唐洋洋,李林波,王超,楊潘,楊柳,王丹
鎂合金微弧氧化復(fù)合膜研究進(jìn)展
唐洋洋1,李林波2,王超2,楊潘1,楊柳1,王丹1
(1.西安建筑科技大學(xué)華清學(xué)院,西安 710045;2.西安建筑科技大學(xué) 冶金工程學(xué)院,西安 710055)
微弧氧化(MAO)表面處理技術(shù)常用于改善鎂合金的特定性能,但MAO膜容易產(chǎn)生微孔和微裂紋從而降低鎂合金的耐蝕性。為了提高鎂合金微弧氧化膜的使用壽命,主要綜述了國(guó)內(nèi)外MAO工藝過(guò)程調(diào)節(jié)措施和MAO膜后處理技術(shù)的最新研究進(jìn)展,重點(diǎn)介紹了近年來(lái)國(guó)內(nèi)外鎂合金MAO復(fù)合膜的研究熱點(diǎn)。著重介紹了通過(guò)工藝過(guò)程調(diào)節(jié)提高鎂合金MAO膜長(zhǎng)期保護(hù)性能的幾項(xiàng)措施:通過(guò)電參數(shù)和電源類型調(diào)節(jié)協(xié)同電解液成分調(diào)整提高M(jìn)AO膜耐蝕性;通過(guò)加入電解液添加劑提高M(jìn)AO電解液穩(wěn)定性和電導(dǎo)率;利用具有自封孔作用的添加劑可以參與成膜的特點(diǎn)提高M(jìn)AO膜致密性;通過(guò)復(fù)合工藝在MAO膜傳統(tǒng)封孔后進(jìn)一步封閉孔隙。此外,詳細(xì)介紹了包括疏水涂層、化學(xué)鍍、類金剛石涂層、生物膜涂層等復(fù)合膜工藝的研究進(jìn)展,強(qiáng)調(diào)了復(fù)合膜不僅耐蝕性高而且具有功能化應(yīng)用前景:超疏水復(fù)合膜對(duì)鎂基底具有主動(dòng)的腐蝕保護(hù)作用,超疏水膜協(xié)同MAO膜可以提高表面的疏水性;鍍鎳層致密無(wú)微孔且與MAO膜交錯(cuò)咬合能夠改善鎂MAO膜的導(dǎo)電性和耐蝕性;MAO涂層代替金屬緩沖層能夠提高類金剛石涂層和基體界面結(jié)合強(qiáng)度;生物復(fù)合涂層不僅耐蝕性高還具有促進(jìn)細(xì)胞增殖和分化生物活性的作用。最后,基于鎂合金MAO工藝研究現(xiàn)狀,對(duì)MAO復(fù)合膜未來(lái)發(fā)展趨勢(shì)進(jìn)行了展望。
鎂合金;微弧氧化;添加劑;封孔;復(fù)合膜
鎂合金具有導(dǎo)電導(dǎo)熱性能好、吸震性好、生物兼容性好等眾多優(yōu)勢(shì),應(yīng)用領(lǐng)域廣,但鎂合金化學(xué)活性高,平衡電位低,耐蝕性和耐磨性較差,因此需要通過(guò)改善合金組織結(jié)構(gòu)或使用表面改性技術(shù)以提高其特定性能。表面改性技術(shù)包括化學(xué)轉(zhuǎn)化[1]、陽(yáng)極氧化[2]、金屬電鍍[3]以及冷噴涂[4]等,這些技術(shù)多在基體表面制備涂層,以進(jìn)一步提高鎂合金的硬度、耐磨性、穩(wěn)定性及氧化穩(wěn)定性,因此,在鎂合金的抗腐蝕和抗磨損方面受到了越來(lái)越多的關(guān)注[5]。采用上述表面處理技術(shù)制備的涂層存在與基體之間黏結(jié)強(qiáng)度低、厚度均勻性較差、操作復(fù)雜、成本高、污染環(huán)境等缺點(diǎn)[6]。此外,此類涂層還存在針孔、孔隙及柱間晶體等固有缺陷,這些缺陷為腐蝕提供了通道,會(huì)導(dǎo)致鎂合金的腐蝕。針對(duì)此種情況,可在Mg合金上制備Al、Ti或Cr金屬緩沖層,這是一種比較有效的解決方案[7],但緩沖層與襯底之間仍然存在分離現(xiàn)象。
微弧氧化(Micro-Arc Oxidation,MAO)也稱為等離子電解氧化(Plasma Electrolytic Oxidation,PEO)技術(shù),是指在基體表面借助微區(qū)火花放電而在有色金屬表面原位生長(zhǎng)多孔狀結(jié)構(gòu)的氧化薄膜的技術(shù)[8]。MAO膜具有附著力較好、耐腐蝕、耐磨、生物防腐、抗高溫沖擊、介電常數(shù)低等優(yōu)點(diǎn)[9]。MAO技術(shù)是Mg、Ti、Al、Zr等金屬及其合金常用的表面處理技術(shù)之一[10],可控制MAO膜的氧化層厚度、化學(xué)成分、孔徑及粗糙度等。然而,強(qiáng)烈的高壓火花放電使MAO薄膜容易產(chǎn)生微孔和微裂紋,這為水分子或氯離子的滲透提供了輸送通道,從而進(jìn)一步降低其耐蝕性[11]。MAO膜包括內(nèi)部致密層和外部多孔層[12],內(nèi)層是腐蝕介質(zhì)的物理屏障,外層的微孔和微裂紋可增強(qiáng)有機(jī)物或聚合物在膜上的附著力,使外層膜具有機(jī)械聯(lián)鎖效應(yīng)[13]。目前,多通過(guò)調(diào)節(jié)MAO工藝過(guò)程或進(jìn)行MAO膜后處理來(lái)改善膜層致密度,從而提高其耐蝕性,而MAO工藝過(guò)程調(diào)節(jié)的研究多集中在電參數(shù)和電解液成分調(diào)節(jié),MAO膜后處理是通過(guò)傳統(tǒng)封孔或復(fù)合膜工藝來(lái)進(jìn)一步提高M(jìn)AO膜性能。由于MAO膜外層的微孔和微裂紋為有機(jī)物或聚合物提供了機(jī)械聯(lián)鎖位點(diǎn),因此,可在鎂合金MAO膜基礎(chǔ)上開發(fā)具有良好結(jié)構(gòu)和耐腐蝕性能的復(fù)合膜,鎂合金MAO膜可結(jié)合低摩擦層或潤(rùn)滑膜,包括疏水膜、化學(xué)鍍、類金剛石膜和硬涂層等[14-15]。文中基于MAO直接復(fù)合工藝過(guò)程調(diào)節(jié)的研究現(xiàn)狀,重點(diǎn)介紹了近年來(lái)國(guó)內(nèi)外鎂合金MAO復(fù)合膜的研究熱點(diǎn),并展望了MAO復(fù)合膜工藝未來(lái)的發(fā)展趨勢(shì)。
近年來(lái),改善鎂合金耐蝕性的研究多集中在調(diào)節(jié)MAO電參數(shù)(電流模式、負(fù)電壓、頻率和占空比)和電解液成分(硅酸鹽、磷酸鹽和鋁酸鹽)上[16],希望可以進(jìn)一步改善鎂合金MAO膜致密性和耐腐蝕性能。另外,也可在MAO電解液中加入添加劑以影響MAO生長(zhǎng)過(guò)程從而改善其性能[17]。添加劑直接參與成膜可實(shí)現(xiàn)封孔或調(diào)整陶瓷相組成,從而降低膜層缺陷,以直接復(fù)合技術(shù)提高材料耐蝕性并實(shí)現(xiàn)功能復(fù)合膜。
常規(guī)電參數(shù)(電壓、電流密度、脈沖方式等)影響著MAO膜的組織性能,其中,電壓的影響最大。MAO工藝分為4個(gè)階段[18]:陽(yáng)極氧化階段、火花放電階段、微弧快速生長(zhǎng)階段及弧光放電階段。在前期階段,膜向內(nèi)和向外生長(zhǎng),形成致密層,但在后期階段,膜向外生長(zhǎng)出現(xiàn)疏松層,因此,弧光放電階段會(huì)影響膜的質(zhì)量[19]。增大電壓會(huì)提高反應(yīng)強(qiáng)度和驅(qū)動(dòng)力,但電壓過(guò)高會(huì)造成MAO膜層局部擊穿,甚至?xí)斐苫w局部晶間液化,從而降低基膜結(jié)合的緊密程度,但電壓過(guò)低會(huì)使膜層較薄。電流適當(dāng)增大,使MAO膜厚度非線性增加,這種情況下,致密性會(huì)變好,但電流過(guò)大會(huì)導(dǎo)致局部擊穿,膜層生長(zhǎng)不均,且氣體逸出使孔隙率較高,嚴(yán)重時(shí)甚至?xí)l(fā)燒蝕。截至目前,對(duì)影響MAO膜性能的電參數(shù)的研究主要集中在電流密度和工藝時(shí)間[20],而對(duì)電源類型(包括單脈沖和正負(fù)雙極性脈沖)的研究較少[21]。雙極性電源模式中脈沖頻率增加,尤其是負(fù)脈沖的出現(xiàn)會(huì)引起更多放電并能降低擊穿放電對(duì)MAO膜的影響,從而改善膜層的致密性。然而,電解液添加劑在MAO膜表面的聚集受雙極性脈沖的抑制,一方面,負(fù)脈沖中和了MAO膜表面多余的正電荷,避免破壞性弧光的產(chǎn)生且減弱了火花放電,使噴射出的氧化物被電解液快速凝固而不重新熔煉,另一方面,負(fù)脈沖會(huì)引起膜層的溶解,在電場(chǎng)交替作用下顆粒難以在MAO表面聚集,而單脈沖則利于顆粒的吸附聚集。鎂合金MAO工藝參數(shù)與電解液成分相互影響,未來(lái)應(yīng)解決MAO電源的合理控制并尋求更適合電解液添加劑的電源模式,深入研究脈沖復(fù)合改性技術(shù)的作用機(jī)理并對(duì)電參數(shù)進(jìn)行優(yōu)化,實(shí)現(xiàn)在線實(shí)時(shí)控制,并提高成膜率以及MAO膜耐蝕性。
在MAO工藝中,鎂合金微弧火花放電氧化常用的弱堿性電解液不僅構(gòu)成了膜層的主要成分而且會(huì)影響膜層生長(zhǎng)速率[22]。硅酸鹽體系成膜率最高且膜層厚度大,但能耗大;鋁酸鹽體系MAO膜增厚較慢且厚度較??;磷酸鹽電解液MAO層生長(zhǎng)速率高,但其耐蝕性較低且粗糙度大。因此,復(fù)合電解液體系則有助于優(yōu)化MAO膜特性并提高M(jìn)AO膜質(zhì)量,提高M(jìn)AO電解液穩(wěn)定性和電導(dǎo)率,或?qū)崿F(xiàn)自封孔以改善鎂合金MAO膜的性能和結(jié)構(gòu)。目前,對(duì)MAO電解液的添加劑研究較多,如稀土配合物、顆粒類、無(wú)機(jī)鹽等。
1.2.1 顆粒添加物
在電解液中加入WC、C納米粒子、Si3N4或ZrO2等可以提高M(jìn)AO膜致密性,從而改善其耐腐蝕和耐磨性[23]。電解液中C納米粒子可增強(qiáng)材料導(dǎo)電率[24],且使涂層表面微弧強(qiáng)度降低,如圖1所示,加入C后,微裂紋數(shù)量減少,碳納米顆粒平均粒徑小于30 nm,這些都阻止了基體元素的溶解并抑制沉積元素進(jìn)入電解質(zhì),并促進(jìn)少量MgAlO4和Mg3SiO4F2的形成。膜中C納米粒子通過(guò)堵塞微孔,提高了膜在靜態(tài)和動(dòng)態(tài)浸泡環(huán)境中的耐腐蝕性。選擇合適的電導(dǎo)率可降低MgO的黏度和熔點(diǎn)。顆粒添加劑可以降低起弧電壓,提高溶液電導(dǎo)率、穩(wěn)定性及MAO膜耐蝕相比例并改善膜層性能,但由于添加劑和膜層成分存在差異,導(dǎo)致改善效果有限,因此,可結(jié)合復(fù)合工藝以制備性能更優(yōu)的復(fù)合陶瓷膜。CeO2和ZrO2納米粒子具有很高的化學(xué)穩(wěn)定性,可以防止裂紋擴(kuò)展。Xiong等[25]研究發(fā)現(xiàn),CeO2和ZrO2被電解液中OH?包圍,并在強(qiáng)電場(chǎng)作用下以化合物形態(tài)移動(dòng)并沉積在陽(yáng)極表面。與MAO涂層相比,含有CeO2和ZrO2顆粒的–MAO膜具有較低的孔隙率和較高的耐蝕性。后經(jīng)電泳沉積(EPD)在–MAO膜表面制備的HA涂層可提高材料生物相容性,且多孔層的微孔被HA顆粒填充。采用兩步法在ZK60鎂合金表面制備–MAO/EPD復(fù)合膜,電流比ZK60基體低3個(gè)數(shù)量級(jí),具有更高的生物活性和長(zhǎng)期防護(hù)能力,可用于生物降解的植骨材料。目前,對(duì)納米顆粒添加劑的研究較少。在工業(yè)化過(guò)程中,可在鎂合金MAO膜未達(dá)到工藝要求時(shí),在電解液內(nèi)選擇性加入合適添加劑以提高膜層性能。
圖1 MAO處理的涂層剖面圖[24]
1.2.2 自封孔
溶液自封孔是指通過(guò)電解液配方調(diào)整或在電解液中加入添加劑后,添加劑直接參與成膜并形成與膜層為同一物質(zhì)的微孔填充劑,從而改變鎂合金MAO膜成分和性能。這種方法工藝流程簡(jiǎn)單且取得的效果較好,雖然目前國(guó)內(nèi)外對(duì)這方面的研究較少,但仍有較好的發(fā)展前景。在電解液中添加醋酸銀不僅能減小MAO膜微孔直徑而且能提高其抗菌性[26]。梁錫炳等[27]在電解液中加入納米α–Al2O3顆粒,結(jié)果表明,VW75鎂合金MAO膜內(nèi)火山狀凸起減少,且在高溫高壓下納米Al2O3熔融并填充MAO膜孔隙,不僅參與了成膜,而且實(shí)現(xiàn)了孔隙“自封孔”,這使極化曲線斜率變小,腐蝕電流下降。夏承森等[28]在電解液中加入羥基磷灰石包裹碳納米管納米(HA/CNTs)的復(fù)合粉體制備得到了MAO/HA/CNTs膜,研究發(fā)現(xiàn),HA/CNTs參與成膜并起封孔作用,從而提高了鎂合金MAO膜耐腐蝕性和生物活性。此外,在MAO過(guò)程中施加外加輔助電場(chǎng)也可以實(shí)現(xiàn)自封孔。陳宏等[29]發(fā)現(xiàn)在外加電場(chǎng)作用下,帶負(fù)電的膠體Zr(OH)4以電泳形式向AZ91D的MAO膜的孔內(nèi)移動(dòng)并沉積,從而實(shí)現(xiàn)封孔。如圖2所示,MAO膜截面的孔隙率和孔徑都隨著外加電場(chǎng)強(qiáng)度增大而減小,導(dǎo)致連通性下降(見圖2b和2c),微孔幾乎消失(見圖2d),最終獲得均勻致密的膜層。目前,自封孔的實(shí)現(xiàn)仍需形成完整可靠的溶液配方體系,外加電場(chǎng)自封孔工藝則需根據(jù)材料選擇電壓值,未來(lái)可使用復(fù)合膜工藝進(jìn)行改善,從而實(shí)現(xiàn)封孔工藝簡(jiǎn)化。
1.2.3 其他添加劑
稀土元素(RE)可作為合金元素加入鎂合金基體中,也可作為電解液添加劑或以稀土溶液的形式改善膜層致密性。目前,使用較多的稀土鹽形成的MAO膜穩(wěn)定性較差且容易產(chǎn)生膠體。在電解液中添加穩(wěn)定性較強(qiáng)的稀土配合物可有效改善MAO膜層性能,例如,Y(NO3)3·6H2O和Ce(NO3)3·6H2O分別與乙二胺四乙酸二鈉形成稀土配合物[30],作為添加劑加入AZ31電解液中,結(jié)果如圖3所示,加入稀土配合物后,微孔孔徑變小、陶瓷層更加致密均勻,產(chǎn)物稀土氧化物進(jìn)入MAO膜內(nèi)并電泳至孔隙內(nèi)以提高膜致密度,但由于MAO膜的擊穿電位降低,導(dǎo)致同參數(shù)下膜厚度減少。此外,MAO膜層耐摩擦和耐磨損性能提高,這說(shuō)明Y配合物效果明顯。
圖2 不同外加電場(chǎng)電壓下膜層的截面形貌[29]
圖3 陶瓷層的截面形貌[30]
Wu等[31]在電解液中加入載有緩蝕劑的合成粉末〔埃洛石納米管HNT作為納米容器負(fù)載緩蝕劑2-氨基苯并咪唑(2–ABi),2–ABi–HNT〕,采用一步法成功制備了具有長(zhǎng)期保護(hù)作用的自修復(fù)MAO膜。結(jié)果表明,2–ABi使金屬表面積累了大量腐蝕性的產(chǎn)物并形成了厚的保護(hù)膜,2–ABi具有良好的緩蝕劑應(yīng)用前景;2–ABi–HNT會(huì)引起電解液電導(dǎo)率下降和表面粗糙度增大,但腐蝕部位較致密的Mg(OH)2膜或較厚的腐蝕產(chǎn)物鈍化層則會(huì)防止膜的進(jìn)一步降解,具有良好的自修復(fù)功能,從而提高其長(zhǎng)期耐蝕性。在電解液中加入添加劑的改善效果有限,但結(jié)合復(fù)合工藝可制備出性能更優(yōu)的復(fù)合陶瓷膜或自封閉型陶瓷膜。因此,復(fù)合防腐膜具有良好的防腐性能,在輕金屬工業(yè)中具有廣闊的應(yīng)用前景。
MAO后處理封孔可降低MAO膜的孔隙率。常用的MAO后處理封孔方法包括無(wú)機(jī)物封孔、有機(jī)物封孔及沸水密封法[32-35]。沸水封孔法具有環(huán)保經(jīng)濟(jì)、操作簡(jiǎn)單、工業(yè)前景良好等優(yōu)點(diǎn)。鎂合金MAO膜沸水封孔后,MAO膜表面形成的Mg(OH)2使MAO表面平整且耐蝕性提高,但Mg(OH)2的生成會(huì)消耗膜內(nèi)MgO,造成膜層變薄。隨著封孔時(shí)間的延長(zhǎng),MAO膜層中粒子直徑變大,且MAO內(nèi)層孔洞并未完全消失,這些都會(huì)造成耐蝕性下降[36]。研究人員在沸水封孔基礎(chǔ)上開發(fā)出不受酸堿度和水質(zhì)影響的蒸汽封孔法,但由于需要使用高成本的專業(yè)高壓容器而限制了其工業(yè)化生產(chǎn)。后來(lái),研究人員又開發(fā)出微波水封技術(shù)[37],這種方法對(duì)樣品要求較高。鎂合金MAO膜通過(guò)水熱反應(yīng)處理后形成的Mg(OH)2可以達(dá)到封孔效果,從而提高M(jìn)AO膜致密性和長(zhǎng)久耐蝕性[38]。無(wú)機(jī)鹽封孔是通過(guò)無(wú)機(jī)鹽水解生成的沉淀填充到孔洞而實(shí)現(xiàn)封孔。Lee等[39]對(duì)AZ91D鎂合金MAO膜層進(jìn)行鈰鹽浸漬封孔后,其耐蝕性能提高,但仍有部分微孔并未完全封閉。Zhang等[40]通過(guò)鈰鹽對(duì)MAO膜封孔,溶液滲透到MAO層的孔隙中析出CeO2(質(zhì)量分?jǐn)?shù)為79%)和少量Ce(OH)3(質(zhì)量分?jǐn)?shù)為21%)封閉孔隙,后用水熱處理在MAO膜上生成沉積層狀雙金屬氫氧化物L(fēng)DHs,復(fù)合膜解決了封孔不完全的缺點(diǎn),耐蝕性和自愈能力均得到提高。有機(jī)物封孔是利用物理吸附作用實(shí)現(xiàn)封孔,但由于有機(jī)物與金屬間結(jié)合力較差、封孔不完全,所以急需開發(fā)新的有機(jī)物封孔技術(shù),有機(jī)物封孔結(jié)合硅烷化處理是實(shí)現(xiàn)復(fù)合封孔的一個(gè)發(fā)展方向,如低壓浸漬或復(fù)合膜。綜上所述,水封處理受限于較大孔徑的封閉,無(wú)機(jī)鹽離子在放電通道沉淀實(shí)現(xiàn)封孔,無(wú)機(jī)鹽封孔技術(shù)可以與水熱處理協(xié)同作用,MAO膜封孔后也可以通過(guò)復(fù)合工藝進(jìn)一步改善其性能。
鎂合金MAO膜復(fù)合處理工藝能克服傳統(tǒng)封孔工藝的缺陷,并進(jìn)一步改善MAO膜性能,從而滿足金屬防腐的高要求,并日益受到人們的重視。李思思等[41]通過(guò)溶膠–凝膠技術(shù)在AZ31鎂合金MAO膜表面浸漬SiO2溶膠,在溶膠半凝固后,形成一層半凝固膠膜,其在加熱后會(huì)固化在MAO膜上從而實(shí)現(xiàn)封層,使MAO膜耐蝕性大幅提高。溶膠–凝膠技術(shù)雖然環(huán)保,但需要熱處理,且凝膠對(duì)較小尺寸的微孔很難實(shí)現(xiàn)完全封閉,另外,膜表面還容易產(chǎn)生裂紋。目前,MAO膜外層的微孔和微裂紋提供了機(jī)械聯(lián)鎖位點(diǎn),可以增強(qiáng)有機(jī)物或聚合物涂層的附著力。MAO膜復(fù)合疏水膜、低摩擦層或潤(rùn)滑膜等可進(jìn)一步改善MAO膜的耐腐蝕和摩擦學(xué)性能,復(fù)合膜包括疏水膜、化學(xué)鍍、類金剛石膜及生物膜等。
2.2.1 疏水膜
鎂合金MAO膜可產(chǎn)生機(jī)械聯(lián)鎖效應(yīng)。在制備超疏水膜的過(guò)程中,預(yù)先制備的MAO層具有比鎂合金更粗糙的表面,這有利于制備超疏水膜。一方面,在制備超疏水膜過(guò)程中,可以防止鎂合金受到不必要的侵蝕。另一方面,后期的超疏水膜又可以彌補(bǔ)MAO層的多孔缺陷。在MAO粗糙的表面低能化處理就可形成疏水膜,這比基體更利于防腐膜的形成。制備可提高耐腐蝕性疏水膜的常用方法有水熱法、刻蝕法、溶液凝膠法及自組裝等[42-44]。
將鎂合金MAO膜浸入含新型有機(jī)硅偶聯(lián)劑十六烷基三甲氧基硅烷(HTDMS)的溶液中,利用不同電荷陰陽(yáng)離子在MAO表面交替沉積的自組裝工藝,在鎂合金MAO膜表面制得MAO/HTDMS復(fù)合膜[45]。HTDMS成功生長(zhǎng)在MAO層表面且并未破壞基體屬性,微孔和微裂紋被有效密封,外表面為低表面能物質(zhì)硅烷,MAO/HTDMS接觸角為145.07°,MAO/ HTDMS的腐蝕電流密度比MAO膜減小了2個(gè)數(shù)量級(jí),鹽霧試驗(yàn)和浸泡試驗(yàn)表明,MAO/HTDMS具有較好的耐腐蝕性能。螯合劑植酸(C6H18O24P6,PA)分子與Mg2+在螯合作用下形成的不溶性配位配合物吸附在MAO層多孔表面[46],鎂合金MAO層通過(guò)在Ce(NO3)3溶液中多次組裝[47],復(fù)合析出物PA@CeⅢ沉積在MAO層的孔隙和表面,形成微納米層次結(jié)構(gòu),MAO層內(nèi)火山狀微孔由PA@CeⅢ配合物產(chǎn)生的少量不規(guī)則顆粒隨機(jī)分布在MAO層表面,組裝處理改變MAO層的表面形貌和孔隙結(jié)構(gòu),經(jīng)過(guò)3個(gè)循環(huán)的裝配,配合物可以完全覆蓋整個(gè)系統(tǒng)表面并填充MAO層微孔,后用低表面能物質(zhì)氟烷基硅烷(FAS)水解化學(xué)改性形成相對(duì)致密的超疏水復(fù)合膜,接觸角增加到159°,制備的復(fù)合膜表面形貌基本保持不變。一方面,MAO層可以減少組裝過(guò)程中析氫引起的裂紋密度;另一方面,超疏水外層也反過(guò)來(lái)可以修復(fù)MAO層內(nèi)部多孔缺陷。因此,超疏水/MAO復(fù)合膜由于其協(xié)同效應(yīng)可以有效地抑制腐蝕物質(zhì)與MAO層的接觸,賦予了鎂合金優(yōu)異的耐久耐蝕性。
自組裝制備的超疏水表面以物理鍵結(jié)合,易老化且不耐磨損[48-49],所以針對(duì)AZ31鎂合金MAO陶瓷層采用水熱原位生長(zhǎng)法制備具有較強(qiáng)附著力的層狀雙金屬氫氧化物(LDH)涂層。李巖等[50]利用3種不同電解液制備MAO膜,后經(jīng)水熱處理在表面原位生成LDH膜。在硅酸鹽體系復(fù)合膜中LDH垂直表面生長(zhǎng)且結(jié)構(gòu)致密,接觸角為130.3°(微弧氧化過(guò)程中電壓為430 V),然而,LDH未完全封閉微孔。高電壓雖然可以增加MAO膜厚度,但也會(huì)導(dǎo)致微孔尺寸增大。為進(jìn)一步提高M(jìn)AO/LDH復(fù)合膜疏水性,Wang等[51]用硬脂酸對(duì)MAO/LDH復(fù)合膜進(jìn)行表面改性獲得超疏水性能,硬脂酸的羧基與LDH表面的羥基發(fā)生反應(yīng)并通過(guò)化學(xué)鍵接枝到復(fù)合膜表面降低膜表面能,采用硬脂酸改性處理后不影響相組成并與LDH涂層協(xié)同作用改變材料疏水性,其接觸角為151.21°,隨著水熱處理時(shí)間的延長(zhǎng),原位生長(zhǎng)LDH逐漸封閉了MAO膜的微孔和裂紋,超疏水LDH/MAO膜的腐蝕電流密度最低、腐蝕電位最高、阻抗模量最高、具有密封多孔和吸收Cl?的能力,顯著提高了MAO膜的長(zhǎng)期腐蝕防護(hù)能力。因?yàn)樵趯?duì)MAO膜樣品進(jìn)行水熱處理時(shí),LDH層的生長(zhǎng)依賴于MAO膜的溶解,所以在MAO膜上制備LDH層后,MAO層局部出現(xiàn)凹陷,厚度略有減少[52]。此外,Li等[53]以AZ31鎂合金MAO微孔和納米孔為N–16炔醇緩蝕劑的容器,并采用疏水蠟?zāi)ぷ髅芊飧綦x劑抑制金屬腐蝕或氧化的發(fā)生形成疏水膜,膜保護(hù)效率達(dá)到99.7%。綜上所述,MAO膜只能起到被動(dòng)的腐蝕保護(hù)作用,而超疏水LDH/MAO復(fù)合膜對(duì)鎂基底具有主動(dòng)的腐蝕保護(hù)作用,超疏水LDH與MAO復(fù)合膜的協(xié)同作用提高了鎂合金表面的疏水性,但目前超疏水表面腐蝕缺乏完整理論體系,工藝相對(duì)復(fù)雜且成本較高,難以大規(guī)模應(yīng)用。因此,功能性膜MAO復(fù)合后處理工藝具有較大潛力,今后應(yīng)側(cè)重簡(jiǎn)單高效、適合大規(guī)模生產(chǎn)、膜基結(jié)合緊密且具有高穩(wěn)定性和持久性復(fù)合材料的開發(fā)。
2.2.2 鍍膜涂層
化學(xué)鍍鎳磷(Ni–P)具有沉積均勻、高耐腐蝕性、高耐磨性、良好的導(dǎo)電性和導(dǎo)熱性、良好的潤(rùn)滑性和良好的延展性等優(yōu)良性能,然而,化學(xué)鍍Ni–P涂層與鎂合金基體之間的電位差導(dǎo)致兩者間存在電偶腐蝕,復(fù)合工藝使MAO膜可與隨后的頂部層發(fā)生機(jī)械鎖定從而提高膜的耐蝕性。為激活惰性MAO層以沉積化學(xué)鍍鎳涂層,以往需要使用危險(xiǎn)的鉻酸鹽、HF和昂貴的PdCl2活化過(guò)程。Ezhilselvi等[54]采用硼氫化物NaBH4溶液代替?zhèn)鹘y(tǒng)的鉻酸鹽和HF活化過(guò)程來(lái)活化氧化層,采用堿碳酸浴法制備化學(xué)鍍鎳涂層,MAO/Ni–P復(fù)合膜覆蓋了AZ31B鎂合金表面。X射線光電子能譜(XPS)顯示表面為均勻致密的結(jié)節(jié)狀且無(wú)任何微裂紋或氣孔,硼氫化物處理為Ni–P鍍層的沉積提供了一個(gè)均勻的活性表面,在沉積60 min時(shí)可觀察到致密且均勻的Ni–P鍍層。在化學(xué)鍍預(yù)處理過(guò)程中,NaBH4在MAO表面將鎳離子還原為金屬鎳并作為化學(xué)鎳沉積的形核位點(diǎn)。硼氫化物預(yù)處理加速了Ni–P在MAO層上的沉積速率,MAO/Ni–P腐蝕電流為1.44 μA/cm2,比基體提高2個(gè)等級(jí),進(jìn)一步說(shuō)明膜的致密性得到提高。
在鎂合金MAO膜上制備TiN涂層方面的研究較少。Cui等[55]對(duì)AZ31B鎂合金MAO膜進(jìn)行離子鍍TiN,在離子鍍過(guò)程中,Ti滲入MAO膜多孔層,2種膜相互擴(kuò)散,界面結(jié)合力很高,使整個(gè)膜層硬度和耐蝕性均得到提高。AZ91D鎂合金MAO–化學(xué)鍍鎳復(fù)合處理過(guò)程符合Ostwald Ripening機(jī)制,初期微小鎳在微孔處還原沉積長(zhǎng)大,互連后形成島狀鎳顆粒團(tuán)并繼續(xù)長(zhǎng)大,如圖4b[56]所示。鎳完全覆蓋MAO膜表面,如圖4c所示,鍍鎳層致密無(wú)微孔且與MAO膜交錯(cuò)咬合,MAO膜具有化學(xué)鍍鎳催化活性作用,兩者配合使用來(lái)改善鎂合金MAO膜的導(dǎo)電性和耐蝕性。此后,應(yīng)對(duì)MAO鍍膜工藝進(jìn)行深入研究以提高其耐蝕性能的同時(shí)降低成本,并側(cè)重產(chǎn)業(yè)化應(yīng)用?,F(xiàn)代技術(shù)正專注于開發(fā)可靠、高性能、低成本、易于應(yīng)用的、適用于惡劣環(huán)境條件的復(fù)合膜材料。
圖4 鎂合金MAO后不同時(shí)間化學(xué)鍍鎳層SEM形貌[56]
2.2.3 類金剛石涂層
類金剛石(DLC)具有硬度高、附著力好、摩擦因數(shù)低、化學(xué)惰性等優(yōu)點(diǎn),因此,DLC涂層可提高鎂合金的耐腐蝕和耐磨性能[57]。然而,由于DLC涂層的彈性模量、熔點(diǎn)、內(nèi)應(yīng)力等材料性能與鎂合金不同,DLC涂層的界面結(jié)合強(qiáng)度顯著降低,一般是通過(guò)在DLC涂層與鎂合金的界面上沉積Al、Ti、Cr、W、Si[58-59]等金屬緩沖層以降低DLC涂層的內(nèi)應(yīng)力來(lái)提高其附著力。但是,膜基界面的結(jié)合強(qiáng)度提高程度有限,且膜基界面存在著明顯的分離界面。如果用MAO膜代替金屬緩沖層則可以提高界面結(jié)合強(qiáng)度,聚二甲基硅氧烷(PDMS)具有低表面能,優(yōu)異的滲透性、化學(xué)惰性及熱穩(wěn)定性等特點(diǎn)。Jun等[60]用PDMS修飾AZ31B鎂合金表面制備出MAO/DLC復(fù)合膜。首先采用MAO和不平衡磁控濺射復(fù)合工藝制備了雙氧化石墨烯/DLC膜,然后通過(guò)傳統(tǒng)的浸涂方法對(duì)MAO/DLC復(fù)合膜進(jìn)行修飾,在MAO/DLC復(fù)合膜上形成黏彈性硅基有機(jī)聚合物層。改性后,MAO/DLC復(fù)合膜表面更加致密,具有疏水性和更高的結(jié)合強(qiáng)度,且其摩擦學(xué)行為得到了改善。經(jīng)PDMS修飾的MAO/DLC膜的腐蝕電流密度比基體降低了5個(gè)數(shù)量級(jí),而對(duì)鎂合金的腐蝕防護(hù)效率得到大幅提高。因此,PDMS改性對(duì)制備耐腐蝕、耐磨損的鎂合金保護(hù)材料是很有前途的。此外,金屬摻雜可以有效改善DLC薄膜性能。Yang等[61]采用Ti和N共摻雜的方法,在MAO膜表面形成具有TiN晶相的DLC膜,以提高膜間結(jié)合力和復(fù)合膜的熱穩(wěn)定性,從而進(jìn)一步提高M(jìn)AO膜耐磨耐腐蝕性能。膜表面的微孔孔徑減小,添加Ti或N原子的DLC薄膜殘余應(yīng)力得以釋放,雙相(Ti:N)–DLC/MAO膜具有最高的臨界載荷,(Ti:N)–DLC膜在很大程度上抑制了MAO中間層與基體之間原電池的形成并減少腐蝕的發(fā)生。
此外,電解液中加入石墨并結(jié)合后續(xù)工藝處理也可以制備復(fù)合MAO膜,Ridvan等[62]采用MAO和熱液氧化法(HT)在AZ91鎂合金表面沉積形成復(fù)合膜。首先在含石墨粒徑(5~10 μm和75 μm)的硅酸鹽/磷酸鹽電解質(zhì)中對(duì)AZ91鎂合金進(jìn)行MAO處理,然后在150 ℃下對(duì)石墨–乙醇混合物進(jìn)行水熱處理得到MAO–HT復(fù)合膜,石墨的加入增加了膜的厚度和致密性,表面形貌相對(duì)均勻,MAO–HT復(fù)合膜的耐磨性得到明顯提高。
2.2.4 生物防腐膜
鎂合金在體液Cl?存在下降解加速、伴隨析氫反應(yīng)且耐蝕性較差[63],MAO膜雖在初期可以提高耐蝕性,但MAO膜一旦破壞后會(huì)加速基體降解。羥基磷灰石(HA)是人體硬組織中的主要無(wú)機(jī)成分,可作為植入金屬材料的表面膜,在鎂合金MAO膜表面制備HA復(fù)合膜可以提高表面致密度并提高耐蝕性和MAO膜表面生物活性。溶膠凝膠工藝中電流密度對(duì)復(fù)合膜表面結(jié)構(gòu)影響較大,溶膠凝膠法制備HA工藝簡(jiǎn)單并得到廣泛應(yīng)用,或在MAO膜表面水熱合成含HA成分的復(fù)合膜[64]。此外,在鎂合金MAO膜表面載覆緩蝕劑涂層也可提高膜耐蝕性并減少M(fèi)AO膜微孔,復(fù)合膜間結(jié)合緊密。緩蝕劑也可以稱為腐蝕抑制劑,石夢(mèng)佳等[65]選用姜黃素(Cur)作為MAO膜生物防腐膜的緩蝕劑,利用聚乳酸–羥基乙酸PLGA承載緩蝕劑Cur后對(duì)鎂合金MAO膜以不同角度浸涂,Cur結(jié)合基體金屬形成難溶絡(luò)合物減小電偶腐蝕并在材料表面形成保護(hù)層。在浸涂角度為0°且PLGA質(zhì)量分?jǐn)?shù)為12%時(shí),復(fù)合膜腐蝕電流密度比鎂合金基體下降3個(gè)數(shù)量級(jí)。
殼聚糖(CS)以其獨(dú)特的生物相容性及可降解性、良好的抗腐蝕能力和低成本而被廣泛應(yīng)用于生物材料領(lǐng)域,CS對(duì)MAO膜的微孔和微裂紋具有封閉作用[66-67]。將MAO與浸漬技術(shù)相結(jié)合,在Mg– 1.74Zn–0.55Ca合金上制備了浸漬時(shí)間不同的MAO/ CS膜[68],CS膜能有效地密封MAO膜。動(dòng)電位極化試驗(yàn)表明,MAO/CS膜提高了MAO膜的耐蝕性,與其他復(fù)合鍍層相比,CS溶液浸漬3次的MAO鍍層微裂紋少、厚度大,耐蝕性明顯提高。Li等[69]采用原子層沉積(ALD)技術(shù)在AZ31鎂合金表面沉積致密且生物相容性好的氧化鉭(Ta2O5)納米膜,以有效封閉微孔并調(diào)節(jié)降解速率,復(fù)合膜的腐蝕電流密度比基體降低了3個(gè)數(shù)量級(jí)。生物復(fù)合膜不僅耐蝕性好且具有促進(jìn)細(xì)胞增殖和分化生物活性的作用[70],未來(lái)有望成為生物醫(yī)學(xué)骨植入物的有前途的替代品。
2.2.5 其他涂層
目前,對(duì)具有自修復(fù)作用的鎂合金MAO–LDH膜的研究較多[71]。王彪等[72]利用共沉淀法制備緩蝕性離子MoO2?4插層MgAl–LDH漿料,并用水熱法將其沉積在MAO膜表面提高膜層致密度,以陰離子交換作用有效抵抗Cl?侵蝕,該MAO–LDH復(fù)合膜具有缺陷自修復(fù)能力和長(zhǎng)期耐蝕性(腐蝕抑制效率高達(dá)99.9%)。Li等[73]在較低溫度(60 ℃)、較高pH(13.76)的水浴條件下,在MAO膜上完全覆蓋LDH制得MAO–LDH自修復(fù)膜。復(fù)合后腐蝕電流密度比基體降低了4個(gè)數(shù)量級(jí),復(fù)合膜有效抑制了陰極析氫反應(yīng)和陽(yáng)極α–Mg的溶解,插層的CO32?在點(diǎn)蝕處擴(kuò)散到表層與溶解Mg2+結(jié)合生成MgCO3,而MgCO3在堿性環(huán)境下轉(zhuǎn)化Mg(OH)2沉淀并在點(diǎn)蝕點(diǎn)處沉積覆蓋,從而實(shí)現(xiàn)了膜的修復(fù)。MAO–LDH膜較少發(fā)生局部腐蝕并有利于成骨細(xì)胞的生長(zhǎng),但隨著離子交換時(shí)間的延長(zhǎng)或LDH膜表面吸附H2O后,形成相對(duì)光滑的O2和Cl?擴(kuò)散路徑,從而促進(jìn)陰極反應(yīng),LDH膜表面產(chǎn)生間隙和凹坑后容易降解[74]。因此,需形成曲折的擴(kuò)散路徑并有效地防止腐蝕性物質(zhì)通過(guò)LDH層。由于氧化石墨烯(GO)膜對(duì)水、氧和離子不滲透,因此,被廣泛結(jié)合到金屬表面膜中以提高阻隔性能。Chen等[75]在AZ31鎂合金MAO膜表面采用一步水熱原位合成法制備了GO–LDH膜。GO表面的負(fù)電荷及其片狀結(jié)構(gòu)可以作為帶正電荷的LDH納米片原位生長(zhǎng)的結(jié)構(gòu)支撐[76-77],LDH與GO結(jié)合填補(bǔ)了MAO的孔隙,大大提高了MAO膜的耐蝕性和抗?jié)B性。0.1 GO/LDH– MAO膜(GO懸浮液濃度為0.1 mg/mL)的結(jié)構(gòu)更加致密,幾乎無(wú)孔洞,膜厚度的增加是由于GO表面的負(fù)電荷對(duì)金屬陽(yáng)離子吸附良好,但吸附過(guò)量會(huì)使GO發(fā)生遷移和聚集,從而導(dǎo)致膜厚度下降。GO可在任意方向隨機(jī)生長(zhǎng),這使腐蝕介質(zhì)的擴(kuò)散路徑更加曲折和漫長(zhǎng)[78],從而具有良好的阻隔作用并能延長(zhǎng)腐蝕時(shí)間。LDH保持離子交換能力能捕獲Cl?,而GO的褶皺特性產(chǎn)生優(yōu)良的迷宮效應(yīng),顯著提高了GO/LDH–MAO膜的抗?jié)B性。
Li等[79]將氧化銻錫(ATO)粒子摻雜到甲基三甲氧基硅烷(MTMS)膜中,在微弧氧化(MAO)鎂合金AZ31表面制備了ATO–MTMS導(dǎo)電膜。MAO/ MTMS膜的電導(dǎo)率雖然降低,但膜表層形成了導(dǎo)電路徑而增強(qiáng)了靜電荷的轉(zhuǎn)移,充分抑制了腐蝕介質(zhì)通過(guò)導(dǎo)電路徑對(duì)襯底的侵蝕,復(fù)合膜的腐蝕電流密度比基體小3個(gè)數(shù)量級(jí),具有良好的耐腐蝕性能。物理隔離和化學(xué)惰性的靜電粉末噴涂(EPS)涂層非常有利于保護(hù)鎂合金基體與MAO膜[80],頂部EPS膜滲透到MAO膜多孔外層并表現(xiàn)出機(jī)械鍵合,致密內(nèi)層對(duì)鎂合金基體起到了保護(hù)作用,但2種工藝的微弧氧化(pH=14)和電泳(pH=5)電化學(xué)環(huán)境不同,導(dǎo)致2種工藝之間有必要進(jìn)行洗滌。MAO–EPS復(fù)合膜表面形貌光滑且無(wú)微孔,以環(huán)氧樹脂為主要成分的EPS膜覆蓋MAO膜,頂部EPS膜與MAO膜之間具有較高的結(jié)合力和良好的耐蝕性。復(fù)合膜工藝雖然能夠提高鎂合金耐腐蝕性能,但工藝較復(fù)雜,因此,應(yīng)在功能化發(fā)展的同時(shí),簡(jiǎn)化工藝,降低成本。
近年來(lái),雖然MAO技術(shù)得以快速發(fā)展,但目前仍存在著國(guó)內(nèi)外缺乏大型工業(yè)生產(chǎn)線、單一的MAO工藝無(wú)法滿足實(shí)際要求、復(fù)合涂層缺乏完善的理論體系、工藝復(fù)雜且成本較高等問(wèn)題,因此綜合MAO膜耐蝕性能提高的研究現(xiàn)狀,提出了未來(lái)MAO復(fù)合工藝發(fā)展趨勢(shì)可集中在以下幾個(gè)方向。
1)MAO復(fù)合膜防腐基礎(chǔ)理論研究有待進(jìn)一步完善。未來(lái)可利用最新的學(xué)科理論方法,結(jié)合現(xiàn)代分析測(cè)試手段原位捕捉MAO過(guò)程,深入系統(tǒng)研究膜生長(zhǎng)機(jī)理、界面結(jié)構(gòu)及基礎(chǔ)理論問(wèn)題。
2)對(duì)MAO高防腐性的電源工藝參數(shù)建立數(shù)據(jù)庫(kù),實(shí)現(xiàn)電源的合理控制以及探究更為理想的電源模式并對(duì)電參數(shù)進(jìn)行優(yōu)化,簡(jiǎn)化復(fù)合膜工藝操作步驟,發(fā)展智能化工藝設(shè)備。
3)選擇合適的電解液添加劑以提高M(jìn)AO膜耐蝕相比例并改善膜層性能或?qū)崿F(xiàn)自封孔,并結(jié)合復(fù)合工藝制備性能更優(yōu)的復(fù)合膜。
4)對(duì)MAO復(fù)合膜進(jìn)行低成本的功能化研究,如低介電高絕緣、自修復(fù)、高催化活性、著色、熱控、隱身、磁性、鋰電等功能,并對(duì)復(fù)合膜使用壽命和膜層間結(jié)合進(jìn)行深入研究。
[1] JIAN Shun-yi, CHU Yu-ren, LIN C S. Permanganate Con--version Coating on AZ31 Magnesium Alloys with Enhan-ced Corrosion Resistance[J]. Corrosion Science, 2015, 93(4): 301-309.
[2] ALEXANDRE Z, DELPHINE V R, LAURENT B, et al. Oxide Growth Mechanism on Mg AZ91 Alloy by Ano-dizing: Combination of Electrochemical and Ellipso-metric In-Situ Measurements[J]. Journal of the Electro-che-mical Society, 2017, 164(14): C1059-C1066.
[3] ZHENG Tian-xu, HU Yao-bo, PAN Fu-sheng, et al. Fabrication of Corrosion-Resistant Superhydrophobic Coating on Magnesium Alloy by One-Step Electrodepo-sition Method[J]. Journal of Magnesium and Alloys, 2019, 7(2): 193-202.
[4] SUO Xin-kun, GUO Xue-ping, LI Wen-ya, et al. Prepara-tion and Characterization of Magnesium Coating Deposi-ted by Cold Spraying[J]. Journal of Materials Processing Tech, 2011, 212(1): 100-105.
[5] CUI C E, MIAO Q, PAN J D. Ti/Cr Multi-Layer Coating on Magnesium Alloy AZ91 by Arcadded Glow Plasma Depositing Technique[J]. Surface and Coating Techno-logy, 2007, 201(9/10/11): 5400-5403.
[6] WU Guo-song, SHANAGHI A, ZHAO Ying, et al. The Effect of Interlayer on Corrosion Resistance of Ceramic Coating/Mg Alloy Substrate in Simulated Physiological Environment[J]. Surface & Coatings Technology, 2012, 206(23): 4892-4898.
[7] SUN Yong, LU Cheng, YU Hai-liang, et al. Nanomecha-nical Properties of TiCN and TiCN/Ti Coatings on Ti Prepared by Filtered Arc Deposition[J]. Materials Science & Engineering A, 2015, 625: 56-64.
[8] VLADIMIROV B V, KRIT B L, LYUDIN V B. Microarc Oxidation of Magnesium Alloys: A Review[J]. Surface Engineering and Applied Electrochemistry, 2014, 50(3): 195-232.
[9] REHMAN Z U, SHIN S H, HUSSAIN I, et al. Structure and Corrosion Properties of the Two-Step PEO Coatings Formed on AZ91D Mg Alloy in K2ZrF 6-Based Elec-trolyte Solution[J]. Surface & Coatings Technology, 2016, 307: 484-490.
[10] 宋仁國(guó). 微弧氧化技術(shù)的發(fā)展及其應(yīng)用[J]. 材料工程, 2019, 47(3): 50-62.
SONG Ren-guo. Development and Applications of Mi-cro-Arc Oxidation Technology[J]. Journal of Materials Engineering, 2019, 47(3): 50-62.
[11] LI Xuan, SHI Chao, BAI Jing, et al. Degradation Beha-viors of Surface Modified Magnesium Alloy Wires in Dif-fe-rent Simulated Physiological Environments[J]. Frontiers of Materials Science, 2014, 8(3): 281-294.
[12] LEE K M, SHIN K R, NAMGUNG S, et al. Electro-chemical Response of ZrO2Incorporated Oxide Layer on AZ91 Mg Alloy Processed by Plasma Electrolytic Oxida-tion[J]. Surface and Coating Technology, 2011, 205(13/ 14): 779-3784.
[13] ARRABAL R, MOTA J M, CRIADO A, et al. Assessment of Duplex Coating Combining Plasma Electrolytic Oxida-tion and Polymer Layer on AZ31 Magnesium Alloy[J]. Surface & Coatings Technology, 2012, 206(22): 4692- 4703.
[14] BAKHSHESHI-RAD H R, HAMZAH E, EBRAHIMI- KA-HR-IZ-SANGI R, et al. Fabrication and Characteriza-tion of Hydrophobic Microarc Oxidation/Polylactic Acid Duplex Coating on Biodegradable Mg-Ca Alloy for Corrosion Protection[J]. Vacuum, 2016, 125: 185-188.
[15] CUI X J, WEI J S, NING C M, et al. Effects of Nitrogen Volumetric Flow Rate on Properties of MAO/TiN Com-po-site Coatings on AZ31B Magnesium Alloy[J]. China Surface Engineering, 2017, 30(2): 27-34.
[16] YANG Zhong, ZHANG Xu-zhen, WU Ye-kang, et al. The Correlation between the Na2SiO3·9H2O Concentrations and the Characteristics of Plasma Electrolytic Oxidation Ceramic Coatings[J]. Ceramics International, 2019, 45(15): 19388-19394.
[17] ZHANG Gen, WU Liang, TANG Ai-tao, et al. Sealing of Anodized Magnesium Alloy AZ31 with MgAl Layered Double Hydroxides Layers[J]. RSC Advances, 2018, 8(5): 2248-2259.
[18] DARBAND G B, ALIOFKHAZRAEI M, HAMGHA-LAM P, et al. Plasma Electrolytic Oxidation of Magne-sium and Its Alloys: Mechanism, Properties and Applica-tions[J]. Journal of Magnesium and Alloys, 2017, 5(1): 74-132.
[19] CHEN Wei-wei, WANG Ze-xin, SUN Lei, et al. Research of Growth Mechanism of Ceramic Coatings Fabricated by Micro-Arc Oxidation on Magnesium Alloys at High Cur-rent Mode[J]. Journal of Magnesium and Alloys, 2015, 3(3): 253-257.
[20] CHENG Y L, WANG T, LI S X, et al. The Effects of Anion Deposition and Negative Pulse on the Behaviours of Plasma Electrolytic Oxidation (PEO)—a Systematic Study of the PEO of a Zirlo Alloy in Aluminate Electro-lytes[J]. Electrochimica Acta, 2017, 225: 47-68.
[21] KULKARNI J, RAVISHANKAR R, NAGABHUSHANA H, et al. Structural, Optical and Photocatalytic Properties of MgO/CuO Nanocomposite Prepared by a Solution Combustion Method[J]. Materials Today: Proceedings, 2017, 11(4): 11756-11763.
[22] ZHANG R F. Film Formation in the Second Step of Micro-Arc Oxidation on Magnesium Alloys[J]. Corrosion Science: the Journal on Environmental Degradation of Materials and Its Control, 2010, 52(4): 1285.
[23] NASIRIVATAN H, EBRAHIMI-KAHRIZSANGI R, AS-GA-RANI M K. Tribological Performance of PEO-WC Nanocomposite Coating on Mg Alloys Deposited by Plas-ma Electrolytic Oxidation[J]. Tribology International, 2016, 98: 253-260.
[24] HUA You-lu, ZHANG Zhi-guo, LI Wei. Microstructure and Degradation Properties of C-Containing Composite Coatings on Magnesium Alloy Wires Treated with Micro- Arc Oxidation[J]. Surface and Coatings Technology, 2016, 291(15): 70-78.
[25] XIONG Ying, LU Chao, WANG Chao, et al. The N- MAO/EPD Bio-Ceramic Composite Coating Fabricated on ZK60 Magnesium Alloy Using Combined Micro-Arc Oxidation with Electrophoretic Deposition[J]. Applied Surface Science, 2014, 322: 230-235.
[26] 陳傳忠, 陳陽(yáng), 于慧君. 鎂合金含銀微弧氧化電解液、生物陶瓷膜層及制備方法: CN110331426B[P]. 2020- 08-28.
CHEN Chuan-zhong, CHEN Yang, YU Hui-jun. Magne-sium Alloy Silver-Containing Micro-Arc Oxidation Elec-trolyte, Biological Ceramic Membrane Layer and Pre-paration Method: CN110331426B[P]. 2020-08-28.
[27] 梁錫炳, 李興剛, 張奎, 等. 納米Al2O3添加劑對(duì)VW75稀土鎂合金微弧氧化膜層的影響[J]. 稀有金屬, 2021, 45(7): 812-820.
LIANG Xi-bing, LI Xing-gang, ZHANG Kui, et al. Mi-cro-Arc Oxidation Coatings Formed on VW75 Mg Alloy with Al2O3Nano-Additive[J]. Chinese Journal of Rare Metals, 2021, 45(7): 812-820.
[28] 夏承森, 溫翠蓮, 詹曉章, 等. 微弧氧化法制備鎂基羥基磷灰石/碳納米管復(fù)合生物涂層及其性能研究[J]. 科技導(dǎo)報(bào), 2016, 34(8): 60-66.
XIA Cheng-sen, WEN Cui-lian, ZHAN Xiao-zhang, et al. Synthesis and Properties of Hydroxyapatite/CNTS Com-posite Coating on Magnesium Alloy by Micro-Arc Oxida-tion[J]. Science & Technology Review, 2016, 34(8): 60- 66.
[29] 陳宏, 黃杰, 陳永楠, 等. AZ91D鎂合金外加電場(chǎng)下自封孔微弧氧化膜層微觀形貌及耐蝕性[J]. 稀有金屬材料與工程, 2017, 46(10): 3098-3104.
CHEN Hong, HUANG Jie, CHEN Yong-nan, et al. Mor-pho-logy and Corrosion Resistance of Self-Sealing Micro- Arc Oxidation Coatings of AZ91D Magnesium Alloys under External Electric Field[J]. Rare Metal Materials and Engineering, 2017, 46(10): 3098-3104.
[30] 陳海燕, 繆倩倩, 蔣永鋒, 等. 稀土配合物對(duì)增強(qiáng)AZ31鎂合金微弧氧化陶瓷層性能的作用[J]. 材料保護(hù), 2018, 51(5): 7-11.
CHEN Hai-yan, MIAO Qian-qian, JIANG Yong-feng, et al. Effect of Rare Earth Complexes on Enhancing the Properties of Micro-Arc Oxidation Ceramic Coating on AZ31 Magnesium Alloy[J]. Materials Protection, 2018, 51(5): 7-11.
[31] WU W X, WANG W P, LIN H C. A Study on Corrosion Behavior of Micro-Arc Oxidation Coatings Doped with 2-Aminobenzimidazole Loaded Halloysite Nanotubes on AZ31 Magnesium Alloys[J]. Surface & Coatings Techno-logy, 2021, 416: 127116-127129.
[32] WANG X S, GUO X W, LI X D, et al. Effect of Different Micro-Arc Oxidation Coating Layer Types on Fatigue Life of 2024-T4 Alloy[C]// 13th International Conference on Fracture, Beijing, 2013: 2022-2026.
[33] ZHENG Zhong-ren, CHUN Zhao ming, TAN Li-li, et al. Corrosion Behavior of a Self-Sealing Coating Containing CeO2Particles on Pure Mg Produced by Micro-Arc Oxi-da-tion[J]. Surface & Coatings Technology, 2020, 386(C): 125456.
[34] TOORANI M, ALIOFKHAZRAEI M. Review of Electro-chemical Properties of Hybrid Coating Systems on Mg with Plasma Electrolytic Oxidation Process as Pretreat-ment[J]. Surfaces and Interfaces, 2019, 14(3): 262-295.
[35] 劉朋, 劉群峰, 黃德群, 等. 微弧氧化膜封孔技術(shù)研究進(jìn)展[J]. 表面技術(shù), 2019, 48(7): 61-71.
LIU Peng, LIU Qun-feng, HUANG De-qun, et al. Re-search Progress of Pore Sealing Technology for Micro- Arc Oxidation Films[J]. Surface Technology, 2019, 48(7): 61-71.
[36] 翟彥博, 陳紅兵, 梅鎮(zhèn). 封孔方式對(duì)AZ31B鎂合金微弧氧化膜耐腐蝕性的影響[J]. 西南大學(xué)學(xué)報(bào): 自然科學(xué)版, 2014, 36(4): 173-179.
ZHAI Yan-bo, CHEN Hong-bing, MEI Zhen. Effect of Sealing Treatment on Corrosion Resistance of Micro-Arc Oxidation Coatings for AZ31B Mg Alloy[J]. Journal of Southwest University: Natural Science Edition, 2014, 36(4): 173-179.
[37] TAKEBAYASHI K, SHIOMI H, NAKA S, et al. Utility of a Microwave Surgical Instrument in Sealing Lymphatic Vessels[J]. American Journal of Surgery, 2013, 206(2): 229-233.
[38] 王志虎, 張菊梅, 白力靜, 等. AZ31鎂合金微弧氧化陶瓷層表面Mg(OH)2膜層的制備及耐蝕性[J]. 無(wú)機(jī)材料學(xué)報(bào), 2020, 35(6): 709-716.
WANG Zhi-hu, ZHANG Ju-mei, BAI Li-jing, et al. Mg(OH)2Film on Micro-Arc Oxidation Ceramic Coating of AZ31 Magnesium Alloy: Preparation and Corrosion Resistance[J]. Journal of Inorganic Materials, 2020, 35(6): 709-716.
[39] LEE J H, KIM S J. Enhancement of Wettability by Wet Surface Modification and Application of Rare-Earth Element in Sealing of Ceramic Oxide Thin Film on Al Alloy[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(11): 11797-11801.
[40] ZHANG Gen, WU Liang, TANG Ai-tao, et al. Active Corrosion Protection by a Smart Coating Based on a MgAl-Layered Double Hydroxide on a Cerium-Modified Plasma Electrolytic Oxidation Coating on Mg Alloy AZ31[J]. Corrosion Science, 2018, 139: 370-382.
[41] 李思思, 王維, 吳玉鋒, 等. 鎂合金表面微弧氧化-溶膠凝膠復(fù)合膜層的結(jié)構(gòu)及其耐蝕性[J]. 中國(guó)表面工程, 2013, 26(3): 40-44.
LI Si-si, WANG Wei, WU Yu-feng, et al. Structure and Corrosion Resistance of Composite Coating Prepared by Micro-Arc Oxidation and Sol-Gel Methods on the Surface of Magnesium Alloy[J]. China Surface Engineering, 2013, 26(3): 40-44.
[42] ZHOU Meng, YAN Lu-chun, LING Hao, et al. Design and Fabrication of Enhanced Corrosion Resistance Zn-Al Layered Double Hydroxides Films Based Anion-Ex-change Mechanism on Magnesium Alloys[J]. Applied Surface Science, 2017, 404: 246-253.
[43] KAMIYAMA N, PANOMSUWAN G, YAMAMOTO E, et al. Effect of Treatment Time in the Mg(OH)2/Mg-Al LDH Composite Film Formed on Mg Alloy AZ31 by Steam Coating on the Corrosion Resistance[J]. Surface & Coa-tings Technology, 2016, 286: 172-177.
[44] PENG Feng, LI Hua, WANG Dong-hui, et al. Enhanced Corrosion Resistance and Biocompatibility of Magnesium Alloy by Mg-Al-Layered Double Hydroxide[J]. ACS Applied Materials & Interfaces, 2016, 8(51): 35033-35044.
[45] 蔣世權(quán), 吳方, 王媛媛, 等. 鎂合金表面微弧氧化/自組裝復(fù)合膜的耐蝕性能[J]. 表面技術(shù), 2021, 50(4): 294- 303.
JIANG Shi-quan, WU Fang, WANG Yuan-yuan, et al. Corrosion Resistance of Micro-Arc Oxidation/Self-As-sem-bled Composite Coating on Magnesium Alloy[J]. Surface Technology, 2021, 50(4): 294-303.
[46] GAO H F, TAN H Q, LI J, et al. Synergistic Effect of Cerium Conversion Coating and Phytic Acid Conversion Coating on AZ31B Magnesium Alloy[J]. Surface & Coatings Technology, 2012, 212: 32-36.
[47] JIANG Dan, ZHOU Huan, WAN Shan, et al. Fabrication of Superhydrophobic Coating on Magnesium Alloy with Improved Corrosion Resistance by Combining Micro-Arc Oxidation and Cyclic Assembly[J]. Surface and Coatings Technology, 2018, 339(8): 155-166.
[48] ZHANG Fen, ZHANG Chang-lei, ZENG Rong-chang, et al. Corrosion Resistance of the Superhydrophobic Mg(OH)2/Mg-Al Layered Double Hydroxide Coatings on Magnesium Alloys[J]. Metals, 2016, 6(4): 85.
[49] ZHOU M, PANG X L, WEI L, et al. Insitu Grown Superhydrophobic Zn-Al Layered Double Hydroxides Films on Magnesium Alloy to Improve Corrosion Pro-perties[J]. Applied Surface Science, 2015, 337(5): 172-177.
[50] 李巖, 章晴云, 盧小鵬, 等. 微弧氧化工藝參數(shù)對(duì)鎂合金表面水滑石復(fù)合膜層耐蝕性的影響[J]. 表面技術(shù), 2021, 50(8): 327-336.
LI Yan, ZHANG Qing-yun, LU Xiao-peng, et al. Effect of Process Parameters on Corrosion Resistance of MAO/ LDH Composite Coatings[J]. Surface Technology, 2021, 50(8): 327-336.
[51] WANG Z H, ZHANG J M, LI Y, et al. Enhanced Corrosion Resistance of Micro-Arc Oxidation Coated Magnesium Alloy by Superhydrophobic Mg-Al Layered Double Hydroxide Coating[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(10): 2066-2077.
[52] CHEN J F, LIANG S Y, FU D B, et al. Design and In-Situ Prepare a Novel Composite Coating on Mg Alloy for Active Anti-Corrosion Protection[J]. Journal of Alloys and Compounds, 2020, 831(16): 154580-154589.
[53] LI Z X, YU Q L, ZHANG C Y, et al. Synergistic Effect of Hydrophobic Film and Porous MAO Membrane Con-taining Alkynol Inhibitor for Enhanced Corrosion Resis-tance of Magnesium Alloy[J]. Surface Coatings Techno-logy, 2019, 357(1): 515-525.
[54] EZHILSELVI V, BALARAJU J N, SUBRAMANIAN S. Chromate and HF Free Pretreatment for MAO/Electroless Nickel Coating on AZ31B Magnesium Alloy[J]. Surface and Coatings Technology, 2017, 325(18): 270-276.
[55] CUI Xue-jun, PING Jing, ZHANG Ying-jun, et al. Structure and Properties of Newly Designed MAO/TiN Coating on AZ31B Mg Alloy[J]. Surface and Coatings Technology, 2017, 328(22): 319-325.
[56] 付明, 李均明. 鎂合金表面微弧氧化/化學(xué)鍍鎳的復(fù)合改性作用[J]. 材料保護(hù), 2019, 52(6): 79-83.
FU Ming, LI Jun-ming. Surface Modification of Microarc Oxidation Combined with Electroless Nickel Plating for Magnesium Alloys[J]. Materials Protection, 2019, 52(6): 79-83.
[57] CUI Xue-jun, NING Chuang-ming, SHANG Lun-lin, et al. Structure and Anticorrosion, Friction, and Wear Characteristics of Pure Diamond-Like Carbon (DLC), Cr-DLC, and Cr-H-DLC Films on AZ91D Mg Alloy[J]. Journal of Materials Engineering and Performance, 2019, 28(2): 1213-1225.
[58] WU Y M, ZHOU S G, ZHAO W J, et al. Comparative Corrosion Resistance Properties between (Cu,Ce)-DLC and Ti Co-doped (Cu, Ce)/Ti-DLC Films Prepared via Magnetron Sputtering Method[J]. Chemical Physics Let-ters, 2018, 705: 50-58.
[59] VISWANATHAN S, MOHAN L, BERA P, et al. Corro-sion and Wear Behaviors of Cr-Doped Diamond-Like Carbon Coatings[J]. Journal of Materials Engineering and Performance, 2017, 26(8): 3633-3647.
[60] JUN Cui-xue, MING Ning-chuang, AN Zhang-guang, et al. Properties of Polydimethylsiloxane Hydrophobic Mo-di-fied Duplex Microarc Oxidation/Diamond-Like Carbon Coatings on AZ31B Mg Alloy[J]. Journal of Magnesium and Alloys, 2020, 9(4): 1285-1296.
[61] YANG Wei, KE Pei-ling, FANG Yong, et al. Microstruc-ture and Properties of Duplex (Ti: N)-DLC/MAO Coating on Magnesium Alloy[J]. Applied Surface Science, 2013, 270: 519-525.
[62] RIDVAN K, EBRU E ?, YA?AR T, et al. Investigation of Wear Behavior of Graphite Additive Composite Coatings Deposited by Micro Arc Oxidation-Hydrothermal Treat-ment on AZ91 Mg Alloy[J]. Surfaces and Interfaces, 2021, 22: 100894-100901.
[63] HU D J, ZHANG J, HANG R Y, et al. Effects of Solid Diffusion Zinc Treatment on Corrosion Behavior, Anti-bacterial Ability, and Cytocompatibility of AZ31B Ma-gnesium Alloy[J]. Materials Letters, 2019, 251(18): 30-33.
[64] GUO J W, SUN S Y, WANG Y M, et al. Hydrothermal Biomimetic Modification of Microarc Oxidized Magne-sium Alloy for Enhanced Corrosion Resistance and Depo-sition Behaviors in SBF[J]. Surface and Coatings Techno-logy, 2015, 269: 183-190.
[65] 石夢(mèng)佳, 李偉杰, 馬小爽, 等. 骨植入鎂合金表面緩蝕劑覆載的微弧氧化/PLGA復(fù)合涂層的制備與表征[J]. 表面技術(shù), 2021, 50(2): 30-38.
SHI Meng-jia, LI Wei-jie, MA Xiao-shuang, et al. Pre-paration and Characterization of Corrosion Inhibitor- Loaded Micro-Arc Oxidation/PLGA Composite Coating on Biodegradable Magnesium Alloy[J]. Surface Techno-logy, 2021, 50(2): 30-38.
[66] AVCU E, BA?TAN F E, ABDULLAH H Z, et al. Electrophoretic Deposition of Chitosan-Based Composite Coatings for Biomedical Applications: A Review[J]. Progress in Materials Science, 2019, 103(3): 69-108.
[67] BAI K F, ZHANG Y, FU Z Y, et al. Fabrication of Chitosan/Magnesium Phosphate Composite Coating and the in Vitro Degradation Properties of Coated Magnesium Alloy[J]. Materials Letters, 2012, 73(2): 59-61.
[68] DOU Jin-he, YU Hui-jun, CHEN Chuan-zhong, et al. Preparation and Microstructure of MAO/CS Composite Coatings on Mg Alloy[J]. Materials Letters, 2020, 271(4): 127729.
[69] LI Chang-yang, YU Chi, ZENG Rong-chang, et al. In Vitro Corrosion Resistance of a Ta2O5Nanofilm on MAO Coated Magnesium Alloy AZ31 by Atomic Layer De-position[J]. Bioactive Materials, 2020, 5(1): 34-43.
[70] DOU Jin-he, WANG Jing, LU Yu-peng, et al. Bioactive MAO/CS Composite Coatings on Mg-Zn-Ca Alloy for Orthopedic Applications[J]. Progress in Organic Coatings, 2021, 152(3): 106112-106123.
[71] ZHANG Gen, WU Liang, TANG Ai-tao, et al. Effect of Micro-Arc Oxidation Coatings Formed at Different Volta-ges on the in Situ Growth of Layered Double Hydroxides and Their Corrosion Protection[J]. Journal of the Electro-chemical Society, 2018, 165(7): C317-C327.
[72] 王彪, 李漢周, 董澤華. 微弧氧化-水滑石復(fù)合涂層的制備及其在AZ91鎂合金防腐蝕中的應(yīng)用[J]. 材料保護(hù), 2020, 53(11): 26-31.
WANG Biao, LI Han-zhou, DONG Ze-hua. Fabrication and Corrosion Resistance of MAO-LDH Composite Coa-ting on AZ91 Mg Alloy[J]. Materials Protection, 2020, 53(11): 26-31.
[73] LI Chang-yang, GAO Ling, FAN Xiao-li, et al. In Vitro Degradation and Cytocompatibility of a Low Temperature in-Situ Grown Self-Healing Mg-Al LDH Coating on MAO- Coxated Magnesium Alloy AZ31[J]. Bioactive Materials, 2020, 5(2): 364-376.
[74] LUO Xiao-hu, YUAN Song, PAN Xin-yu, et al. Synthesis and Enhanced Corrosion Protection Performance of Re-duced Graphene Oxide Nanosheet/ZnAl Layered Double Hydroxide Composite Films by Hydrothermal Continuous Flow Method[J]. ACS Applied Materials & Interfaces, 2017, 9(21): 18263-18275.
[75] CHEN Yan-ning, WU Liang, YAO Wen-hui, et al. One-Step in Situ Synthesis of Graphene Oxide/MgAl- Layered Double Hydroxide Coating on a Micro-Arc Oxidation Coating for Enhanced Corrosion Protection of Magnesium Alloys[J]. Surface & Coatings Technology, 2021, 413(10): 127083-127095.
[76] YAN Lu-chun, ZHOU Meng, PANG Xiao-lu, et al. One-Step in Situ Synthesis of Reduced Graphene Oxide/ Zn-Al Layered Double Hydroxide Film for Enhanced Corrosion Protection of Magnesium Alloys[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2019, 35(19): 6312-6320.
[77] YAO Wen, WANG Jian, WANG Peng-yi, et al. Synergis-tic Coagulation of GO and Secondary Adsorption of Heavy Metal Ions on Ca/Al Layered Double Hydroxi-des[J]. Environmental Pollution, 2017, 229(10): 827-836.
[78] LUO Xiao-hu, ZHONG Jia-wen, ZHOU Qiu-lan, et al. Cationic Reduced Graphene Oxide as Self-Aligned Nano-filler in the Epoxy Nanocomposite Coating with Excellent Anticorrosive Performance and Its High Antibacterial Activity[J]. ACS Applied Materials & Inter-faces, 2018, 10(21): 18400-18415.
[79] LI Chang-yang, FAN Xiao-li, CUI Lan-yue, et al. Cor-rosion Resistance and Electrical Conductivity of a Nano ATO-Doped MAO/Methyltrimethoxysilane Composite Coating on Magnesium Alloy AZ31[J]. Corrosion Scien-ce, 2019, 168(5): 108570-108582.
[80] YANG Wei, XU Da-peng, WANG Jian-li, et al. Micros-tructure and Corrosion Resistance of Micro Arc Oxidation Plus Electrostatic Powder Spraying Composite Coating on Magnesium Alloy[J]. Corrosion Science, 2018, 136: 174- 179.
Research Progress of Micro-arc Oxidation Composite Films for Magnesium Alloys
1,2,2,1,1,1
(1. Xi'an University of Architecture and Technology Huaqing College, Xi'an 710045, China; 2. College of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China)
Micro-arc oxidation (MAO) surface treatment is often used to improve specific properties of magnesium alloys, but MAO films tend to produce micropores and microcracks, which deteriorate corrosion resistance of magnesium alloy. In order to improve the service life of magnesium alloy micro-arc oxidation (MAO) film, the latest research progress of MAO process adjustment measures and MAO film post-treatment technology at home and abroad was reviewed, and the research hotspot of MAO composite film at home and abroad in recent years was mainly introduced. Several measures to improve the long-term protection performance of magnesium alloy MAO film by process adjustment were mainly summarized. The adjustment of electrical parameters and power supply type combined with the adjustment of electrolyte composition can improve the corrosion resistance of MAO film. Adding additives into the electrolyte can improve the stability and conductivity of MAO electrolyte. Adding self-sealing hole additives can participate in the film formation to improve the compactness of MAO film. The pores were further sealed by composite process after traditional pore-sealing for MAO film. Furthermore, the research progress of composite coating technology was introduced in detail, including the hydrophobic coatings, electroless plating, diamond-like coating and biological membrane coating. It is emphasized that the composite film not only had high corrosion resistance but also had the prospect of functional application. Super hydrophobic composite film had active corrosion protection effect on magnesium substrate, so it can assist MAO film to improve the surface hydrophobicity. The nickel plating layer was compact and has no micropores, improving the conductivity and corrosion resistance of magnesium MAO film by cross bite with MAO film. MAO coating replaced the metal buffer layer to improve the interface bonding strength between diamond-like coating and matrix. The biological composite coating not only had high corrosion resistance but also had biological activity to promote cell proliferation and differentiation. Finally, based on the research status of MAO process of magnesium alloy, the future development trend of MAO composite film was prospected.
magnesium alloy; micro-arc oxidation; additive; sealing hole; composite film
TG174.4
A
1001-3660(2022)04-0066-11
10.16490/j.cnki.issn.1001-3660.2022.04.006
2021-05-06;
2021-08-05
2021-05-06;
2021-08-05
陜西省科技統(tǒng)籌創(chuàng)新工程計(jì)劃(2011KTDZ01-04-01);陜西本科和高等繼續(xù)教育教學(xué)改革研究項(xiàng)目(21BY196)
Shaanxi Provincial Science and Technology Innovation Project (2011KTDZ01-04-01); Shaanxi Undergraduate and Higher Continuing Education Teaching Reform Research Project (21BY196)
唐洋洋(1989—),女,講師,主要研究方向?yàn)橐苯鹳Y源綜合利用、冶金新技術(shù)。
TANG Yang-yang (1989—), Female, Lecturer, Research focus: comprehensive utilization of metallurgical resources and new metallurgical technology.
唐洋洋, 李林波, 王超, 等. 鎂合金微弧氧化復(fù)合膜研究進(jìn)展[J]. 表面技術(shù), 2022, 51(4): 66-76.
TANG Yang-yang, LI Lin-bo, WANG Chao, et al. Research Progress of Micro-arc Oxidation Composite Films for Magnesium Alloys[J]. Surface Technology, 2022, 51(4): 66-76.
責(zé)任編輯:蔣紅晨