng)的影響

運(yùn)動(dòng)可有效減脂和緩解sarcopenia已經(jīng)被普遍證明和認(rèn)可,但是關(guān)于運(yùn)動(dòng)防治sarcopenia 的機(jī)制非常復(fù)雜,對(duì)其機(jī)制的探討從未停止。雖然目前缺乏運(yùn)動(dòng)通過(guò)脂肪組織炎癥反應(yīng)的影響進(jìn)而緩解sarcopenia的直接證據(jù),但鑒于前述脂肪組織炎癥反應(yīng)在肥胖性sarcopenia中的作用,運(yùn)動(dòng)對(duì)脂肪組織炎癥反應(yīng)的良性調(diào)控,將成為運(yùn)動(dòng)減肥和防治sarcopenia的有力證據(jù)。

3.1 運(yùn)動(dòng)的免疫調(diào)節(jié)作用

近期研究顯示,中等強(qiáng)度有氧運(yùn)動(dòng)可以通過(guò)促使巨噬細(xì)胞極化 (M2-M1) 進(jìn)而緩解脂肪組織炎癥狀態(tài),減輕肥胖[53]。如前所述,肥胖者脂肪組織M1/M2巨噬細(xì)胞比例增加是包括肌衰征在內(nèi)的衰老相關(guān)疾病發(fā)生的危險(xiǎn)因子[18-20]。因此雖然目前缺乏直接證據(jù),但運(yùn)動(dòng)對(duì)巨噬細(xì)胞極化的這種影響必然成為運(yùn)動(dòng)緩解sarcopenia 的重要機(jī)制。運(yùn)動(dòng)誘導(dǎo)的免疫調(diào)節(jié)作用早已被證實(shí),并且受運(yùn)動(dòng)強(qiáng)度、持續(xù)時(shí)間和頻率影響。在人類和動(dòng)物模型中,長(zhǎng)時(shí)間運(yùn)動(dòng)和/或劇烈運(yùn)動(dòng)被發(fā)現(xiàn)導(dǎo)致促炎性細(xì)胞因子如IL-6,IL-8,TNF-α和IL-1等增加,NK細(xì)胞、T和B淋巴細(xì)胞以及嗜中性粒細(xì)胞活性降低[54]。因此無(wú)論是從能量代謝角度還是免疫調(diào)節(jié)角度,長(zhǎng)時(shí)間劇烈運(yùn)動(dòng)對(duì)于減肥控體和骨骼肌質(zhì)量及功能均具有不利影響,這也是運(yùn)動(dòng)實(shí)踐中長(zhǎng)時(shí)間劇烈運(yùn)動(dòng)不可取的重要原因;相反,長(zhǎng)時(shí)間中低強(qiáng)度運(yùn)動(dòng)可起到明顯的免疫防御作用。近期研究發(fā)現(xiàn),中低強(qiáng)度運(yùn)動(dòng)可以增強(qiáng)中性粒細(xì)胞氧化活性和巨噬細(xì)胞的吞噬能力,增加TCD4淋巴細(xì)胞的百分比和IL- 1β含量,減少循環(huán)中的TNF-α和IL-6水平[52],這很重要,因?yàn)镮L-6和TNF-α的降低會(huì)增加抗炎細(xì)胞因子的釋放,進(jìn)而抑制過(guò)度活躍的免疫反應(yīng),促進(jìn)組織修復(fù)[55],同時(shí)對(duì)骨骼肌代謝和肌蛋白合成均具有促進(jìn)作用[31,40];另外,中低強(qiáng)度的鍛煉也會(huì)增加T細(xì)胞產(chǎn)生的抗炎細(xì)胞因子IL-4和IL-10等[56]。因此長(zhǎng)期中低強(qiáng)度的運(yùn)動(dòng)對(duì)骨骼肌質(zhì)量和功能的促進(jìn)作用與其上述良性的免疫調(diào)節(jié)效果存在相關(guān)性,但是目前尚缺乏直接數(shù)據(jù)支持,有待進(jìn)一步研究證實(shí)。

3.2 運(yùn)動(dòng)對(duì)脂肪因子的影響

如前所述,肥胖者脂肪因子的促炎效應(yīng)是肥胖性肌萎縮的重要原因,在運(yùn)動(dòng)減肥的大量研究中發(fā)現(xiàn)運(yùn)動(dòng)可有效調(diào)控脂肪因子趨于炎癥穩(wěn)態(tài),因此運(yùn)動(dòng)通過(guò)對(duì)脂肪因子的影響以及通過(guò)肌因子和脂肪因子之間的對(duì)話進(jìn)而起到緩解sarcopenia的作用存在必然性。近期研究指出,長(zhǎng)期低強(qiáng)度有氧運(yùn)動(dòng)有效提高肥胖者和體重正常者脂聯(lián)素/瘦素比值,緩解肥胖者胰島素抵抗[57-58]。Jandova等人最新發(fā)表的Meta分析結(jié)果詳實(shí)闡述了長(zhǎng)期運(yùn)動(dòng)對(duì)血清鳶尾素水平的提高以及對(duì)機(jī)體的效應(yīng),指出運(yùn)動(dòng)導(dǎo)致的鳶尾素水平的提升不僅對(duì)骨骼肌代謝功能和肌蛋白合成具有促進(jìn)作用,并且也是運(yùn)動(dòng)改善認(rèn)知功能的重要靶點(diǎn)[59]。在早期運(yùn)動(dòng)減肥機(jī)制探討中發(fā)現(xiàn)運(yùn)動(dòng)可降低血清骨橋蛋白的濃度[60],近期在探討運(yùn)動(dòng)對(duì)腎衰模型小鼠的心功能影響研究中亦發(fā)現(xiàn)運(yùn)動(dòng)對(duì)心肌收縮功能的促進(jìn)作用與運(yùn)動(dòng)降低骨橋蛋白含量有關(guān)[61]。肥胖者體內(nèi)抵抗素和Chemerin以及PEDF的增加是引起胰島素抵抗等骨骼肌代謝功能異常的重要原因[47,49]。運(yùn)動(dòng)可降低血清抵抗素、Chemerin和PEDF的濃度已經(jīng)被大量研究證實(shí)[62-63]。如,近期對(duì)7-9歲肥胖女孩的研究發(fā)現(xiàn),12周的有氧加抗阻運(yùn)動(dòng)使血清抵抗素顯著下降,脂聯(lián)素顯著升高,并且在停止訓(xùn)練4周后血清脂聯(lián)素和抵抗素迅速反轉(zhuǎn),其減肥效果也出現(xiàn)反彈[64]。

上述研究提示,運(yùn)動(dòng)可以通過(guò)調(diào)節(jié)脂肪組織炎癥反應(yīng)進(jìn)而起到緩解肥胖和胰島素抵抗等作用,雖然未見(jiàn)有運(yùn)動(dòng)調(diào)控脂肪組織炎癥反應(yīng)進(jìn)而緩解sarcopenia 的直接證據(jù),但是鑒于脂肪組織炎癥反應(yīng)與sarcopenia間的密切聯(lián)系,其成為運(yùn)動(dòng)緩解肥胖性肌少癥的重要介導(dǎo)機(jī)制存在必然性。但這種必然性需要我們開(kāi)展進(jìn)一步研究來(lái)證實(shí)。

4 小 結(jié)

肥胖性肌少癥是老齡化社會(huì)嚴(yán)峻的公共衛(wèi)生問(wèn)題,盡管前人已經(jīng)做了大量研究,但其機(jī)制及防控手段的研究任重道遠(yuǎn),對(duì)于我們探索防治衰老相關(guān)疾病的措施具有重要意義。已有的研究提示,脂肪組織炎癥反應(yīng)通過(guò)異位IMAT和IMCLs激發(fā)骨骼肌炎癥反應(yīng),除誘發(fā)sarcopenia之外,還激發(fā)了全身系統(tǒng)性慢性炎癥狀態(tài)。這種炎癥狀態(tài)的危害涉及多個(gè)方面,如,世衛(wèi)組織報(bào)告中提出,肥胖的老年人尤其是合并糖尿病、心血管疾病等慢性疾病人群是新型冠狀病毒肺炎的易感者并且更容易發(fā)展成重癥患者,與該人群普遍存在的低級(jí)炎癥狀態(tài)誘發(fā)的內(nèi)皮細(xì)胞損害密切相關(guān)[2-3]。衰老是生命的自然規(guī)律,具有不可逆性,但肥胖和肌少癥可通過(guò)合理的生活方式進(jìn)行干預(yù),科學(xué)運(yùn)動(dòng)鍛煉是關(guān)鍵,運(yùn)動(dòng)在防治肥胖癥的同時(shí)還可促進(jìn)骨骼肌的質(zhì)量和功能,實(shí)現(xiàn)良性循環(huán)。雖然運(yùn)動(dòng)防治肥胖性肌少癥的機(jī)制復(fù)雜,但已有的研究提示運(yùn)動(dòng)對(duì)脂肪組織炎癥反應(yīng)的影響在運(yùn)動(dòng)防治肥胖性肌少癥過(guò)程中的作用不容忽視,并亟需進(jìn)一步探討。

參考文獻(xiàn):

[1]Hong SH, Choi KM. Sarcopenic Obesity, Insulin Resistance, and Their Implications in Cardiovascular and Metabolic Consequences [J]. Int J Mol Sci,2020,21(2):494.

[2]Ekiz T, Pazarl ?AC. Relationship between COVID-19 and obesity [J]. Diabetes Metab Syndr,2020,14(5):761-763.

[3]Cepon-Robins TJ, Gildner TE. Old friends meet a new foe. A potential role for immune-priming parasites in mitigating COVID-19 morbidity and mortality [J]. Evol Med Public Health,2020(1):234-248.08F277FE-1812-42D5-97F5-6961A222F407

[4]Stinkens R, Goossens GH, Jocken JW, et al. Targeting fatty acidmetabolism to improve glucose metabolism [J]. Obes Rev, 2015, 16(9):715-57.

[5]Heo JW, Yoo SZ, No MH, et al. Exercise Training Attenuates Obesity-Induced Skeletal Muscle Remodeling and Mitochondria-Mediated Apoptosis in the Skeletal Muscle [J]. Int J Environ Res Public Health. 2018,15(10): 2301.

[6]St-Jean-Pelletier F, Pion CH, Leduc-Gaudet JP, et al. The impact of ageing, physical activity, and pre‐frailty on skeletal muscle phenotype, mitochondrial content, and intramyocellular lipids in men [J]. J Cachexia Sarcopenia Muscle,2017,8(2):213-228.

[7]Pellegrinelli V, Rouault C, Rodriguez-Cuenca S, et al. Human adipocytes induce inflammation and atrophy in muscle cells during obesity [J]. Diabetes,2015,64(9):3121-34.

[8]Deshmukh AS, Cox J, Jensen LJ, etal. Secretome analysis of lipid-Induced insulin resistance in skeletal muscle cells by acombined experimental and bioinformatics workflow[J].J Proteome Res, 2015,14(11):4885-4895.

[9]Han P, Kang L, Guo Q, et al. Prevalence and Factors Associated with Sarcopenia in Suburb-Dwelling Older Chinese using the Asian Working Group for Sarcopenia Definition [J]. J Gerontol A Biol Sci Med Sci,2016,71(4):529-535.

[10]Yu X, Hou L, Guo J, et al. Combined Effect of Osteoporosis and Poor Dynamic Balance on the Incidence of Sarcopenia in Elderly Chinese Community Suburban-Dwelling Individuals [J]. J Nutr Health Aging. 2020,24(1):71-77.

[11]Chen X, Guo J, Han P, et al. Twelve-Month Incidence of Depressive Symptoms in Suburb-Dwelling Chinese Older Adults: Role of Sarcopenia [J]. J Am Med Dir Assoc,2019,20(1):64-69.

[12]Bilski J,Pierzchalski P,Szczepanik M, et al. Multifactorial Mechanism of Sarcopenia and Sarcopenic Obesity. Role of Physical Exercise, Microbiota and Myokines[J].Cells,2022,11(1):160.

[13]Erlich, AT, Tryon, LD, Crilly, MJ, et al. Function of specialized regulatory proteins and signaling pathways in exercise-induced muscle mitochondrial biogenesis[J]. Integr. Med.Res,2016(5):187-197.

[14]Kalinkovich A, Livshits G. Sarcopenia-the search for emerging biomarkers [J]. Ageing Res Rev,2015(22):58-71.

[15]Collins KH, Herzog W, MacDonald GZ, et al. Obesity, Metabolic Syndrome, and Musculoskeletal Disease: Common Inflammatory Pathways Suggest a Central Role for Loss of Muscle Integrity Front [J]. Physiol,2018,9(112):1-25.

[16]Abete I, Konieczna J, Zulet MA, et al. Association of lifestyle factors and inflammation with sarcopenic obesity: data from the PREDIMED‐Plus trial [J]. J Cachexia Sarcopenia Muscle,2019,10(5):974-984.08F277FE-1812-42D5-97F5-6961A222F407

[17]Kalinkovich A, Livshits G. Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis [J]. Ageing Res Rev,2017(35):200-221.

[18]Fitzgibbons TP, Czech MP. Czech Emerging evidence for beneficial macrophage functions in atherosclerosis and obesity-induced insulin resistance [J].J Mol Med (Berl),2016(94):267-275.

[19]Sághy T, Krskényi K, Hegeds K, et al. Loss of transglutaminase 2 sensitizes for diet-induced obesity-related inflammation and insulin resistance due to enhanced macrophage c-Src signaling [J]. Cell Death Dis,2019,10(6):439.

[20]Kratz M, Coats BR, Hisert KB, et al. Metabolic dysfunction drivesa mechanistically distinct proinflammatory phenotype in adipose tissue macrophages [J]. Cell Metab, 2014, 20(4):614-625.

[21]Chistiakov DA, Myasoedova VA, Revin VV, et al. The impact of interferon-regulatory factors to macrophage differentiation and polarization into M1 and M2 [J]. Immunobiology, 2018,223(1):101-111.

[22]Castoldi A, Naffah de Souza C, C mara NO, et al. The macrophage switch in obesity development [J]. Front Immunol,2016(6):637.

[23]Li Y, Zhang F, Modrak S, et al. Chronic Alcohol Consumption Enhances Skeletal Muscle Wasting in Mice Bearing Cachectic Cancers: The Role of TNFα/Myostatin Axis [J]. Alcohol Clin Exp Res,2020,44(1):66-77.

[24]Gumucio JP, Korn MA, Saripalli AL, et al. Aging-associated exacerbation in fatty degeneration and infiltration after rotator cuff tear [J]. J Shoulder Elbow Surg,2014,23(1):99-108.

[25]Baek KW, Lee DI, Jeong MJ, et al. Effects of lifelong spontaneous exercise on the M1/M2 macrophage polarization ratio and gene expression in adipose tissue of super-aged mice [J]. Exp Gerontol. 2020,141(11):111091.

[26]Rodríguez A, Ezquerro S, Méndez-Giménez L, et al. Revisiting the adipocyte: a model for integration of cytokine signaling in the regulation of energy metabolism [J]. Am J Physiol Endocrinol Metab, 2015,309(8):691-714.

[27]Eljaafari A, Robert M, Chehimi M, et al. Adipose tissue-derived stem cells from obese subjects contribute to inflammation and reduced insulin response in adipocytes through differential regulation of the Th1/Th17 balance and monocyte activation [J]. Diabetes,2015,64(7):2477-2488.

[28]Kim B, Kim MS, Hyun CK. Syringin attenuates insulin resistance via adiponectin-mediated suppression of low-grade chronic inflammation and ER stress in high-fat diet-fed mice [J]. Biochem Biophys Res Commun,2017,488(1):40-45.08F277FE-1812-42D5-97F5-6961A222F407

[29]Go SI, Kim HG, Kang MH, et al. Prognostic model based on the geriatric nutritional risk index and sarcopenia in patients with diffuse large B-cell lymphoma [J]. BMC Cancer,2020, 20(1):439.

[30]Grases-Pintó B, Abril-Gil M, Castell M, et al. Enhancement of immune maturation in suckling rats by leptin and adiponectin supplementation [J]. Sci Rep,2019(9):1786.

[31]Dong Z, Zhuang Q, Ye X,, etal. Adiponectin Inhibits NLRP3 Inflammasome Activation in Nonalcoholic Steatohepatitis via AMPK-JNK/ErK1/2-NFκB/ROS Signaling Pathways [J]. Front Med (Lausanne),2020(7):546445.

[32]La Russa D, Marrone A, Mandalà M, et al. Antioxidant/Anti-Inflammatory Effects of Caloric Restriction in an Aged and Obese Rat Model: The Role of Adiponectin[J]. Biomedicines, 2020, 8(12): 532.

[33]Kurose S, Onishi K, Takao N, et al. Association of serum adiponectin and myostatin levels with skeletal muscle in patients with obesity: A cross-sectional study [J]. PLoS One,2021 Jan 19;16(1):e0245678.

[34]Takao N, Kurose S, Miyauchi T, et al. The relationship between changes in serum myostatin and adiponectin levels in patients with obesity undergoing a weight loss program [J]. BMC Endocr Disord,2021,21(1):147.

[35]Consitt LA, Clark BC. The vicious cycle of myostatin signaling in sarcopenic obesity: myostatin role in skeletal muscle growth, insulin signaling and implications for clinical trials [J]. J Frailty Aging, 2018,7(1):21-27.

[36]Amor M, Itariu B, Moreno-Viedma V, et al. Serum myostatin is upregulated in obesity and correlates with insulin resistance in humans[J].Exp Clin Endocrinol Diabetes,2019(127):550-556.

[37]Tazawa R, Uchida K, Fujimaki H, et al. Elevated leptin levels induce inflammation through IL-6 in skeletal muscle of aged female rats [J]. BMC Musculoskelet Disord,2019,20(1):199.

[38]Reis BS, Lee K, Fanok MH, et al. Leptin receptor signaling in T cells is required for Th17 differentiation[J].J Immunol,2015,194(11):5253-5260.

[39]Ozcan S, Ulker N, Bulmus O, et al. The modulatory effects of irisin on asprosin, leptin, glucose levels and lipid profile in healthy and obese male and female rats [J]. Arch Physiol Biochem.,2020(6):1-8.

[40]Reza MM, Subramaniyam N, Sim CM, et al. Irisin is a pro-myogenic factor that induces skeletal muscle hypertrophy and rescues denervation-induced atrophy [J]. Nat Commun,2017,8(1):1104.

[41]Dong J, Dong Y, Dong Y, et al.Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talkbetween muscle and adipose tissues [J]. Int J Obes (Lond),2016,40(3):434-442.08F277FE-1812-42D5-97F5-6961A222F407

[42]Capote J, Kramerova I, Martinez L, et al. Osteopontin ablation ameliorates muscular dystrophy by shifting macrophages to a pro-regenerative phenotype[J].J Cell Biol,2016,213(2):275-288.

[43]Kiefer FW, Zeyda M, Gollinger K, et al. Neutralization of osteopontin inhibits obesity-induced inflammation and insulin resistance [J]. Diabetes,2010,59(4):935-946.

[44]Zanotti S,Gibertini S,Di BC,et al.Osteopontin is highly expressed in severely dystrophic muscle and seems to play a role in muscle regeneration and fibrosis [J].Histopathology,2011,59(6):1215-1528.

[45]Xiao F,Tan JZ,Xu X,et al.Increased osteopontin in muscle and serum from patients with idiopathic inflammatory myopathies [J].Clin Exp Rheumatol,2015,33(3):399-404.

[46]Kuraoka M, Kimura E, Nagata T, et al. Serum Osteopontin as a Novel Biomarker for Muscle Regeneration in Duchenne Muscular Dystrophy[J].Am J Pathol,2016,186(5):1302-1312.

[47]Santoro A,Guidarelli G,Ostan R, et al.Gender-specific association of body composition with inflammatory and adipose-related markers in healthy elderly Europeans from the NU-AGE study[J].Eur Radiol,2019,29(9):4968-4979.

[48]Li HX,Chen KL,Wang HY,et al.Chemerin inhibition of myogenesis and induction of adipogenesis in C2C12 myoblasts[J].Mol Cell Endocrinol,2015(414):216-223.

[49]Kalinkovich A,Livshits G.Sarcopenic obesity or obese sarcopenia:A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis [J].Ageing Res Rev,2017(35):200-221.

[50]Tarabeih N,Shalata A,Trofimov S,et al.Growth and differentiation factor 15 is a biomarker for low back pain-associated disability[J].Cytokine,2019(117):8-14.

[51]Farr OM,Gavrieli A,Mantzoros CS.Leptin applications in 2015:what have we learned about leptin and obesity [J]?Curr Opin Endocrinol Diabetes Obes,2015,22(5):353-359.

[52]Low S,Pek S,Moh A,et al.Low muscle mass is associated with progression of chronic kidney disease and albuminuria - An 8-year longitudinal study in Asians with Type 2 Diabetes[J].Diabetes Res Clin Pract,2021(174):108777.

[53]Baek KW,Lee DI,Kang SA,et al.Differences in macrophage polarization in the adipose tissue of obese mice under various levels of exercise intensity [J].J Physiol Biochem,2020,76(1):159-168.

[54]Simpson RJ,ampbell JP,Gleeson M,et al.Can exercise affect immune function to increase susceptibility to infection[J].Exerc Immunol Rev,2020(26):8-22.08F277FE-1812-42D5-97F5-6961A222F407

[55]Cao X. COVID-19: immunopathology and its implications for therapy [J].Nat Rev Immunol,2020,20(5):269-270.

[56]Da Silveira MP,da Silva Fagundes KK,Bizuti MR,et al.Physical exercise as a tool to help the immune system against COVID-19:an integrative review of the current literature [J]. Clin Exp Med,2021,21(1):15-28.

[57]Kao HH,Hsu HS,Wu TH,et al.Effects of a single bout of short-duration high-intensity and long-duration low-intensity exercise on insulin resistance and adiponectin/leptin ratio[J].Obes Res Clin Pract,2021,15(1):58-63.

[58]Dundar A,Kocahan S,Sahin L.Associations of apelin, leptin, irisin, ghrelin, insulin, glucose levels, and lipid parameters with physical activity during eight weeks of regular exercise training[J].Arch Physiol Biochem,2021,127(4):291-295.

[59]Jandova T,Buendía-Romero A,Polanska H,et al.Long-Term Effect of Exercise on Irisin Blood Levels-Systematic Review and Meta-Analysis [J].Healthcare (Basel),2021,9(11):1438-1455.

[60]You JS,Ji HI,Chang KJ,et al.Serum osteopontin concentration is decreased by exercise-induced fat loss but is not correlated with body fat percentage in obese humans[J].Mol Med Rep,2013,8(2):579-584.

[61]Dunkley JC,Irion CI,Yousefi K,et al.Carvedilol and exercise combination therapy improves systolic but not diastolic function and reduces plasma osteopontin in Col4a3-/- Alport mice [J].Am J Physiol Heart Circ Physiol,2021,320(5):H1862-H1872.

[62]Lakhdar N,Landolsi M,Bouhlel E,et al.Effect of diet and diet combined with chronic aerobic exercise on chemerin plasma concentrations and adipose tissue in obese women[J].Neuro Endocrinol Lett,2019,40(6):262-270.

[63]Cobbold C.Type 2 diabetes mellitus risk and exercise:is resistin involved?[J].J Sports Med Phys Fitness,2019,59(2):290-297.

[64]Shokri E,Heidarianpour A,Razavi Z.Positive effect of combined exercise on adipokines levels and pubertal signs in overweight and obese girls with central precocious puberty[J].Lipids Health Dis,2021,20(1):152-166.08F277FE-1812-42D5-97F5-6961A222F407

猜你喜歡
脂肪組織肥胖炎癥
對(duì)炎癥的幾種常見(jiàn)誤解
脂肪有時(shí)可助免疫
收入對(duì)食品消費(fèi)代際差異的影響研究
學(xué)齡前兒童肥胖的綜合干預(yù)研究
β—阻遏蛋白1在棕色脂肪組織中的調(diào)控
肥胖的流行病學(xué)現(xiàn)狀及相關(guān)并發(fā)癥的綜述
腹腔鏡袖狀胃切除治療單純性肥胖1例報(bào)告
胖孩子脂肪組織6歲時(shí)已現(xiàn)病理變化