漆思晗,王棨臨,張俊有,劉倩,李春燕,3,4
增強(qiáng)子調(diào)控癌癥發(fā)生發(fā)展的機(jī)制研究
漆思晗1,2,王棨臨1,2,張俊有1,2,劉倩1,2,李春燕1,2,3,4
1. 北京航空航天大學(xué),醫(yī)學(xué)科學(xué)與工程學(xué)院,北京 100191 2. 北京航空航天大學(xué),生物與醫(yī)學(xué)工程學(xué)院,北京 100191 3. 北京航空航天大學(xué),大數(shù)據(jù)精準(zhǔn)醫(yī)療高精尖創(chuàng)新中心,北京 100191 4. 北京航空航天大學(xué),工業(yè)和信息化部大數(shù)據(jù)精準(zhǔn)醫(yī)療重點(diǎn)實(shí)驗(yàn)室,北京 100191
增強(qiáng)子是一段具有轉(zhuǎn)錄調(diào)控功能的DNA序列,主要通過(guò)順式調(diào)控方式發(fā)揮作用。由于增強(qiáng)子及其調(diào)控基因在位置和距離上的不確定性,大大增加了研究增強(qiáng)子作用機(jī)制的復(fù)雜性和困難性。越來(lái)越多的證據(jù)表明,增強(qiáng)子與癌癥等疾病的發(fā)生發(fā)展密切相關(guān),因此開(kāi)展癌癥相關(guān)增強(qiáng)子的研究,將有助于全面解析癌癥發(fā)病機(jī)制,并推動(dòng)抗腫瘤藥物的高效研發(fā),具有重要的社會(huì)意義和經(jīng)濟(jì)價(jià)值。目前對(duì)于增強(qiáng)子的鑒定不充分,增強(qiáng)子在癌癥和其他疾病中的發(fā)生發(fā)展調(diào)控機(jī)制尚未得到完整的解析。本文主要對(duì)增強(qiáng)子和超級(jí)增強(qiáng)子及其特性進(jìn)行介紹,并在全基因組水平上對(duì)增強(qiáng)子的預(yù)測(cè)和鑒定進(jìn)行了描述,最后總結(jié)了近年來(lái)增強(qiáng)子在癌癥等疾病發(fā)生過(guò)程中所發(fā)揮的調(diào)控作用,從而為未來(lái)解析增強(qiáng)子調(diào)控機(jī)制以及癌癥的診斷和治療提供參考。
增強(qiáng)子;超級(jí)增強(qiáng)子;癌癥;調(diào)控機(jī)制
在高等真核生物中,由于胚胎發(fā)育過(guò)程中的細(xì)胞分化,使得基因的表達(dá)調(diào)控變得十分復(fù)雜?;虮磉_(dá)及其調(diào)控是所有多細(xì)胞生物發(fā)育和生長(zhǎng)的關(guān)鍵,不同的基因以細(xì)胞類型特異性的方式被激活,從而成為具有特殊形態(tài)和功能的細(xì)胞類型[1]。人類()基因組包括了編碼區(qū)和非編碼區(qū),其中大部分為非編碼區(qū)。由于非編碼區(qū)不能夠翻譯出蛋白,因此人類基因組中大部分非編碼區(qū)曾被看作是沒(méi)有功能的DNA。近年來(lái)測(cè)序技術(shù)的不斷發(fā)展,位于非編碼區(qū)的基因組也得到了更為深入的研究。人們發(fā)現(xiàn)雖然位于非編碼區(qū)的序列無(wú)法翻譯出功能蛋白質(zhì),但卻可以作為基因調(diào)控元件(如啟動(dòng)子、增強(qiáng)子和超級(jí)增強(qiáng)子等),在基因的表達(dá)過(guò)程中發(fā)揮調(diào)控作用[2]。轉(zhuǎn)錄是從基因組DNA轉(zhuǎn)錄到RNA的過(guò)程,是機(jī)體中基因表達(dá)的開(kāi)始,也是表達(dá)過(guò)程中調(diào)控最嚴(yán)格的步驟之一,而轉(zhuǎn)錄水平上的調(diào)控異常會(huì)導(dǎo)致多種發(fā)育障礙和疾病(如癌癥)[3]。啟動(dòng)子的位置相對(duì)固定,與基因之間有特定的距離和方向,通常在轉(zhuǎn)錄起始位點(diǎn)附近。然而啟動(dòng)子自身表現(xiàn)出較低的活性,基因表達(dá)的細(xì)胞類型特異性和增強(qiáng)的轉(zhuǎn)錄活性通常是由增強(qiáng)子決定的。
增強(qiáng)子是由200~1500個(gè)堿基對(duì)組成的具有調(diào)控基因表達(dá)功能的DNA序列,其上包含有序列特異性的轉(zhuǎn)錄因子識(shí)別與結(jié)合位點(diǎn),增強(qiáng)子通過(guò)這些位點(diǎn)與轉(zhuǎn)錄因子結(jié)合,進(jìn)而啟動(dòng)靶基因的轉(zhuǎn)錄[4]。大多數(shù)管家基因的增強(qiáng)子位于啟動(dòng)子附近,但精確區(qū)分這些調(diào)控元件之間的邊界存在困難[5]。增強(qiáng)子和其所調(diào)控的基因在方向以及距離上不固定:在調(diào)控的方向上,有些增強(qiáng)子處于靶基因的3′端,有些可處于5′端,有些增強(qiáng)子甚至處于所調(diào)控基因的內(nèi)含子中[4]。在調(diào)控的距離上,相關(guān)研究也已經(jīng)發(fā)現(xiàn)增強(qiáng)子在與靶基因相距Mb數(shù)量級(jí)的距離上也可以促進(jìn)其調(diào)控基因的轉(zhuǎn)錄。例如,小鼠()()基因的肢芽增強(qiáng)子,該增強(qiáng)子距離基因的啟動(dòng)子1 Mb以上,仍可以對(duì)啟動(dòng)子進(jìn)行調(diào)控[6]。增強(qiáng)子調(diào)控靶基因轉(zhuǎn)錄的能力取決于與對(duì)增強(qiáng)子活性產(chǎn)生積極或消極影響的轉(zhuǎn)錄因子結(jié)合位點(diǎn)的組合,以及給定細(xì)胞的細(xì)胞核內(nèi)增強(qiáng)子結(jié)合轉(zhuǎn)錄因子的相對(duì)濃度[7]。雖然增強(qiáng)子與其調(diào)控的靶基因在DNA序列上相距一定的距離,但二者在染色質(zhì)的三維結(jié)構(gòu)空間上通過(guò)形成三維環(huán)狀的Loop結(jié)構(gòu)彼此靠近,進(jìn)而促進(jìn)靶基因的表達(dá)(圖1)。本文介紹了增強(qiáng)子的概念和特性,對(duì)增強(qiáng)子鑒定的方法進(jìn)行了描述,并進(jìn)一步歸納總結(jié)了增強(qiáng)子在癌癥發(fā)生發(fā)展過(guò)程中調(diào)控機(jī)制的系列研究。
在基因組上啟動(dòng)子和增強(qiáng)子是兩種主要的轉(zhuǎn)錄調(diào)控元件。啟動(dòng)子決定轉(zhuǎn)錄的起始,而增強(qiáng)子則對(duì)轉(zhuǎn)錄進(jìn)行進(jìn)一步的加強(qiáng)。增強(qiáng)子的研究最初是在來(lái)自猿猴病毒40 (simian virus 40, SV40)時(shí)提出,這是一種可以誘發(fā)腫瘤形成的DNA病毒。1981年,Banerji等[8]發(fā)現(xiàn)當(dāng)使用β-珠蛋白基因質(zhì)粒重組物時(shí),轉(zhuǎn)錄本幾乎無(wú)法被檢測(cè)到,而當(dāng)β-珠蛋白基因重組物含有SV40 DNA時(shí),β-珠蛋白基因的轉(zhuǎn)錄水平大大提高。含有增強(qiáng)子元件的病毒DNA片段可以在許多位置以任一方向起作用,包括兔β-珠蛋白基因轉(zhuǎn)錄起始位點(diǎn)的上游1400 bp或下游3300 bp,而這種可以增強(qiáng)基因轉(zhuǎn)錄的調(diào)控元件也被命名為增強(qiáng)子SV40[9]。增強(qiáng)子作為一種轉(zhuǎn)錄調(diào)控元件,在調(diào)控方面具有不依賴于與靶基因間距離和方向的靈活性,也因此大大增加了全面鑒定基因組中的增強(qiáng)子和作用于單個(gè)基因的全部增強(qiáng)子的困難?;虻膯?dòng)子可以簡(jiǎn)單地通過(guò)對(duì)其mRNA的5′端進(jìn)行測(cè)序來(lái)識(shí)別,但沒(méi)有類似的明確標(biāo)準(zhǔn)可以依據(jù)靶基因確定增強(qiáng)子的位置。研究表明,H3K27ac (histone H3 lysine 27 acetylation)和H3K4me1 (histone H3 lysine 4 monomethylation)組蛋白標(biāo)記是增強(qiáng)子活性的顯著特征,常用于識(shí)別基因組中的增強(qiáng)子[10]。此外,增強(qiáng)子作為調(diào)控元件發(fā)揮作用時(shí)具有細(xì)胞特異性,并且在特定細(xì)胞類型中只有通過(guò)和特定的轉(zhuǎn)錄因子結(jié)合,才能夠發(fā)揮調(diào)控作用。增強(qiáng)子的這種在不同細(xì)胞類型中發(fā)揮不同調(diào)控活性的特點(diǎn)也使其在機(jī)體的基因表達(dá)過(guò)程中成為一種重要的調(diào)控元件[11]。
圖1 增強(qiáng)子與超級(jí)增強(qiáng)子的對(duì)比
A:增強(qiáng)子組成結(jié)構(gòu);B:超級(jí)增強(qiáng)子組成結(jié)構(gòu)。增強(qiáng)子通過(guò)轉(zhuǎn)錄因子、調(diào)節(jié)蛋白復(fù)合體以及RNA聚合酶Ⅱ與啟動(dòng)子形成三維環(huán)狀結(jié)構(gòu)進(jìn)而增強(qiáng)靶基因的轉(zhuǎn)錄水平;超級(jí)增強(qiáng)子區(qū)域則招募聚集更多的轉(zhuǎn)錄因子進(jìn)而結(jié)合更多的調(diào)節(jié)蛋白復(fù)合體和RNA聚合酶Ⅱ,從而實(shí)現(xiàn)對(duì)靶基因的調(diào)控;超級(jí)增強(qiáng)子增強(qiáng)轉(zhuǎn)錄的效果比普通增強(qiáng)子高出一個(gè)數(shù)量級(jí)。
近年來(lái)通過(guò)對(duì)增強(qiáng)子作用機(jī)制的不斷研究,增強(qiáng)子的作用特點(diǎn)和生物學(xué)功能被研究人員逐步發(fā)現(xiàn)。首先,具有活性的增強(qiáng)子位于基因組的染色質(zhì)開(kāi)放區(qū)域,增強(qiáng)子的活性與核小體中的組蛋白修飾(例如H3K4me1和H3K27ac)、DNA甲基化修飾以及轉(zhuǎn)錄因子的結(jié)合密切相關(guān)。其次,增強(qiáng)子發(fā)揮轉(zhuǎn)錄調(diào)控作用時(shí)一般會(huì)與啟動(dòng)子形成三維環(huán)狀結(jié)構(gòu),二者間的聯(lián)系可以通過(guò)Mediator調(diào)節(jié)蛋白復(fù)合體來(lái)介導(dǎo)[12](圖1A)?;钚栽鰪?qiáng)子具有雙向轉(zhuǎn)錄的特性,并且其局部染色質(zhì)較為松散會(huì)暴露出與RNA聚合酶以及轉(zhuǎn)錄因子特異性結(jié)合的位點(diǎn),并通常伴有H3K4me1的修飾。當(dāng)結(jié)合的轉(zhuǎn)錄因子完全激活增強(qiáng)子時(shí),局部染色質(zhì)開(kāi)放,進(jìn)而募集RNA聚合酶II以啟動(dòng)雙向轉(zhuǎn)錄,產(chǎn)生增強(qiáng)子RNA (enhancer-derived RNAs,eRNAs)。所以,eRNA的表達(dá)水平代表了增強(qiáng)子的激活程度,也能夠作為增強(qiáng)子活性的標(biāo)志之一[13]。增強(qiáng)子的轉(zhuǎn)錄最初報(bào)導(dǎo)于20世紀(jì)90年代早期,直到2010年以后,兩篇關(guān)于eRNA的報(bào)道證明了具有H3K4me1標(biāo)記的增強(qiáng)子普遍轉(zhuǎn)錄成非編碼RNA,這些非編碼RNA被命名為eRNA,RNA聚合酶Ⅱ介導(dǎo)的雙向eRNA轉(zhuǎn)錄,其長(zhǎng)度通常在0.5~2 kb,eRNA的表達(dá)水平與附近基因的信使RNA合成水平呈正相關(guān),說(shuō)明eRNA合成發(fā)生在活性增強(qiáng)子上,因此eRNA可以作為增強(qiáng)子鑒定的標(biāo)志物之一[14,15]。從2007年開(kāi)始,隨著DNA測(cè)序技術(shù)的飛速發(fā)展,二代測(cè)序技術(shù)為在全基因組水平系統(tǒng)尋找和鑒定增強(qiáng)子帶來(lái)了機(jī)遇。例如,通過(guò)在全基因組范圍內(nèi)分析與特定蛋白結(jié)合的DNA序列,如與p300的結(jié)合或與具有H3K4me1以及H3K27ac修飾的組蛋白結(jié)合的DNA序列,從而實(shí)現(xiàn)對(duì)增強(qiáng)子的鑒定[16]。
目前研究發(fā)現(xiàn)常見(jiàn)的復(fù)雜疾病(包括癌癥、阿爾茨海默病、Ⅰ型糖尿病和系統(tǒng)性紅斑狼瘡等)和超級(jí)增強(qiáng)子之間相互關(guān)聯(lián)。Hnisz等[17]通過(guò)對(duì)與疾病特征相關(guān)的單核苷酸多態(tài)性(single nucleotide polymor-phisms, SNP)位點(diǎn)分布分析表明,大部分SNP 位點(diǎn)位于非編碼區(qū)域(93%),而在這些非編碼區(qū)域中,調(diào)控元件增強(qiáng)子占比高達(dá)2/3,并且顯著富集在超級(jí)增強(qiáng)子上。超級(jí)增強(qiáng)子是可以調(diào)控轉(zhuǎn)錄的一簇增強(qiáng)子,其大小有時(shí)可達(dá)數(shù)萬(wàn)bp[18]。與增強(qiáng)子類似,超級(jí)增強(qiáng)子作為一種調(diào)控元件也能夠調(diào)節(jié)基因的表達(dá),并且富集了高密度的關(guān)鍵轉(zhuǎn)錄因子、轉(zhuǎn)錄輔因子、特定表觀修飾的組蛋白(H3K4me1和H3K27ac)以及RNA聚合酶II復(fù)合物,相比于增強(qiáng)子,這些因子的結(jié)合密度高達(dá)10倍[19]?;谏鲜鎏卣鳎?jí)增強(qiáng)子能夠驅(qū)動(dòng)靶基因的轉(zhuǎn)錄水平更高(圖1B)。Whyte等[20]在增強(qiáng)子的研究基礎(chǔ)上對(duì)超級(jí)增強(qiáng)子進(jìn)行定義:超級(jí)增強(qiáng)子由許多小的增強(qiáng)子串聯(lián)組成,這些增強(qiáng)子間的距離非常接近,長(zhǎng)度大概在8~20 kb,并且在驅(qū)動(dòng)基因表達(dá)方面能力更強(qiáng)。超級(jí)增強(qiáng)子在功能上可以激活與細(xì)胞特異性相關(guān)的基因及其表達(dá),并且在癌癥等疾病的發(fā)生發(fā)展中起著重要作用。Hnisz等[17]在小鼠的胚胎干細(xì)胞中發(fā)現(xiàn)了超級(jí)增強(qiáng)子,并發(fā)現(xiàn)細(xì)胞中包含的多個(gè)轉(zhuǎn)錄因子(例如Oct4、Sox2、Nanog、Klf4等)均富集在超級(jí)增強(qiáng)子區(qū)域。此外,轉(zhuǎn)錄輔因子以及RNA聚合酶II復(fù)合物等與調(diào)控基因表達(dá)密切相關(guān)的物質(zhì)也均富集在超級(jí)增強(qiáng)子上,這使得超級(jí)增強(qiáng)子與增強(qiáng)子相比調(diào)控靶基因轉(zhuǎn)錄的能力更強(qiáng),同時(shí)產(chǎn)生的eRNA水平也更高。癌細(xì)胞中超級(jí)增強(qiáng)子在癌基因上富集,如在癌基因位點(diǎn)附近[19]。
增強(qiáng)子的鑒定研究為解析其在腫瘤生物學(xué)中的意義發(fā)揮重要作用,然而增強(qiáng)子在調(diào)控基因表達(dá)時(shí)方向和位置的不確定性加大了增強(qiáng)子的鑒定困難[21~23]。究其原因主要有:(1)增強(qiáng)子與其調(diào)控的靶基因在位置上靈活多變。例如增強(qiáng)子不一定會(huì)影響在距離上與其相鄰的基因表達(dá),而通過(guò)三維結(jié)構(gòu)的折疊來(lái)調(diào)控位于不同的染色體上的基因。(2)增強(qiáng)子與其調(diào)控的靶基因不是一一對(duì)應(yīng)的,一個(gè)增強(qiáng)子可以對(duì)多個(gè)基因的表達(dá)進(jìn)行調(diào)控。(3)增強(qiáng)子位于非編碼區(qū),與編碼基因相比,其研究范圍更廣。(4)增強(qiáng)子擁有組織細(xì)胞特異性,其表達(dá)活性受到時(shí)間和環(huán)境等條件的影響。但目前測(cè)序技術(shù)的快速發(fā)展為增強(qiáng)子的研究和鑒定帶來(lái)了新的機(jī)遇。
通過(guò)測(cè)定并且比較不同物種的遺傳信息,發(fā)現(xiàn)增強(qiáng)子元件通常富集在物種高度保守的序列中[24]。早期增強(qiáng)子的預(yù)測(cè)常使用比較基因組法和轉(zhuǎn)錄因子基序法。比較基因組法是利用增強(qiáng)子富集在高度保守序列中的特性,通過(guò)比較不同物種間的基因組來(lái)進(jìn)行增強(qiáng)子的研究鑒定。但盡管如此,由于其位于染色體非編碼區(qū),與編碼區(qū)基因序列相比,增強(qiáng)子的保守性相對(duì)較差,因此通過(guò)上述方法來(lái)預(yù)測(cè)增強(qiáng)子的效率較低。轉(zhuǎn)錄因子基序法是通過(guò)增強(qiáng)子上與轉(zhuǎn)錄因子結(jié)合的DNA基序(DNA motif)來(lái)預(yù)測(cè)和鑒定增強(qiáng)子,作為增強(qiáng)子序列特異性的轉(zhuǎn)錄因子結(jié)合位點(diǎn),其所含有的DNA motif長(zhǎng)度僅6~10 bp[11]。依賴于如此短序列的預(yù)測(cè)必將帶來(lái)較高的假陽(yáng)性。因此僅通過(guò)基因組或基序的保守特性來(lái)預(yù)測(cè)特定細(xì)胞類型中增強(qiáng)子活性是不夠的,需要新的方法來(lái)預(yù)測(cè)和鑒定增強(qiáng)子的活性特征,新一代測(cè)序技術(shù)和基因編輯技術(shù)的快速發(fā)展為增強(qiáng)子在全基因組水平的鑒定和預(yù)測(cè)提供了新的策略。
RNA-seq是高通量測(cè)序中最常見(jiàn)的一種應(yīng)用,已成為分子生物學(xué)中無(wú)處不在的工具。它通過(guò)在全轉(zhuǎn)錄組范圍內(nèi)分析差異基因表達(dá)和mRNAs的可變剪接等,促進(jìn)了人們對(duì)基因組功能理解的方方面面[25,26]。RNA-seq在癌癥研究領(lǐng)域也有廣泛的應(yīng)用,例如檢測(cè)正常組織和腫瘤組織在藥物治療前后二者間的差異[27]。2010年Kim等[15]通過(guò)RNA-seq分析發(fā)現(xiàn),神經(jīng)元細(xì)胞發(fā)生基因轉(zhuǎn)錄時(shí),不僅在啟動(dòng)子區(qū)域附近轉(zhuǎn)錄出mRNA,增強(qiáng)子區(qū)域也轉(zhuǎn)錄出RNA——eRNA。隨著RNA測(cè)序技術(shù)的不斷發(fā)展,GRO-seq (global run-on sequencing)、PRO-seq (precision nuclear run-on sequencing)和TT-seq (transient transcriptome sequencing)等技術(shù)通過(guò)檢測(cè)體內(nèi)新合成的RNA,來(lái)分析和鑒定特定細(xì)胞系或組織中有活性的增強(qiáng)子,并可對(duì)其表達(dá)的eRNA進(jìn)行定量[28~32]。2018年,Chen等[33]使用TCGA(The Cancer Genome Atlas)中RNA-seq數(shù)據(jù)對(duì)33種癌癥類型的8928個(gè)腫瘤樣本進(jìn)行全基因組分析,發(fā)現(xiàn)處于激活狀態(tài)的增強(qiáng)子廣泛存在于腫瘤樣本中。2019年,Zhang等[34]通過(guò)RNA-seq數(shù)據(jù)的再分析,篩選出16種癌癥類型中差異表達(dá)的eRNA,并發(fā)現(xiàn)在腫瘤樣本中這些eRNA表達(dá)明顯上調(diào)。因此,RNA測(cè)序技術(shù)可通過(guò)對(duì)eRNA的分析和鑒定,解析增強(qiáng)子在癌癥診斷和治療中的作用。
ATAC-seq技術(shù),即利用轉(zhuǎn)座酶來(lái)研究可及性染色質(zhì)的高通量測(cè)序技術(shù),最初由Buenrostro等[35]在2013年提出。當(dāng)染色質(zhì)處于復(fù)制或轉(zhuǎn)錄狀態(tài)時(shí),DNA高級(jí)結(jié)構(gòu)解開(kāi),染色質(zhì)變得松散開(kāi)放,轉(zhuǎn)座酶Tn5可以插入到這些染色質(zhì)開(kāi)放區(qū)域內(nèi);通過(guò)對(duì)Tn5插入?yún)^(qū)域的高通量測(cè)序,鑒定處于轉(zhuǎn)錄活躍的染色質(zhì)開(kāi)放區(qū)域[36]。這一技術(shù)目前也被用于有活性增強(qiáng)子的鑒定,ATAC-seq技術(shù)利用高通量測(cè)序技術(shù)對(duì)轉(zhuǎn)座酶Tn5易接近的開(kāi)放染色質(zhì)進(jìn)行捕獲,預(yù)測(cè)有活性的增強(qiáng)子。與ChIP-seq相比,ATAC-seq對(duì)檢測(cè)有活性增強(qiáng)子更加敏感,而且需要的起始材料也更少。
ChIP-seq技術(shù)是表觀基因組研究的核心方法,通過(guò)檢測(cè)與增強(qiáng)子結(jié)合的轉(zhuǎn)錄因子或特殊修飾的組蛋白如H3K27ac和H3K4me1等,對(duì)有活性的增強(qiáng)子進(jìn)行鑒定。ChIP-seq用到的主要工具是染色質(zhì)免疫沉淀技術(shù),是一種測(cè)定蛋白質(zhì)-DNA結(jié)合的技術(shù),也稱為結(jié)合位點(diǎn)分析法,由Orlando等[37]在1997年提出。ChIP-seq依賴于蛋白質(zhì)與特定DNA元件的交聯(lián),通過(guò)特異性抗體富集蛋白質(zhì)-DNA復(fù)合物,進(jìn)而對(duì)回收的DNA片段進(jìn)行高通量測(cè)序。借助增強(qiáng)子所結(jié)合蛋白質(zhì)的特異性抗體,一方面可以鑒定候選增強(qiáng)子的序列;另一方面,也可以更加準(zhǔn)確的找到增強(qiáng)子與轉(zhuǎn)錄因子結(jié)合的序列。ChIP-seq所產(chǎn)生的信息極大地促進(jìn)了對(duì)增強(qiáng)子、轉(zhuǎn)錄因子、輔因子和組蛋白修飾在調(diào)節(jié)基因表達(dá)中的機(jī)制解析。轉(zhuǎn)錄因子與增強(qiáng)子上相應(yīng)位點(diǎn)結(jié)合,轉(zhuǎn)錄輔助因子則在轉(zhuǎn)錄因子的介導(dǎo)下被招募至相應(yīng)的位點(diǎn),協(xié)助RNA聚合酶與啟動(dòng)子區(qū)域結(jié)合,進(jìn)而起到調(diào)控靶基因轉(zhuǎn)錄的功能[38]。研究表明,增強(qiáng)子區(qū)域的組蛋白修飾與增強(qiáng)子活性密切相關(guān):活性增強(qiáng)子通常富集H3K27ac和H3K4me1的組蛋白修飾,而當(dāng)增強(qiáng)子處于靜態(tài)時(shí),與其結(jié)合的組蛋白主要是H3K4me1和H3K27me3 (Histone H3 lysine 27 trimethylation)的組蛋白修飾[39~41]。因此,增強(qiáng)子上不同組蛋白的結(jié)合常被用于增強(qiáng)子活性的鑒定,同時(shí)也用于預(yù)測(cè)增強(qiáng)子的位置等。
CUT&RUN技術(shù)是由Skene和Henikoff[42]在2017年研發(fā)的一項(xiàng)DNA-蛋白質(zhì)相互作用的技術(shù),該技術(shù)利用洋地黃皂苷增加細(xì)胞的通透性,在靶蛋白抗體的介導(dǎo)下Protein A-微球菌核酸酶(pA-MNase)聚集在靶蛋白周?chē)?,通過(guò)Ca2+的激活作用使得pA- MNase在靶蛋白兩側(cè)進(jìn)行切割,通過(guò)抗體將靶蛋白富集,然后將與其結(jié)合的DNA釋放出來(lái)用于后續(xù)DNA的提取、文庫(kù)制備和測(cè)序[43]。2019年,他們?cè)贑UT&RUN技術(shù)的基礎(chǔ)上進(jìn)行技術(shù)升級(jí),衍生出了CUT&TAG技術(shù)。與CUT&RUN技術(shù)相比,CUT&TAG技術(shù)通過(guò)Protein A與Tn5轉(zhuǎn)座酶構(gòu)成的融合蛋白(pA-Tn5)切割目的蛋白附近的DNA片段,并在pA-Tn5切割的過(guò)程中接上建庫(kù)引物接頭,不需要末端補(bǔ)平和連接接頭,通過(guò)進(jìn)一步簡(jiǎn)化實(shí)驗(yàn)操作提高了實(shí)驗(yàn)效率[44]。ChIP-seq技術(shù)所涉及到的甲醛固定步驟,可能會(huì)由于空間位置相近的蛋白質(zhì)與DNA之間發(fā)生交聯(lián),導(dǎo)致捕獲到不相關(guān)的染色質(zhì)片段,產(chǎn)生假陽(yáng)性。CUT&RUN和CUT&TAG技術(shù)將與蛋白結(jié)合的DNA保護(hù)起來(lái),其兩端通過(guò)轉(zhuǎn)座酶的插入實(shí)現(xiàn)DNA的片段化。通過(guò)富集這些片段并測(cè)序,鑒定與靶蛋白結(jié)合的DNA片段。與ChIP-seq技術(shù)相比,這兩項(xiàng)技術(shù)改進(jìn)了ChIP-seq在研究DNA與蛋白質(zhì)相互作用方面的不足,無(wú)需甲醛固定和超聲打斷DNA,具有所需細(xì)胞數(shù)量少、操作簡(jiǎn)單、信噪比高等優(yōu)點(diǎn),為后續(xù)增強(qiáng)子等相關(guān)調(diào)控元件的研究提供更加高效的方法。
CRISPR是非常有效、快捷和廉價(jià)的基因編輯技術(shù),通常應(yīng)用于在細(xì)胞中實(shí)現(xiàn)基因的敲除。CRISPR發(fā)現(xiàn)于1987年[45]。2002年,被Jansen等[46]命名為“CRISPR”。而CRISPR-Cas (CRISPR-associated)系統(tǒng)作為原核生物中的一種適應(yīng)性免疫系統(tǒng),主要包括了CRISPR和編碼Cas蛋白的基因,目前研究已經(jīng)發(fā)現(xiàn)了等多種類型的Cas蛋白,其中Cas9應(yīng)用最為廣泛[47]。CRISPR-Cas9技術(shù)由單向?qū)NA (single guide RNA, sgRNA)和DNA內(nèi)切酶Cas9組成,前者將后者引導(dǎo)至特定的DNA序列,以切割雙鏈DNA位點(diǎn)[48]。自從CRISPR-Cas9在首次被用于基因組編輯工具以來(lái),其應(yīng)用范圍一直在不斷擴(kuò)展,不僅能夠修飾細(xì)胞和生物體的基因組序列,還可以引入表觀遺傳和轉(zhuǎn)錄修飾[49,50]。目前,CRISPR-Cas9技術(shù)可用于鑒定內(nèi)源性增強(qiáng)子元件,并研究增強(qiáng)子存在與否對(duì)基因表達(dá)的影響。2016年,Korkmaz等[51]研究在癌癥的發(fā)生和進(jìn)展中起著關(guān)鍵作用的兩種轉(zhuǎn)錄因子p53和ERα,通過(guò)CRISPR-Cas9技術(shù)構(gòu)建靶向增強(qiáng)子的質(zhì)粒,并使用細(xì)胞轉(zhuǎn)染等方式將其導(dǎo)入細(xì)胞,最終實(shí)現(xiàn)對(duì)增強(qiáng)子的敲除,用以鑒定和表征人體中有功能的增強(qiáng)子。上述研究結(jié)果表明,能夠通過(guò)基因編輯技術(shù)CRISPR-Cas9敲除具有調(diào)控癌基因表達(dá)的增強(qiáng)子,來(lái)研究其對(duì)癌癥發(fā)生機(jī)制的影響,進(jìn)而確定功能增強(qiáng)子的調(diào)控機(jī)制,解開(kāi)人類基因組上增強(qiáng)子等非編碼調(diào)控元件的功能。
目前已有多項(xiàng)研究結(jié)合使用上述方法,來(lái)進(jìn)行增強(qiáng)子鑒定和功能的研究。例如,日本理化學(xué)研究所RIKEN啟動(dòng)的FANTOM (Functional Annotation of the Mammalian genome)計(jì)劃利用RNA-seq、ChIP-seq以及基因表達(dá)加帽分析(cap analysis of gene expression, CAGE)技術(shù),結(jié)合多種組蛋白修飾H3K4me1、H3K27ac和H3K27me3,總共鑒定出了大約65,000個(gè)增強(qiáng)子[14]。eRNA和增強(qiáng)子調(diào)控的靶基因在表達(dá)水平上具有正相關(guān)性,因此可以通過(guò)RNA水平的關(guān)聯(lián)分析篩選出增強(qiáng)子可能調(diào)控的靶基因,并且利用ChIP-seq在基因組上尋找H3K4me1和H3K27ac富集的區(qū)域,進(jìn)而在特定類型的細(xì)胞中找到有活性的增強(qiáng)子。在解析增強(qiáng)子及其調(diào)控的靶基因間的作用機(jī)制方面,可以利用CRISPR-Cas9技術(shù),通過(guò)設(shè)計(jì)sgRNA敲除增強(qiáng)子,進(jìn)而開(kāi)展后續(xù)調(diào)控機(jī)制的研究[33,52]。此外,在預(yù)測(cè)調(diào)控泛癌相關(guān)的焦亡基因增強(qiáng)子時(shí),本課題組通過(guò)多種癌細(xì)胞系的ChIP-seq數(shù)據(jù)發(fā)現(xiàn)增強(qiáng)子GSDMD-enh3周?chē)蠬3K27ac和H3K4me1強(qiáng)結(jié)合峰,這說(shuō)明GSDMD-enh3是有活性的增強(qiáng)子;通過(guò)結(jié)合Hi-C數(shù)據(jù),驗(yàn)證了增強(qiáng)子GSDMD-enh3和在染色體上可能直接結(jié)合,并在癌細(xì)胞系K562、HCT116以及人類胚胎干細(xì)胞系H1中利用ChIP-seq數(shù)據(jù)預(yù)測(cè)增強(qiáng)子GSDMD-enh3通過(guò)上游轉(zhuǎn)錄因子USF1調(diào)節(jié)表達(dá)[53]。
癌癥已然成為影響社會(huì)發(fā)展的重大阻力,據(jù)國(guó)際癌癥研究機(jī)構(gòu)統(tǒng)計(jì)的數(shù)據(jù)表明,2020年全球已有1930萬(wàn)例新增癌癥病例和近1000萬(wàn)例死亡,并預(yù)估在接下來(lái)的20年里,癌癥病例數(shù)將以47%的比例上升[54]。已有大量全基因組關(guān)聯(lián)分析(genome wide association study, GWAS)的研究顯示,與疾病或特征相關(guān)聯(lián)的變異富集在非編碼調(diào)控區(qū),尤其是細(xì)胞特異性強(qiáng)的增強(qiáng)子區(qū)域[55~57]。除了DNA水平的突變,增強(qiáng)子和超級(jí)增強(qiáng)子在癌基因或抑癌基因的表達(dá)調(diào)控中扮演著重要角色。是癌癥發(fā)生過(guò)程中最重要的癌基因之一,其在一半以上的腫瘤中表達(dá)上調(diào)[58]。Korkmaz等[51]借助CRISPR-Cas9技術(shù)敲除肺癌細(xì)胞中與距離相距約450 kb的增強(qiáng)子,發(fā)現(xiàn)增強(qiáng)子敲除后的表達(dá)降低,肺癌細(xì)胞的增殖和遷移能力也隨之降低。此外,相關(guān)研究鑒定出一種位于下游1.4 Mb的增強(qiáng)子N-Me,N-Me與近端啟動(dòng)子相互作用并誘導(dǎo)表達(dá),同時(shí)發(fā)現(xiàn)該增強(qiáng)子缺失的小鼠其胸腺細(xì)胞增殖和分化能力顯著降低。增強(qiáng)子N-Me作為參與人類白血病發(fā)病機(jī)理的致癌增強(qiáng)子,與該病的發(fā)病機(jī)制密切相關(guān)[59]。的過(guò)表達(dá)可以通過(guò)多種機(jī)制實(shí)現(xiàn),包括拷貝數(shù)增加、染色體易位或體細(xì)胞突變等,位于非編碼區(qū)的增強(qiáng)子也可以通過(guò)調(diào)控表達(dá)來(lái)影響癌癥的發(fā)生[60]。研究顯示增強(qiáng)子的異常(改變轉(zhuǎn)錄因子結(jié)合位點(diǎn)產(chǎn)生新增強(qiáng)子的點(diǎn)突變、拷貝數(shù)變異或基因組結(jié)構(gòu)重排導(dǎo)致的增強(qiáng)子活性異常等)與癌癥的發(fā)生發(fā)展或治療效果有很強(qiáng)的相關(guān)性[61,62]。
本文綜述和總結(jié)了增強(qiáng)子區(qū)域的五種變異形式(點(diǎn)突變、拷貝數(shù)變異、基因組重排、DNA甲基化以及結(jié)合的組蛋白修飾改變等)與癌癥的發(fā)生發(fā)展緊密相關(guān)(圖2)。增強(qiáng)子的點(diǎn)突變可能會(huì)通過(guò)改變轉(zhuǎn)錄因子結(jié)合位點(diǎn)來(lái)調(diào)控癌基因表達(dá),一方面可能通過(guò)獲得新的結(jié)合位點(diǎn)導(dǎo)致癌基因異常表達(dá);另一方面通過(guò)丟失轉(zhuǎn)錄因子結(jié)合位點(diǎn)使原本表達(dá)的抑癌基因不能正常表達(dá),導(dǎo)致癌癥發(fā)生。例如,Akhtar-Zaidi等[63]通過(guò)ChIP-seq分析組蛋白標(biāo)記發(fā)現(xiàn)一處增強(qiáng)子區(qū)域點(diǎn)突變導(dǎo)致結(jié)腸癌中的抑癌基因表達(dá)受到抑制,進(jìn)而促進(jìn)癌癥發(fā)生(圖2A)??截悢?shù)變異(copy number variation, CNV)在癌細(xì)胞中普遍存在,是遺傳結(jié)構(gòu)變異的重要組成部分,通常定義為擴(kuò)增或減少的DNA區(qū)段大于1 kb的事件。CNV通過(guò)影響基因表達(dá)水平,與許多癌癥的發(fā)展和進(jìn)展高度相關(guān)[61]。Zhang等[64]通過(guò)對(duì)12種腫瘤類型進(jìn)行體細(xì)胞拷貝數(shù)分析和組織特異性表觀遺傳學(xué)分析,在癌基因附近發(fā)現(xiàn)了超級(jí)增強(qiáng)子的局部擴(kuò)增。因此,增強(qiáng)子/超級(jí)增強(qiáng)子上發(fā)生CNV使得增強(qiáng)子促進(jìn)的癌基因表達(dá)能力大大提高,進(jìn)而促進(jìn)癌癥發(fā)生(圖2B)[65]。Wang等[66]首先開(kāi)發(fā)了NeoLoopFinder方法,用以預(yù)測(cè)發(fā)生“增強(qiáng)子劫持”的增強(qiáng)子,并在前列腺癌細(xì)胞中利用CRISPR-Cas9技術(shù)敲除其中一個(gè)增強(qiáng)子,發(fā)現(xiàn)預(yù)測(cè)的靶基因——癌基因的表達(dá)量大大降低,這說(shuō)明由基因組重排引發(fā)的增強(qiáng)子劫持可能使增強(qiáng)子與癌基因在三維空間上產(chǎn)生互作,從而增強(qiáng)癌基因的表達(dá),促進(jìn)癌癥發(fā)生。因此,基因組重排導(dǎo)致的“增強(qiáng)子劫持”使得增強(qiáng)子被移位到癌基因附近,進(jìn)而激活癌基因的表達(dá),從而引發(fā)癌癥(圖2C)。此外,增強(qiáng)子發(fā)生甲基化也可能與腫瘤發(fā)生相關(guān)[63,67]。與非腫瘤組織相比,肝癌患者中C/EBPβ eRNA水平升高,并與C/EBPβ增強(qiáng)子甲基化呈現(xiàn)出負(fù)相關(guān):C/EBPβ增強(qiáng)子的低甲基化與HCC患者的較差預(yù)后相關(guān)[68]。Aran等[69]利用ENCODE(Encyclopedia of DNA Elements)網(wǎng)站分析58種細(xì)胞類型的DNA甲基化數(shù)據(jù)發(fā)現(xiàn),增強(qiáng)子甲基化在癌癥中顯著變化:與低甲基化增強(qiáng)子相關(guān)的基因在癌癥中傾向于上調(diào),而與高甲基化增強(qiáng)子相關(guān)的基因在癌癥中傾向于下調(diào)(圖2D)。與增強(qiáng)子結(jié)合的相關(guān)染色質(zhì)組蛋白修飾常在癌細(xì)胞中發(fā)生改變,并與癌癥治療的耐藥性相關(guān)。例如,內(nèi)分泌治療的耐藥性發(fā)生在大約50%的乳腺癌患者中,內(nèi)分泌治療耐藥性乳腺癌細(xì)胞依賴于NOTCH信號(hào)通路,當(dāng)乳腺癌細(xì)胞中增強(qiáng)子上H3K27ac信號(hào)升高時(shí),抗藥性增加[70]。當(dāng)增強(qiáng)子處于靜態(tài)時(shí),其上通常伴有H3K27me3修飾,癌基因表達(dá)受到抑制;而當(dāng)增強(qiáng)子處于活躍狀態(tài)時(shí),伴有組蛋白H3K4me1和H3K27ac修飾,會(huì)增強(qiáng)癌基因的表達(dá),促進(jìn)癌癥發(fā)生(圖2E)。
圖2 增強(qiáng)子變異與癌癥發(fā)生
增強(qiáng)子上點(diǎn)突變、拷貝數(shù)變異、基因組重排、DNA甲基化以及組蛋白修飾在癌癥發(fā)生過(guò)程中的作用如圖中所示。A:增強(qiáng)子上發(fā)生的點(diǎn)突變使得抑癌基因轉(zhuǎn)錄受到抑制,從而促進(jìn)癌癥的發(fā)生;B:增強(qiáng)子拷貝數(shù)的變異會(huì)增強(qiáng)癌基因的表達(dá),進(jìn)而促進(jìn)癌癥發(fā)生;C:發(fā)生基因組重排會(huì)導(dǎo)致增強(qiáng)子位于癌基因附近,進(jìn)而增強(qiáng)癌基因的表達(dá);D:增強(qiáng)子的DNA甲基化會(huì)抑制癌基因的表達(dá);E:靜態(tài)增強(qiáng)子通常伴有H3K27me3修飾,癌基因表達(dá)受到抑制,而活性增強(qiáng)子常伴有H3K4me1和H3K27ac組蛋白修飾,能夠增強(qiáng)癌基因表達(dá),促進(jìn)癌癥發(fā)生。
編碼癌基因的染色體外DNA (extrachromomal DNA, ecDNA)是癌癥基因組的普遍特征,也是癌癥發(fā)展的有力驅(qū)動(dòng)因素,可以通過(guò)基因擴(kuò)增和改變基因調(diào)控來(lái)介導(dǎo)癌基因的高表達(dá)[71]。由于缺乏著絲粒,ecDNA在細(xì)胞分裂過(guò)程中會(huì)隨機(jī)分離到子細(xì)胞中,這使得其在細(xì)胞中可以得到快速積累。此外,ecDNA能夠重新整合到染色體中,因此也可能作為一些染色體擴(kuò)增的前體。ecDNA上具有高度易結(jié)合的染色質(zhì)以及調(diào)控基因表達(dá)的增強(qiáng)子元件,研究表明,相比于線性染色體上的增強(qiáng)子,呈圓環(huán)狀ecDNA上存在的增強(qiáng)子其激活癌基因的表達(dá)能力更高,這也是癌細(xì)胞中常常存在ecDNA的原因之一[72]。2021年,Hung等[73]發(fā)現(xiàn)在癌細(xì)胞分裂間期期間,ecDNA會(huì)出現(xiàn)相互聚集的現(xiàn)象,這種局部聚集能夠促進(jìn)增強(qiáng)子–基因相互作用進(jìn)而致使癌基因過(guò)表達(dá),同時(shí)發(fā)現(xiàn)由蛋白質(zhì)BRD4相連的ecDNA中心能夠?qū)崿F(xiàn)分子間的轉(zhuǎn)錄調(diào)控,進(jìn)而作為癌癥治療的潛在靶點(diǎn)(圖3)??偟膩?lái)說(shuō),癌癥發(fā)生通常與增強(qiáng)子的表觀遺傳變化有關(guān),并且增強(qiáng)子相關(guān)組蛋白修飾的突變或錯(cuò)誤調(diào)節(jié)也有可能會(huì)對(duì)增強(qiáng)子的活性產(chǎn)生影響。調(diào)控癌基因表達(dá)的增強(qiáng)子被激活后使得癌基因表達(dá)水平發(fā)生提高,進(jìn)而導(dǎo)致癌癥的發(fā)生[74]。因此,研究增強(qiáng)子的發(fā)生及作用機(jī)制對(duì)于后續(xù)癌癥的治療有著重要意義。
圖3 ecDNA上增強(qiáng)子的致癌機(jī)制
環(huán)狀ecDNA上的增強(qiáng)子在癌癥發(fā)生中的致癌機(jī)制如圖所示。ecDNA常分布于癌細(xì)胞中,位于環(huán)狀ecDNA上的增強(qiáng)子其調(diào)控癌基因表達(dá)量與線性DNA相比大大增加,在癌細(xì)胞分裂間期ecDNA會(huì)出現(xiàn)聚集現(xiàn)象形成“ecDNA簇”進(jìn)一步加強(qiáng)癌基因表達(dá),促進(jìn)癌癥的發(fā)生。
研究發(fā)現(xiàn),超級(jí)增強(qiáng)子在多種腫瘤類型中處于異常激活狀態(tài),并能夠通過(guò)調(diào)控癌基因的表達(dá),介導(dǎo)癌癥的發(fā)生[75]。Glodzik等[76]通過(guò)使用分段常數(shù)擬合方法系統(tǒng)地研究了560例乳腺癌患者的染色體重排,確定出了33個(gè)與乳腺癌相關(guān)的突變特征,并發(fā)現(xiàn)它們大部分富集在超級(jí)增強(qiáng)子區(qū)域。此外,Hnisz等[56]建立了86種人類細(xì)胞和組織類型的超級(jí)增強(qiáng)子目錄,發(fā)現(xiàn)與癌癥等疾病相關(guān)的DNA序列變異富集在和疾病相關(guān)細(xì)胞的超級(jí)增強(qiáng)子上。通過(guò)識(shí)別和繪制超級(jí)增強(qiáng)子并破壞它們,有望改變臨床癌癥等疾病的治療方式。上述這些發(fā)現(xiàn)表明超級(jí)增強(qiáng)子能夠調(diào)控和癌癥等疾病發(fā)生發(fā)展相關(guān)基因的表達(dá),為癌癥特異性病理學(xué)提供生物標(biāo)志物,這有助于進(jìn)一步了解癌癥等疾病的診斷和治療。
對(duì)癌癥發(fā)生機(jī)制的研究、對(duì)早期癌癥診斷生物學(xué)標(biāo)志物的篩選以及對(duì)個(gè)體化治療方案的探索將顯著改善人類健康和延長(zhǎng)人類壽命、減輕社會(huì)負(fù)擔(dān)和推動(dòng)社會(huì)經(jīng)濟(jì)發(fā)展。增強(qiáng)子產(chǎn)生的RNA—eRNA,因在介導(dǎo)增強(qiáng)子功能和基因轉(zhuǎn)錄方面的潛在作用,以及它們與疾病相關(guān)的遺傳變異,引起了人們的廣泛關(guān)注。研究發(fā)現(xiàn),eRNA—AP001056.1,可作為頭頸部鱗狀細(xì)胞癌(head and neck squamous cell car-cinoma, HNSCC)的預(yù)后標(biāo)志物,并且此eRNA與HNSCC的相關(guān)性有著顯著的特異性[77]。Zhang等[34]通過(guò)整合來(lái)自TCGA、CCLE(Cancer Cell Line Encyclopedia)、ENCODE、FANTOM和Roadmap Epigenomics項(xiàng)目的多組學(xué)數(shù)據(jù)共鑒定出9108種eRNA,其中652種普遍存在于各種癌癥類型中,約占eRNA種類的7%;而癌癥類型特異性的5332種eRNA約占59%,依據(jù)這些癌癥類型特異性的eRNA可以很好地區(qū)分癌癥。eRNA靶向治療通過(guò)靶向特定的eRNA,實(shí)現(xiàn)癌癥類型特異性或癌癥患者特異性的癌癥干預(yù)治療[78]。與相鄰的正常組織相比,許多eRNA在腫瘤樣本中過(guò)度表達(dá),這一現(xiàn)象與癌癥中增強(qiáng)子的過(guò)度激活一致,這提示靶向eRNA治療癌癥的潛力[33,79]。eRNA作為癌癥治療的靶點(diǎn)在其他研究中也得到了證實(shí)。例如,雌激素可能通過(guò)誘導(dǎo)eRNA來(lái)促進(jìn)前列腺癌的發(fā)生,Ding等[80]發(fā)現(xiàn)通過(guò)敲低eRNA能夠抑制癌細(xì)胞的增殖、侵襲和遷移并促進(jìn)癌細(xì)胞的凋亡,這為前列腺癌的治療提供了潛在的治療靶點(diǎn)。此外,Hsieh等[81]利用siRNA敲低eRNA發(fā)現(xiàn):eRNA表達(dá)降低,前列腺癌細(xì)胞增殖受到抑制。因此,通過(guò)靶向特定的eRNA,有希望能夠?qū)崿F(xiàn)癌癥的干預(yù)治療。此外,eRNA也可以預(yù)測(cè)癌癥治療的效果。在多種癌癥類型中,增強(qiáng)子9 (chr9: 5580709-5581016)的表達(dá)水平與程序性死亡配體1 (PD-L1)的表達(dá)水平之間存在相關(guān)性[33]。由于基因表達(dá)已被用作預(yù)測(cè)癌癥免疫治療療效的重要標(biāo)志物,因此,eRNA表達(dá)作為免疫治療效果的預(yù)測(cè)標(biāo)志物,具有潛在價(jià)值。
盡管目前在開(kāi)發(fā)抗癌療法方面取得了許多進(jìn)展,但抗癌藥物的耐藥性仍然是促進(jìn)癌癥復(fù)發(fā)的主要原因,腫瘤的異質(zhì)性也使得治療耐藥性的研究更具挑戰(zhàn)性。例如,40%~55%的三陰性乳腺癌患者對(duì)化療和放療產(chǎn)生耐藥性,大約40%的非小細(xì)胞肺癌患者由于耐藥性復(fù)發(fā)而導(dǎo)致死亡,20%的淋巴細(xì)胞白血病和兒童癌癥產(chǎn)生耐藥性導(dǎo)致疾病的復(fù)發(fā),因此確定癌癥耐藥性機(jī)制在癌癥治療中十分重要[82~84]。雖然人們逐漸發(fā)現(xiàn)了增強(qiáng)子在治療癌癥耐藥性過(guò)程中的作用,但eRNA在癌癥耐藥性中的具體作用尚不清楚。已有研究發(fā)現(xiàn),eRNA在乳腺癌中大量表達(dá),而eRNA的過(guò)表達(dá)導(dǎo)致乳腺癌細(xì)胞MCF7對(duì)藥物BEZ235和Obatoclax產(chǎn)生耐藥性[34]。Zhao等[85]敲低eRNA 發(fā)現(xiàn)去勢(shì)抵抗性前列腺癌(castration-resistant prostate cancer, CRPC)細(xì)胞的活力在很大程度上降低了,這表明eRNA在CRPC細(xì)胞生長(zhǎng)和增殖過(guò)程中發(fā)揮重要作用。因此,代表了一類非常規(guī)的基因,除了作為生物標(biāo)志物外,還可以從其增強(qiáng)子中產(chǎn)生具有重要功能的eRNA,在腫瘤的治療中發(fā)揮重要作用。
人類基因組中的非編碼序列在多種生物學(xué)過(guò)程中發(fā)揮著至關(guān)重要的作用,作為在基因組中占比約98%的非編碼區(qū)域,仍有大量是功能未知的,這些曾被認(rèn)為是基因組中“垃圾”的區(qū)域,已被逐漸證實(shí)存在重要功能?;蚪M的三維結(jié)構(gòu)會(huì)影響基因的轉(zhuǎn)錄調(diào)控或其他細(xì)胞生命活動(dòng),例如增強(qiáng)子通過(guò)與啟動(dòng)子形成的三維環(huán)狀結(jié)構(gòu)已經(jīng)被證明與癌癥和其他疾病的發(fā)生發(fā)展密切相關(guān)。同時(shí),改變非編碼序列能夠改變?nèi)旧|(zhì)結(jié)構(gòu),例如增強(qiáng)子劫持現(xiàn)象以及切除一些拓?fù)浣Y(jié)構(gòu)相關(guān)結(jié)構(gòu)域的邊界序列導(dǎo)致的異常基因表達(dá),都會(huì)誘發(fā)疾病產(chǎn)生。但目前,在癌癥發(fā)生發(fā)展過(guò)程中發(fā)揮作用的增強(qiáng)子并未被充分挖掘,并且已經(jīng)鑒定出來(lái)的增強(qiáng)子對(duì)靶基因的調(diào)控機(jī)制也沒(méi)有得到全面清晰的解析。此外,非編碼序列在結(jié)構(gòu)上的重要性目前也沒(méi)有系統(tǒng)性的研究,尤其是一些與增強(qiáng)子相關(guān)或功能元件注釋的區(qū)域。經(jīng)過(guò)30多年的研究,人們對(duì)增強(qiáng)子的作用機(jī)制有了一定的了解,但其在生物學(xué)其他一些重要方面仍有待闡明,包括確切的序列范圍、不同轉(zhuǎn)錄因子和輔助因子的精確作用以及增強(qiáng)子與其靶啟動(dòng)子的連接等。在過(guò)去幾年中,對(duì)不同癌癥類型(包括實(shí)體瘤和不同形式的白血病)的全基因組測(cè)序和全基因組關(guān)聯(lián)研究越來(lái)越清楚地表明,許多增強(qiáng)子上的染色質(zhì)修飾在癌癥發(fā)病機(jī)制和其他疾病中起著核心作用。由于與癌癥發(fā)生發(fā)展有聯(lián)系的遺傳變異富集在非編碼區(qū)的增強(qiáng)子區(qū)域而非基因的編碼區(qū)域,同時(shí)增強(qiáng)子在癌細(xì)胞與正常細(xì)胞中存在顯著差異(如eRNA水平高低、增強(qiáng)子區(qū)域內(nèi)的DNA甲基化水平和組蛋白修飾等),因此,更多地了解增強(qiáng)子和超級(jí)增強(qiáng)子的作用機(jī)制和二者在癌癥等疾病發(fā)病機(jī)制中所發(fā)揮的功能,對(duì)今后癌癥等疾病的診療改進(jìn)有著重要作用。
[1] Spitz F, Furlong EEM. Transcription factors: from enhancer binding to developmental control., 2012, 13(9): 613–626.
[2] Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue CH, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, R?der M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See LH, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu YB, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan YJ, Wold B, Carninci P, Guigó R, Gingeras TR. Landscape of transcription in human cells., 2012, 489(7414): 101–108.
[3] Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M. Epigenetic protein families: a new frontier for drug discovery., 2012, 11(5): 384–400.
[4] Schaffner W. Enhancers, enhancers-from their discovery to today’s universe of transcription enhancers., 2015, 396(4): 311–327.
[5] Zabidi MA, Stark A. Regulatory enhancer–core-promoter communication via transcription factors and cofactors., 2016, 32(12): 801–814.
[6] Sagai T, Hosoya M, Mizushina Y, Tamura M, Shiroishi T. Elimination of a long-range cis-regulatory module causes complete loss of limb-specific Shh expression and truncation of the mouse limb., 2005, 132(4): 797–803.
[7] Kyrchanova O, Georgiev P. Mechanisms of enhancer- promoter interactions in higher eukaryotes., 2021, 22(2): 671.
[8] Banerji J, Rusconi S, Schaffner W. Expression of a β-globin gene is enhanced by remote SV40 DNA sequences., 1981, 27(2 Pt 1): 299–308.
[9] Moreau P, Hen R, Wasylyk B, Everett R, Gaub MP, Chambon P. The SV40 72 base repair repeat has a striking effect on gene expression both in SV40 and other chimeric recombinants., 1981, 9(22): 6047–6068.
[10] Bulger M, Groudine M. Functional and mechanistic diversity of distal transcription enhancers., 2011, 144(3): 327–339.
[11] Aerts S. Computational strategies for the genome-wide identification of cis-regulatory elements and transcriptional targets., 2012, 98: 121–145.
[12] Di Micco R, Fontanals-Cirera B, Low V, Ntziachristos P, Yuen SK, Lovell CD, Dolgalev I, Yonekubo Y, Zhang GT, Rusinova E, Gerona-Navarro G, Ca?amero M, Ohlmeyer M, Aifantis I, Zhou MM, Tsirigos A, Hernando E. Control of embryonic stem cell identity by brd4-dependent transcriptional elongation of super-enhancer-associated pluripotency genes., 2014, 9(1): 234–247.
[13] Mikhaylichenko O, Bondarenko V, Harnett D, Schor IE, Males M, Viales RR, Furlong EEM. The degree of enhancer or promoter activity is reflected by the levels and directionality of eRNA transcription., 2018, 32(1): 42–57.
[14] Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, Chen Y, Zhao XB, Schmidl C, Suzuki T, Ntini E, Arner E, Valen E, Li K, Schwarzfischer L, Glatz D, Raithel J, Lilje B, Rapin N, Bagger FO, J?rgensen M, Andersen PR, Bertin N, Rackham O, Burroughs AM, Baillie JK, Ishizu Y, Shimizu Y, Furuhata E, Maeda S, Negishi Y, Mungall CJ, Meehan TF, Lassmann T, Itoh M, Kawaji H, Kondo N, Kawai J, Lennartsson A, Daub CO, Heutink P, Hume DA, Jensen TH, Suzuki H, Hayashizaki Y, Müller F, Forrest ARR, Carninci P, Rehli M, Sandelin A. An atlas of active enhancers across human cell types and tissues., 2014, 507(7493): 455–461.
[15] Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-Haley K, Kuersten S, Markenscoff-Papadimitriou E, Kuhl D, Bito H, Worley PF, Kreiman G, Greenberg ME. Widespread transcription at neuronal activity-regulated enhancers., 2010, 465(7295): 182–187.
[16] Visel A, Blow MJ, Li ZR, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F, Afzal V, Ren B, Rubin EM, Pennacchio LA. ChIP-seq accurately predicts tissue-specific activity of enhancers., 2009, 457(7231): 854–858.
[17] Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova AA, Hoke HA, Young RA. Super-enhancers in the control of cell identity and disease., 2013, 155(4): 934–947.
[18] Pott S, Lieb JD. What are super-enhancers?, 2015, 47(1): 8–12.
[19] Lovén J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, Bradner JE, Lee TI, Young RA. Selective inhibition of tumor oncogenes by disruption of super-enhancers., 2013, 153(2): 320–334.
[20] Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young RA. Master transcription factors and mediator establish super- enhancers at key cell identity genes., 2013, 153(2): 307–319.
[21] Visel A, Rubin EM, Pennacchio LA. Genomic views of distant-acting enhancers., 2009, 461(7261): 199– 205.
[22] Whitaker JW, Nguyen TT, Zhu Y, Wildberg A, Wang W. Computational schemes for the prediction and annotation of enhancers from epigenomic assays., 2015, 72: 86–94.
[23] Pennacchio LA, Bickmore W, Dean A, Nobrega MA, Bejerano G. Enhancers: five essential questions., 2013, 14(4): 288–295.
[24] Pennacchio LA, Ahituv N, Moses AM, Prabhakar S, Nobrega MA, Shoukry M, Minovitsky S, Dubchak I, Holt A, Lewis KD, Plajzer-Frick I, Akiyama J, De Val S, Afzal V, Black BL, Couronne O, Eisen MB, Visel A, Rubin EM. In vivo enhancer analysis of human conserved non-coding sequences., 2006, 444(7118): 499–502.
[25] Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR. Highly integrated single-base resolution maps of the epigenome in arabidopsis., 2008, 133(3): 523–536.
[26] Emrich SJ, Barbazuk WB, Li L, Schnable PS. Gene discovery and annotation using LCM-454 transcriptome sequencing., 2007, 17(1): 69–73.
[27] Stark R, Grzelak M, Hadfield J. RNA sequencing: the teenage years., 2019, 20(11): 631–656.
[28] Wang D, Garcia-Bassets I, Benner C, Li WB, Su X, Zhou YM, Qiu J, Liu W, Kaikkonen MU, Ohgi KA, Glass CK, Rosenfeld MG, Fu XD. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA., 2011, 474(7351): 390–394.
[29] Core LJ, Martins AL, Danko CG, Waters CT, Siepel A, Lis JT. Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers., 2014, 46(12): 1311–1320.
[30] Schwalb B, Michel M, Zacher B, Frühauf K, Demel C, Tresch A, Gagneur J, Cramer P. TT-seq maps the human transient transcriptome., 2016, 352(6290): 1225– 1228.
[31] Core LJ, Waterfall JJ, Lis JT. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters., 2008, 322(5909): 1845–1848.
[32] Li WB, Notani D, Ma Q, Tanasa B, Nunez E, Chen AY, Merkurjev D, Zhang J, Ohgi K, Song XY, Oh S, Kim HS, Glass CK, Rosenfeld MG. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation., 2013, 498(7455): 516–520.
[33] Chen H, Li CY, Peng XX, Zhou ZC, Weinstein JN, Cancer Genome Atlas Research Network, Liang H. A pan-cancer analysis of enhancer expression in nearly 9000 patient samples., 2018, 173(2): 386–399.
[34] Zhang Z, Lee JH, Ruan H, Ye YQ, Krakowiak J, Hu QS, Xiang Y, Gong J, Zhou BY, Wang L, Lin CR, Diao LX, Mills GB, Li WB, Han L. Transcriptional landscape and clinical utility of enhancer RNAs for eRNA-targeted therapy in cancer., 2019, 10(1): 4562.
[35] Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position., 2013, 10(12): 1213–1218.
[36] Buenrostro JD, Wu BJ, Chang HY, Greenleaf WJ. ATAC-seq: a method for assaying chromatin accessibility genome-wide., 2015, 109: 21.29.1– 21.29.9.
[37] Orlando V, Strutt H, Paro R. Analysis of chromatin structure by in vivo formaldehyde cross-linking., 1997, 11(2): 205–214.
[38] Mundade R, Ozer HG, Wei H, Prabhu L, Lu T. Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond., 2014, 13(18): 2847–2852.
[39] Iwafuchi-Doi M, Donahue G, Kakumanu A, Watts JA, Mahony S, Pugh BF, Lee D, Kaestner KH, Zaret KS. The pioneer transcription factor FoxA maintains an accessible nucleosome configuration at enhancers for tissue-specific gene activation., 2016, 62(1): 79–91.
[40] Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R. Histone H3K27ac separates active from poised enhancers and predicts developmental state., 2010, 107(50): 21931–21936.
[41] Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J. A unique chromatin signature uncovers early developmental enhancers in humans., 2011, 470(7333): 279–283.
[42] Skene PJ, Henikoff S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites.2017, 6: e21856.
[43] Skene PJ, Henikoff JG, Henikoff S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers., 2018, 13(5): 1006–1019.
[44] Hainer SJ, Fazzio TG. High-resolution chromatin profiling using CUT&RUN., 2019, 126(1): e85.
[45] Ishino Y, Shinagawa H, Makino K, Amemura M, Nakatura A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product., 1987, 169(12): 5429–5433.
[46] Jansen R, van Embden JDA, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes., 2002, 43(6): 1565– 1575.
[47] Gupta D, Bhattacharjee O, Mandal D, Sen MK, Dey D, Dasgupta A, Kazi TA, Gupta R, Sinharoy S, Acharya K, Chattopadhyay D, Ravichandiran V, Roy S, Ghosh D. CRISPR-Cas9 system: a new-fangled dawn in gene editing., 2019, 232: 116636.
[48] Jiang F, Doudna JA. CRISPR-Cas9 structures and mechanisms., 2017, 46: 505–529.
[49] Mali P, Yang LH, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9., 2013, 339(6121): 823–826.
[50] Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems., 2013, 339(6121): 819–823.
[51] Korkmaz G, Lopes R, Ugalde AP, Nevedomskaya E, Han R, Myacheva K, Zwart W, Elkon R, Agami R. Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9., 2016, 34(2): 192–198.
[52] Chen H, Li CY, Zhou ZC, Liang H. Fast-evolving human-specific neural enhancers are associated with aging-related diseases., 2018, 6(5): 604–611.
[53] Wang QL, Liu Q, Qi SH, Zhang JY, Liu X, Li X, Li CY. Comprehensive pan-cancer analyses of pyroptosis-related genes to predict survival and immunotherapeutic outcome.2022, 14(1): 237.
[54] Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries., 2021, 71(3): 209–249.
[55] Karczewski KJ, Dudley JT, Kukurba KR, Chen R, Butte AJ, Montgomery SB, Snyder M. Systematic functional regulatory assessment of disease-associated variants., 2013, 110(23): 9607–9612.
[56] Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova AA, Hoke HA, Young RA. Super-enhancers in the control of cell identity and disease., 2013, 155(4): 934–947.
[57] Corradin O, Saiakhova A, Akhtar-Zaidi B, Myeroff L, Willis J, Cowper-Sallari R, Lupien M, Markowitz S, Scacheri PC. Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits., 2014, 24(1): 1–13.
[58] Gabay M, Li YL, Felsher DW. MYC activation is a hallmark of cancer initiation and maintenance., 2014, 4(6): a014241.
[59] Herranz D, Ambesi-Impiombato A, Palomero T, Schnell SA, Belver L, Wendorff AA, Xu LY, Castillo-Martin M, Llobet-Navás D, Cordon-Cardo C, Clappier E, Soulier J, Ferrando AA. A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia., 2014, 20(10): 1130– 1137.
[60] Lancho O, Herranz D. The MYC enhancer-ome: long- range ranscriptional egulation of MYC in cancer., 2018, 4(12): 810–822.
[61] Herz HM, Hu DQ, Shilatifard A. Enhancer malfunction in cancer., 2014, 53(6): 859–866.
[62] Sur I, Taipale J. The role of enhancers in cancer., 2016, 16(8): 483–493.
[63] Akhtar-Zaidi B, Cowper-Sallari-lari R, Corradin O, Saiakhova A, Bartels CF, Balasubramanian D, Myeroff L, Lutterbaugh J, Jarrar A, Kalady MF, Willis J, Moore JH, Tesar PJ, Laframboise T, Markowitz S, Lupien M, Scacheri PC. Epigenomic enhancer profiling defines a signature of colon cancer., 2012, 336(6082): 736–739.
[64] Zhang XY, Choi PS, Francis JM, Imielinski M, Watanabe H, Cherniack AD, Meyerson M. Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers., 2016, 48(2): 176–182.
[65] Krijger PHL, de Laat W. Regulation of disease-associated gene expression in the 3D genome., 2016, 17(12): 771–782.
[66] Wang XT, Xu J, Zhang BZ, Hou Y, Song F, Lyu HJ, Yue F. Genome-wide detection of enhancer-hijacking events from chromatin interaction data in rearranged genomes., 2021, 18(6): 661–668.
[67] Taberlay PC, Statham AL, Kelly TK, Clark SJ, Jones PA. Reconfiguration of nucleosome-depleted regions at distal regulatory elements accompanies DNA methylation of enhancers and insulators in cancer., 2014, 24(9): 1421–1432.
[68] Xiong L, Wu F, Wu Q, Xu LL, Cheung OK, Kang W, Mok MT, Szeto LLM, Lun CY, Lung RW, Zhang JL, Yu KH, Lee S D, Huang GC, Wang CM, Liu J, Yu Z, Yu DY, Chou JL, Huang WH, Feng B, Cheung YS, Lai PB, Tan P, Wong N, Chan MW, Huang TH, Yip KY, Cheng AS, To KF. Aberrant enhancer hypomethylation contributes to hepatic carcinogenesis through global transcriptional reprogra-mming., 2019, 10(1): 335.
[69] Aran D, Sabato S, Hellman A. DNA methylation of distal regulatory sites characterizes dysregulation of cancer genes., 2013;14(3): R21.
[70] Magnani L, Stoeck A, Zhang XY, Lánczky A, Mirabella AC, Wang TL, Gyorffy B, Lupien M. Genome-wide reprogramming of the chromatin landscape underlies endocrine therapy resistance in breast cancer., 2013, 110(16): E1490–E1499.
[71] Wu SH, Turner KM, Nguyen N, Raviram R, Erb M, Santini J, Luebeck J, Rajkumar U, Diao Y, Li B, Zhang WJ, Jameson N, Corces MR, Granja JM, Chen XQ, Coruh C, Abnousi A, Houston J, Ye Z, Hu R, Yu M, Kim H, Law JA, Verhaak RGW, Hu M, Furnari FB, Chang HY, Ren B, Bafna V, Mischel PS. Circular ecDNA promotes accessible chromatin and high oncogene expression., 2019, 575(7784): 699–703.
[72] Morton AR, Dogan-Artun N, Faber ZJ, MacLeod G, Bartels CF, Piazza MS, Allan KC, Mack SC, Wang XX, Gimple RC, Wu QL, Rubin BP, Shetty S, Angers S, Dirks PB, Sallari RC, Lupien M, Rich JN, Scacheri PC. Functional enhancers shape extrachromosomal oncogene amplifications., 2019, 179(6): 1330–1341.
[73] Hung KL, Yost KE, Xie LQ, Shi QM, Helmsauer K, Luebeck J, Sch?pflin R, Lange JT, Chamorro González R, Weiser NE, Chen CL, Valieva ME, Wong IT-L, Wu SH, Dehkordi SR, Duffy CV., Kraft K, Tang J, Belk JA, Rose JC, Corces MR, Granja JM, Li R, Rajkumar U, Friedlein J, Bagchi A, Satpathy AT, Tjian R, Mundlos S, Bafna V, Henssen AG, Mischel PS, Liu Z, Chang HY. ecDNA hubs drive cooperative intermolecular oncogene expression., 2021, 600(7890): 731–736.
[74] Herz HM. Enhancer deregulation in cancer and other diseases., 2016, 38(10): 1003–1015.
[75] Wu ZQ, Mi ZY. Research progress of super enhancer in cancer., 2019, 41(1): 41–51.
吳志強(qiáng), 米澤云. 超級(jí)增強(qiáng)子在腫瘤研究中的進(jìn)展. 遺傳, 2019, 41(1): 41–51.
[76] Glodzik D, Morganella S, Davies H, Simpson PT, Li YL, Zou XQ, Diez-Perez J, Staaf J, Alexandrov LB, Smid M, Brinkman AB, Rye IH, Russnes H, Raine K, Purdie CA, Lakhani SR, Thompson AM, Birney E, Stunnenberg HG, van de Vijver MJ, Martens JWM, B?rresen-Dale AL, Richardson AL, Kong G, Viari A, Easton D, Evan G, Campbell PJ, Stratton MR, Nik-Zainal S. Corrigendum: a somatic-mutational process recurrently duplicates germline susceptibility loci and tissue-specific super-enhancers in breast cancers., 2017, 49(3): 341–348.
[77] Gu XL, Wang LX, Boldrup L, Coates PJ, Fahraeus R, Sgaramella N, Wilms T, Nylander K. Ap001056.1, a prognosis-related enhancer rna in squamous cell carcinoma of the head and neck., 2019, 11(3): 347.
[78] Lee JH, Xiong F, Li WB. Enhancer RNAs in cancer: regulation, mechanisms and therapeutic potential., 2020, 17(11): 1550–1559.
[79] Corces MR, Granja JM, Shams S, Louie BH, Seoane JA, Zhou WD, Silva TC, Groeneveld C, Wong CK, Cho SW, Satpathy AT, Mumbach MR, Hoadley KA, Robertson AG, Sheffield NC, Felau I, Castro MAA, Berman BP, Staudt LM, Zenklusen JC, Laird PW, Curtis C, Greenleaf WJ, Chang HY. The chromatin accessibility landscape of primary human cancers., 2018, 362(6413): eaav1898.
[80] Ding MT, Zhan HJ, Liao XH, Li AL, Zhong YC, Gao QJ, Liu YC, Huang WR, Cai ZM. Enhancer RNA – P2RY2e induced by estrogen promotes malignant behaviors of bladder cancer., 2018, 14(10): 1268–1276.
[81] Hsieh CL, Fei T, Chen YW, Li TT, Gao YF, Wang XD, Sun T, Sweeney CJ, Lee GSM, Chen SY, Balk SP, Liu XS, Brown M, Kantoff PW. Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation., 2014, 111(20): 7319–7324.
[82] O’Connor D, Sibson K, Caswell M, Connor P, Cummins M, Mitchell C, Motwani J, Taj M, Vora A, Wynn R, Kearns PR. Early UK experience in the use of clofarabine in the treatment of relapsed and refractory paediatric acute lymphoblastic leukaemia., 2011, 154(4): 482–485.
[83] Castells M, Thibault B, Delord JP, Couderc B. Implication of tumor microenvironment in chemoresistance: tumor- associated stromal cells protect tumor cells from cell death., 2012, 13(8): 9545–9571.
[84] Rivera E, Gomez H. Chemotherapy resistance in metastatic breast cancer: the evolving role of ixabepilone., 2010, 12(Suppl 2): S2.
[85] Zhao Y, Wang LG, Ren SC, Wang L, Blackburn PR, McNulty MS, Gao X, Qiao M, Vessella RL, Kohli M, Zhang J, Karnes RJ, Tindall DJ, Kim Y, MacLeod R, Ekker SC, Kang T, Sun YH, Huang HJ. Activation of P-TEFb by androgen receptor-regulated enhancer RNAs in castration-resistant prostate cancer., 2016, 15(3): 599–610.
The regulatory mechanisms by enhancers during cancer initiation and progression
Sihan Qi1,2, Qilin Wang1,2, Junyou Zhang1,2, Qian Liu1,2, Chunyan Li1,2,3,4
Enhancer is a DNA sequence, and mainly acts into regulate gene transcription. Due to the uncertainty in both location and distance between enhancers and their target genes, it is more complex and difficult to study the underlying regulatory mechanism of enhancers. Accumulating evidences indicate that enhancers are closely associated with the occurrence and development of diseases, such as cancer. Therefore, the studies of enhancers in cancer will be helpful to deeply unravel cancer pathogenesis and to promote the development of antitumor drugs. The related research is with great social significance and economic value. Currently, the identification of enhancers is insufficient. The regulatory mechanisms by enhancers during the initiation and progression of cancer and other diseases have not been fully delineated. In this review, we provide an overview of enhancers, super enhancers and their properties, followed by a description of enhancer prediction and identification at the genome-wide level. Finally, we summarize the regulatory roles of enhancers during diseases such as cancer in recent years, thereby providing a reference for the future exploration on enhancer regulatory mechanisms as well as cancer diagnosis and treatment.
enhancers; super enhancers; cancer; regulatory mechanisms
2021-12-31;
2022-03-05;
2022-03-15
國(guó)家自然科學(xué)基金項(xiàng)目(編號(hào):82072499, 31801094)和北京航空航天大學(xué)青年科學(xué)家創(chuàng)新團(tuán)隊(duì)支持計(jì)劃(編號(hào):YWF-21-BJ-J-T105)資助[Supported by the National Natural Science Foundation of China (Nos. 82072499, 31801094), and Young Scientist Innovation Team Support Program of Beihang University (No. YWF-21-BJ-J-T105]
漆思晗,在讀碩士研究生,專業(yè)方向:生物醫(yī)學(xué)工程。E-mail: ZY2010120@buaa.edu.cn
李春燕,博士,副研究員,研究方向:腫瘤基因組學(xué)。E-mail: lichunyan@buaa.edu.cn
10.16288/j.yczz.21-440
(責(zé)任編委: 于明)